期刊文献+
共找到11,974篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-view BLUP:a promising solution for post-omics data integrative prediction 被引量:1
1
作者 Bingjie Wu Huijuan Xiong +3 位作者 Lin Zhuo Yingjie Xiao Jianbing Yan Wenyu Yang 《Journal of Genetics and Genomics》 2025年第6期839-847,共9页
Phenotypic prediction is a promising strategy for accelerating plant breeding.Data from multiple sources(called multi-view data)can provide complementary information to characterize a biological object from various as... Phenotypic prediction is a promising strategy for accelerating plant breeding.Data from multiple sources(called multi-view data)can provide complementary information to characterize a biological object from various aspects.By integrating multi-view information into phenotypic prediction,a multi-view best linear unbiased prediction(MVBLUP)method is proposed in this paper.To measure the importance of multiple data views,the differential evolution algorithm with an early stopping mechanism is used,by which we obtain a multi-view kinship matrix and then incorporate it into the BLUP model for phenotypic prediction.To further illustrate the characteristics of MVBLUP,we perform the empirical experiments on four multi-view datasets in different crops.Compared to the single-view method,the prediction accuracy of the MVBLUP method has improved by 0.038–0.201 on average.The results demonstrate that the MVBLUP is an effective integrative prediction method for multi-view data. 展开更多
关键词 multi-view data Best linear unbiased prediction Similarity function Phenotype prediction Differential evolution algorithm
原文传递
Multi-View Picture Fuzzy Clustering:A Novel Method for Partitioning Multi-View Relational Data
2
作者 Pham Huy Thong Hoang Thi Canh +2 位作者 Luong Thi Hong Lan Nguyen Tuan Huy Nguyen Long Giang 《Computers, Materials & Continua》 2025年第6期5461-5485,共25页
Multi-view clustering is a critical research area in computer science aimed at effectively extracting meaningful patterns from complex,high-dimensional data that single-view methods cannot capture.Traditional fuzzy cl... Multi-view clustering is a critical research area in computer science aimed at effectively extracting meaningful patterns from complex,high-dimensional data that single-view methods cannot capture.Traditional fuzzy clustering techniques,such as Fuzzy C-Means(FCM),face significant challenges in handling uncertainty and the dependencies between different views.To overcome these limitations,we introduce a new multi-view fuzzy clustering approach that integrates picture fuzzy sets with a dual-anchor graph method for multi-view data,aiming to enhance clustering accuracy and robustness,termed Multi-view Picture Fuzzy Clustering(MPFC).In particular,the picture fuzzy set theory extends the capability to represent uncertainty by modeling three membership levels:membership degrees,neutral degrees,and refusal degrees.This allows for a more flexible representation of uncertain and conflicting data than traditional fuzzy models.Meanwhile,dual-anchor graphs exploit the similarity relationships between data points and integrate information across views.This combination improves stability,scalability,and robustness when handling noisy and heterogeneous data.Experimental results on several benchmark datasets demonstrate significant improvements in clustering accuracy and efficiency,outperforming traditional methods.Specifically,the MPFC algorithm demonstrates outstanding clustering performance on a variety of datasets,attaining a Purity(PUR)score of 0.6440 and an Accuracy(ACC)score of 0.6213 for the 3 Sources dataset,underscoring its robustness and efficiency.The proposed approach significantly contributes to fields such as pattern recognition,multi-view relational data analysis,and large-scale clustering problems.Future work will focus on extending the method for semi-supervised multi-view clustering,aiming to enhance adaptability,scalability,and performance in real-world applications. 展开更多
关键词 multi-view clustering picture fuzzy sets dual anchor graph fuzzy clustering multi-view relational data
在线阅读 下载PDF
MolP-PC:a multi-view fusion and multi-task learning framework for drug ADMET property prediction
3
作者 Sishu Li Jing Fan +2 位作者 Haiyang He Ruifeng Zhou Jun Liao 《Chinese Journal of Natural Medicines》 2025年第11期1293-1300,共8页
The accurate prediction of drug absorption,distribution,metabolism,excretion,and toxicity(ADMET)properties represents a crucial step in early drug development for reducing failure risk.Current deep learning approaches... The accurate prediction of drug absorption,distribution,metabolism,excretion,and toxicity(ADMET)properties represents a crucial step in early drug development for reducing failure risk.Current deep learning approaches face challenges with data sparsity and information loss due to single-molecule representation limitations and isolated predictive tasks.This research proposes molecular properties prediction with parallel-view and collaborative learning(MolP-PC),a multi-view fusion and multi-task deep learning framework that integrates 1D molecular fingerprints(MFs),2D molecular graphs,and 3D geometric representations,incorporating an attention-gated fusion mechanism and multi-task adaptive learning strategy for precise ADMET property predictions.Experimental results demonstrate that MolP-PC achieves optimal performance in 27 of 54 tasks,with its multi-task learning(MTL)mechanism significantly enhancing predictive performance on small-scale datasets and surpassing single-task models in 41 of 54 tasks.Additional ablation studies and interpretability analyses confirm the significance of multi-view fusion in capturing multi-dimensional molecular information and enhancing model generalization.A case study examining the anticancer compound Oroxylin A demonstrates MolP-PC’s effective generalization in predicting key pharmacokinetic parameters such as half-life(T0.5)and clearance(CL),indicating its practical utility in drug modeling.However,the model exhibits a tendency to underestimate volume of distribution(VD),indicating potential for improvement in analyzing compounds with high tissue distribution.This study presents an efficient and interpretable approach for ADMET property prediction,establishing a novel framework for molecular optimization and risk assessment in drug development. 展开更多
关键词 Molecular ADMET prediction multi-view fusion Attention mechanism Multi-task deep learning
原文传递
Multi-Order Neighborhood Fusion Based Multi-View Deep Subspace Clustering
4
作者 Kai Zhou Yanan Bai +1 位作者 Yongli Hu Boyue Wang 《Computers, Materials & Continua》 2025年第3期3873-3890,共18页
Existing multi-view deep subspace clustering methods aim to learn a unified representation from multi-view data,while the learned representation is difficult to maintain the underlying structure hidden in the origin s... Existing multi-view deep subspace clustering methods aim to learn a unified representation from multi-view data,while the learned representation is difficult to maintain the underlying structure hidden in the origin samples,especially the high-order neighbor relationship between samples.To overcome the above challenges,this paper proposes a novel multi-order neighborhood fusion based multi-view deep subspace clustering model.We creatively integrate the multi-order proximity graph structures of different views into the self-expressive layer by a multi-order neighborhood fusion module.By this design,the multi-order Laplacian matrix supervises the learning of the view-consistent self-representation affinity matrix;then,we can obtain an optimal global affinity matrix where each connected node belongs to one cluster.In addition,the discriminative constraint between views is designed to further improve the clustering performance.A range of experiments on six public datasets demonstrates that the method performs better than other advanced multi-view clustering methods.The code is available at https://github.com/songzuolong/MNF-MDSC(accessed on 25 December 2024). 展开更多
关键词 multi-view subspace clustering subspace clustering deep clustering multi-order graph structure
在线阅读 下载PDF
Auto-Weighted Neutrosophic Fuzzy Clustering for Multi-View Data
5
作者 Zhe Liu Jiahao Shi +2 位作者 Dania Santina Yulong Huang Nabil Mlaiki 《Computer Modeling in Engineering & Sciences》 2025年第9期3531-3555,共25页
The increasing prevalence of multi-view data has made multi-view clustering a crucial technique for discovering latent structures from heterogeneous representations.However,traditional fuzzy clustering algorithms show... The increasing prevalence of multi-view data has made multi-view clustering a crucial technique for discovering latent structures from heterogeneous representations.However,traditional fuzzy clustering algorithms show limitations with the inherent uncertainty and imprecision of such data,as they rely on a single-dimensional membership value.To overcome these limitations,we propose an auto-weighted multi-view neutrosophic fuzzy clustering(AW-MVNFC)algorithm.Our method leverages the neutrosophic framework,an extension of fuzzy sets,to explicitly model imprecision and ambiguity through three membership degrees.The core novelty of AWMVNFC lies in a hierarchical weighting strategy that adaptively learns the contributions of both individual data views and the importance of each feature within a view.Through a unified objective function,AW-MVNFC jointly optimizes the neutrosophic membership assignments,cluster centers,and the distributions of view and feature weights.Comprehensive experiments conducted on synthetic and real-world datasets demonstrate that our algorithm achieves more accurate and stable clustering than existing methods,demonstrating its effectiveness in handling the complexities of multi-view data. 展开更多
关键词 multi-view data neutrosophic fuzzy clustering view weight feature weight UNCERTAINTY
在线阅读 下载PDF
A ROOT-based detector geometry and event visualization system for JUNO-TAO
6
作者 Ming-Hua Liao Kai-Xuan Huang +3 位作者 Yu-Mei Zhang Jia-Yang Xu Guo-Fu Cao Zheng-Yun You 《Nuclear Science and Techniques》 2025年第3期50-59,共10页
The Taishan Antineutrino Observatory(TAO)is a satellite experiment of the Jiangmen Underground Neutrino Observatory,located near the Taishan nuclear power plant(NPP).The TAO aims to measure the energy spectrum of reac... The Taishan Antineutrino Observatory(TAO)is a satellite experiment of the Jiangmen Underground Neutrino Observatory,located near the Taishan nuclear power plant(NPP).The TAO aims to measure the energy spectrum of reactor antineutrinos with unprecedented precision,which would benefit both reactor neutrino physics and the nuclear database.A detector geometry and event visualization system was developed for the TAO.The software was based on ROOT packages and embedded in the TAO offline software framework.This provided an intuitive tool for visualizing the detector geometry,tuning the reconstruction algorithm,understanding neutrino physics,and monitoring the operation of reactors at NPP.Further applications of the visualization system in the experimental operation of TAO and its future development are discussed. 展开更多
关键词 Visualization geometry Offline software JUNO TAO
在线阅读 下载PDF
Response properties of geometries of coal penetrating fracture on seepage behavior
7
作者 Penghua Han Kai Wang +2 位作者 Jiewen Pang Xiaofeng Ji Cun Zhang 《International Journal of Mining Science and Technology》 2025年第2期191-211,共21页
The fracture surfaces of coal-rock masses formed under mining-induced stress generally exhibit complex geometries, and the fracture geometry is one of the primary factors affecting the seepage characteristics of coal-... The fracture surfaces of coal-rock masses formed under mining-induced stress generally exhibit complex geometries, and the fracture geometry is one of the primary factors affecting the seepage characteristics of coal-rock penetrating fracture. This paper investigates the seepage characteristics of 5 groups of coal penetrating fracture(CPF) with different joint roughness coefficients(JRCs). Based on 3D morphology scanner tests and hydraulic coupling tests, a characterization method of effective geometric parameters in fracture surfaces under various confining pressures was improved, and a relationship between effective geometric parameters and the confining pressure is established. The results indicate that the nonlinear flow behavior in a CPF primarily includes three types: non-Newtonian fluid seepage under high confining pressure and low JRC, non-Darcy seepage under low confining pressure and high JRC, and the whole process of seepage characteristics between these two conditions. Among them, nonNewtonian fluid seepage is caused by significant fracture expansion, while non-Darcy seepage can be attributed to turbulence effects. During the seepage process, the geometric parameters with different JRC fracture samples all exhibit exponential changes with the increase of confining pressure. In addition,under high confining pressure, the effective contact ratio, effective fracture aperture, and void deviation ratio with high JRC fracture samples under high confining pressure increase by 93.5%, 67.4%, and 24.9%,respectively, compared with those of low JRC fracture samples. According to the variation of geometric parameters in a CPF with external stress, a seepage model considering geometric parameters in a CPF is proposed. By introducing the root mean square error(RMSE) and coefficient of determination(R2) to evaluate the error and goodness of fit between model curves and experimental data, it is found that the theoretical curves of model in this paper have the best matching with the experimental data. The average values of RMSE and R2for model in this paper are 0.002 and 0.70, respectively, which are better than models in the existing literature. 展开更多
关键词 Coal penetrating fracture ROUGHNESS GEOMETRIES Seepage characteristics
在线阅读 下载PDF
Integrating Hard Silicon for High‑Performance Soft Electronics via Geometry Engineering
8
作者 Lei Yan Zongguang Liu +1 位作者 Junzhuan Wang Linwei Yu 《Nano-Micro Letters》 2025年第9期290-336,共47页
Soft electronics,which are designed to function under mechanical deformation(such as bending,stretching,and folding),have become essential in applications like wearable electronics,artificial skin,and brain-machine in... Soft electronics,which are designed to function under mechanical deformation(such as bending,stretching,and folding),have become essential in applications like wearable electronics,artificial skin,and brain-machine interfaces.Crystalline silicon is one of the most mature and reliable materials for high-performance electronics;however,its intrinsic brittleness and rigidity pose challenges for integrating it into soft electronics.Recent research has focused on overcoming these limitations by utilizing structural design techniques to impart flexibility and stretchability to Si-based materials,such as transforming them into thin nanomembranes or nanowires.This review summarizes key strategies in geometry engineering for integrating crystalline silicon into soft electronics,from the use of hard silicon islands to creating out-of-plane foldable silicon nanofilms on flexible substrates,and ultimately to shaping silicon nanowires using vapor-liquid-solid or in-plane solid-liquid-solid techniques.We explore the latest developments in Si-based soft electronic devices,with applications in sensors,nanoprobes,robotics,and brain-machine interfaces.Finally,the paper discusses the current challenges in the field and outlines future research directions to enable the widespread adoption of silicon-based flexible electronics. 展开更多
关键词 Soft electronics SILICON geometry engineering Silicon nanowires
在线阅读 下载PDF
Research on Visual Teaching of Analytic Geometry Based on GeoGebra Software
9
作者 Lianxia Jiang 《Journal of Contemporary Educational Research》 2025年第5期173-180,共8页
This paper delves into the visual teaching of analytic geometry facilitated by GeoGebra software.Through a meticulous analysis of the current landscape of analytic geometry instruction and the distinct advantages of G... This paper delves into the visual teaching of analytic geometry facilitated by GeoGebra software.Through a meticulous analysis of the current landscape of analytic geometry instruction and the distinct advantages of GeoGebra software,it expounds upon the imperative and feasibility of its application within the realm of analytic geometry teaching.Furthermore,it presents a detailed account of the teaching practice process grounded in this software,encompassing teaching design and the demonstration of teaching cases,and conducts an in-depth investigation and analysis of the teaching outcomes.The research findings indicate that the GeoGebra software can effectively elevate the level of visualization in analytic geometry teaching,thereby augmenting students’learning enthusiasm and comprehension capabilities.It thus offers novel perspectives and methodologies for the pedagogical reform of analytic geometry. 展开更多
关键词 GeoGebra software Analytic geometry Visual teaching
在线阅读 下载PDF
Fatigue Resistance in Engineering Components:A Comprehensive Review on the Role of Geometry and Its Optimization
10
作者 Ibrahim T.Teke Ahmet H.Ertas 《Computer Modeling in Engineering & Sciences》 2025年第7期201-237,共37页
Fatigue failure continues to be a significant challenge in designing structural and mechanical components subjected to repeated and complex loading.While earlier studies mainly examined material properties and how str... Fatigue failure continues to be a significant challenge in designing structural and mechanical components subjected to repeated and complex loading.While earlier studies mainly examined material properties and how stress affects lifespan,this review offers the first comprehensive,multiscale comparison of strategies that optimize geometry to improve fatigue performance.This includes everything from microscopic features like the shape of graphite nodules to large-scale design elements such as fillets,notches,and overall structural layouts.We analyze and combine various methods,including topology and shape optimization,the ability of additive manufacturing to finetune internal geometries,and reliability-based design approaches.A key new contribution is our proposal of a standard way to evaluate geometry-focused fatigue design,allowing for consistent comparison and encouraging validation across different fields.Furthermore,we highlight important areas for future research,such as incorporating manufacturing flaws,using multiscale models,and integrating machine learning techniques.This work is the first to provide a broad geometric viewpoint in fatigue engineering,laying the groundwork for future design methods that are driven by data and centered on reliability. 展开更多
关键词 Fatigue resistance geometry optimization topology optimization microstructural geometry additive manufacturing crack initiation multiaxial fatigue reliability-based design raster orientation notch effect defect morphology fatigue life prediction
在线阅读 下载PDF
Solution of multigroup neutron diffusion equation in 3D hexagonal geometry using nodal Green's function method
11
作者 Il-Mun Ho Kum-Hyok Ok Chol So 《Nuclear Science and Techniques》 2025年第9期33-42,共10页
In this paper,we propose a numerical calculation model of the multigroup neutron diffusion equation in 3D hexagonal geometry using the nodal Green's function method and verified it.We obtained one-dimensional tran... In this paper,we propose a numerical calculation model of the multigroup neutron diffusion equation in 3D hexagonal geometry using the nodal Green's function method and verified it.We obtained one-dimensional transverse integrated equations using the transverse integration procedure over 3D hexagonal geometry and denoted the solutions as a nodal Green's functions under the Neumann boundary condition.By applying a quadratic polynomial expansion of the transverse-averaged quantities,we derived the net neutron current coupling equation,equation for the expansion coefficients of the transverse-averaged neutron flux,and formulas for the coefficient matrix of these equations.We formulated the closed system of equations in correspondence with the boundary conditions.The proposed model was tested by comparing it with the benchmark for the VVER-440 reactor,and the numerical results were in good agreement with the reference solutions. 展开更多
关键词 NGFM Hexagonal geometry Multigroup neutron diffusion equation
在线阅读 下载PDF
Adaptive multi-view learning method for enhanced drug repurposing using chemical-induced transcriptional profiles, knowledge graphs, and large language models
12
作者 Yudong Yan Yinqi Yang +9 位作者 Zhuohao Tong Yu Wang Fan Yang Zupeng Pan Chuan Liu Mingze Bai Yongfang Xie Yuefei Li Kunxian Shu Yinghong Li 《Journal of Pharmaceutical Analysis》 2025年第6期1354-1369,共16页
Drug repurposing offers a promising alternative to traditional drug development and significantly re-duces costs and timelines by identifying new therapeutic uses for existing drugs.However,the current approaches ofte... Drug repurposing offers a promising alternative to traditional drug development and significantly re-duces costs and timelines by identifying new therapeutic uses for existing drugs.However,the current approaches often rely on limited data sources and simplistic hypotheses,which restrict their ability to capture the multi-faceted nature of biological systems.This study introduces adaptive multi-view learning(AMVL),a novel methodology that integrates chemical-induced transcriptional profiles(CTPs),knowledge graph(KG)embeddings,and large language model(LLM)representations,to enhance drug repurposing predictions.AMVL incorporates an innovative similarity matrix expansion strategy and leverages multi-view learning(MVL),matrix factorization,and ensemble optimization techniques to integrate heterogeneous multi-source data.Comprehensive evaluations on benchmark datasets(Fdata-set,Cdataset,and Ydataset)and the large-scale iDrug dataset demonstrate that AMVL outperforms state-of-the-art(SOTA)methods,achieving superior accuracy in predicting drug-disease associations across multiple metrics.Literature-based validation further confirmed the model's predictive capabilities,with seven out of the top ten predictions corroborated by post-2011 evidence.To promote transparency and reproducibility,all data and codes used in this study were open-sourced,providing resources for pro-cessing CTPs,KG,and LLM-based similarity calculations,along with the complete AMVL algorithm and benchmarking procedures.By unifying diverse data modalities,AMVL offers a robust and scalable so-lution for accelerating drug discovery,fostering advancements in translational medicine and integrating multi-omics data.We aim to inspire further innovations in multi-source data integration and support the development of more precise and efficient strategies for advancing drug discovery and translational medicine. 展开更多
关键词 Drug repurposing multi-view learning Chemical-induced transcriptional profile Knowledge graph Large language model Heterogeneous network
在线阅读 下载PDF
Research on multi-view collaborative detection system for UAV swarms based on Pix2Pix framework and BAM attention mechanism
13
作者 Yan Ding Qingxin Cao +2 位作者 Bozhi Zhang Peilin Li Zhongjiao Shi 《Defence Technology(防务技术)》 2025年第4期213-226,共14页
Drone swarm systems,equipped with photoelectric imaging and intelligent target perception,are essential for reconnaissance and strike missions in complex and high-risk environments.They excel in information sharing,an... Drone swarm systems,equipped with photoelectric imaging and intelligent target perception,are essential for reconnaissance and strike missions in complex and high-risk environments.They excel in information sharing,anti-jamming capabilities,and combat performance,making them critical for future warfare.However,varied perspectives in collaborative combat scenarios pose challenges to object detection,hindering traditional detection algorithms and reducing accuracy.Limited angle-prior data and sparse samples further complicate detection.This paper presents the Multi-View Collaborative Detection System,which tackles the challenges of multi-view object detection in collaborative combat scenarios.The system is designed to enhance multi-view image generation and detection algorithms,thereby improving the accuracy and efficiency of object detection across varying perspectives.First,an observation model for three-dimensional targets through line-of-sight angle transformation is constructed,and a multi-view image generation algorithm based on the Pix2Pix network is designed.For object detection,YOLOX is utilized,and a deep feature extraction network,BA-RepCSPDarknet,is developed to address challenges related to small target scale and feature extraction challenges.Additionally,a feature fusion network NS-PAFPN is developed to mitigate the issue of deep feature map information loss in UAV images.A visual attention module(BAM)is employed to manage appearance differences under varying angles,while a feature mapping module(DFM)prevents fine-grained feature loss.These advancements lead to the development of BA-YOLOX,a multi-view object detection network model suitable for drone platforms,enhancing accuracy and effectively targeting small objects. 展开更多
关键词 Drone swarm systems Reconnaissance and strike Image generation multi-view detection Pix2Pix framework Attention mechanism
在线阅读 下载PDF
Differential-geometry-based multi-dimensional joint position-velocity estimation using Crab pulsar profile distortion
14
作者 Jin LIU Huanzi ZHANG +1 位作者 Xiaolin NING Xin MA 《Chinese Journal of Aeronautics》 2025年第1期551-567,共17页
The traditional orbit determination method based on pulsar profile distortion can determine the six elements of the orbit.However,the estimation accuracies of these methods are limited and the computational load of a ... The traditional orbit determination method based on pulsar profile distortion can determine the six elements of the orbit.However,the estimation accuracies of these methods are limited and the computational load of a six-dimensional search is huge.To solve this problem,the differential-geometry-based Multi-dimensional Joint Position-Velocity Estimation(MJPVE)using Crab pulsar profile distortion is proposed in this paper.Firstly,through theoretical analysis,it is found that the pulsar profile distortion caused by the initial state error in some joint positionvelocity directions is very small.In other words,the accuracies of estimation in these directions are very low.Namely,the search dimension can be reduced,which in turn greatly reduces the computational load.Then,we construct the chi-squared function of the pulsar profile with respect to the estimation error in joint position-velocity direction and use differential geometry to find the joint position-velocity directions corresponding to different degrees of distortion.Finally,we utilize the grid search based on directory folding in these joint position-velocity directions corresponding to large degrees of distortion to obtain the joint position-velocity estimation.The experimental results show that compared with the grouping bi-chi-squared inversion method,MJPVE has high precision and extensive navigation information. 展开更多
关键词 Joint Position-Velocity Estimation PULSARS Profile Distortion Orbit Determination Differential geometry
原文传递
Analytical Modeling and Comparative Analysis of Capillary Imbibition in Shale Pores of Various Geometries
15
作者 Jin Xue Boyun Guo 《Computer Modeling in Engineering & Sciences》 2025年第9期3307-3328,共22页
Fluid imbibition from hydraulic fractures into shale formations is mainly affected by a combination of capillary forces and viscous resistance,both of which are closely related to the pore geometry.This study establis... Fluid imbibition from hydraulic fractures into shale formations is mainly affected by a combination of capillary forces and viscous resistance,both of which are closely related to the pore geometry.This study established five self-imbibition models with idealized pore structures and conducted a comparative analysis of these models.These models include circular,square,and equilateral triangular capillaries;a triangular star-shaped cross-section formed by three tangent spherical particles;and a traditional porous medium representation method.All these models are derived based on Newton’s second law,where capillary pressure is described by the Young-Laplace equation and viscous resistance is characterized by the Hagen-Poiret equation and Darcy’s law.All derived models predict that the fluid imbibition distance is proportional to the square root of time,in accordance with the classical Lucas-Washburn law.However,different pore structures exhibit significantly different characteristic imbibition rates.Compared to the single pore model,the conventional Darcy’s law-based model for porous media predicts significantly lower imbibition rates,which is consistent with the relatively slower uptake rates in actual shale nanoscale pore networks.These findings emphasize the important role played by pore geometry in fluid imbibition dynamics and further point to the need for optimizing pore structure to extend fluid imbibition duration in shale reservoirs in practical operations. 展开更多
关键词 Spontaneous imbibition capillary flow pore geometry triangular-star channel analytical model
在线阅读 下载PDF
The Design Method of Cross-well Seismic Geometry Driven by Reverse Time Migration
16
作者 Cao Xiao-yong Yang Fei-long +4 位作者 Hui Wei-jing Ruan Shao-hua Yu Dai Fang Wen-zhen Guo Xin-yue 《Applied Geophysics》 2025年第3期623-634,892,共13页
Reasonable field acquisition geometry can not only guide seismic exploration to obtain sufficient geological information of target body,but also reduce acquisition cost to the maximum.In this study,building on convent... Reasonable field acquisition geometry can not only guide seismic exploration to obtain sufficient geological information of target body,but also reduce acquisition cost to the maximum.In this study,building on conventional ray-based geometry design methods,we incorporate imaging results as a constraint to optimize the geometry design and evaluate its effectiveness.Firstly,the geological model of the target layer is established based on the geological data of the study area and surface seismic data combined with exploration tasks.Then,the ray-tracing method is employed to simulate and assess the proposed geometry design,verifying whether its parameters meet the exploration requirements.Finally,the imaging effect of the designed geometry on the target layer is tested by the cross-well seismic reverse time migration method.This methodology was applied to design the cross-well seismic acquisition geometry for offshore deviated wells in the X Oilfield.The simulation results demonstrate that the imaging-driven geometry design approach effectively guides field operations,enhances the imaging quality of the target layer,and reduces acquisition costs. 展开更多
关键词 Crosswell seismic geometry design IMAGING Ray tracing Reverse time migration
在线阅读 下载PDF
Machine learning-based aftershock seismicity of the 2015 Gorkha earthquake controlled by flat-ramp geometry and a tear fault
17
作者 Yeyang Kuang Jiangtao Li 《Earthquake Science》 2025年第1期17-32,共16页
The Main Himalayan Thrust(MHT),where the 2015 MW7.8 Gorkha earthquake occurred,features the most seismicity of any structure in Nepal.The structural complexity of the MHT makes it difficult to obtain a definitive inte... The Main Himalayan Thrust(MHT),where the 2015 MW7.8 Gorkha earthquake occurred,features the most seismicity of any structure in Nepal.The structural complexity of the MHT makes it difficult to obtain a definitive interpretation of deep seismogenic structures.The application of new methods and data in this region is necessary to enhance local seismic hazard analyses.In this study,we used a well-designed machine learning-based earthquake location workflow(LOC-FLOW),which incorporates machine learning phase picking,phase association,absolute location,and double-difference relative location,to process seismic data collected by the Hi-CLIMB and NAMASTE seismic networks.We built a high-precision earthquake catalog of both the quiet-period and aftershock seismicity in this region.The seismicity distribution suggests that the quietperiod seismicity(388 events)was controlled by a mid-crustal ramp and the aftershock seismicity(12,669 events)was controlled by several geological structures of the MHT.The higher-level detail of the catalogs derived from this machine learning method reveal clearer structural characteristics,showing how the flat-ramp geometry and a possible duplex structure affect the depth distribution of the seismic events,and how a tear fault changes this distribution along strike. 展开更多
关键词 aftershock seismicity 2015 Gorkha earthquake machine learning flat-ramp geometry tear fault
在线阅读 下载PDF
Implicit geometry neural network for mesh generation
18
作者 Ran XU Hongqiang LYU +4 位作者 Jian YU Chenyu BAO Hongfei WANG Yufei LIU Xuejun LIU 《Chinese Journal of Aeronautics》 2025年第4期91-111,共21页
The accuracy of numerical computation heavily relies on appropriate meshing,whichserves as the foundation for numerical computation.Although adaptive refinement methods areavailable,an adaptive numerical solution is l... The accuracy of numerical computation heavily relies on appropriate meshing,whichserves as the foundation for numerical computation.Although adaptive refinement methods areavailable,an adaptive numerical solution is likely to be ineffective if it originates from a poorly ini-tial mesh.Therefore,it is crucial to generate meshes that accurately capture the geometric features.As an indispensable input in meshing methods,the Mesh Size Function(MSF)determines the qual-ity of the generated mesh.However,the current generation of MSF involves human participation tospecify numerous parameters,leading to difficulties in practical usage.Considering the capacity ofmachine learning to reveal the latent relationships within data,this paper proposes a novel machinelearning method,Implicit Geometry Neural Network(IGNN),for automatic prediction of appro-priate MSFs based on the existing mesh data,enabling the generation of unstructured meshes thatalign precisely with geometric features.IGNN employs the generative adversarial theory to learnthe mapping between the implicit representation of the geometry(Signed Distance Function,SDF)and the corresponding MSF.Experimental results show that the proposed method is capableof automatically generating appropriate meshes and achieving comparable meshing results com-pared to traditional methods.This paper demonstrates the possibility of significantly decreasingthe workload of mesh generation using machine learning techniques,and it is expected to increasethe automation level of mesh generation. 展开更多
关键词 Mesh generation Implicit geometry Mesh size function Geometric features Generative adversarial learning
原文传递
Computational analysis of Ti-6Al-4V thoracic implants with a spring-like geometry for anterior chest wall reconstruction
19
作者 Alejandro BOLANOS Alejandro YANEZ +2 位作者 Alberto CUADRADO Maria Paula FIORUCCI Belinda MENTADO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第7期679-693,共15页
Thoracic reconstructions are essential surgical techniques used to replace severely damaged tissues and restore protection to internal organs.In recent years,advancements in additive manufacturing have enabled the pro... Thoracic reconstructions are essential surgical techniques used to replace severely damaged tissues and restore protection to internal organs.In recent years,advancements in additive manufacturing have enabled the production of thoracic implants with complex geometries,offering more versatile performance.In this study,we investigated a design based on a spring-like geometry manufactured by laser powder bed fusion(LPBF),as proposed in earlier research.The biomechanical behavior of this design was analyzed using various isolated semi-ring-rib models at different levels of the rib cage.This approach enabled a comprehensive examination,leading to the proposal of several implant configurations that were incorporated into a 3D rib cage model with chest wall defects,to simulate different chest wall reconstruction scenarios.The results revealed that the implant design was too rigid for the second rib level,which therefore was excluded from the proposed implant configurations.In chest wall reconstruction simulations,the maximum stresses observed in all prostheses did not exceed 38%of the implant material's yield stress in the most unfavorable case.Additionally,all the implants showed flexibility compatible with the physiological movements of the human thorax. 展开更多
关键词 Chest wall reconstruction Thoracic implant Spring-like geometry Semi-ring-rib model Computational analysis
原文传递
Isogeometric Shell Analysis of Multi-sided CAD Geometries Using Toric Surfaces
20
作者 Hanhan Chai Xuefeng Zhu +4 位作者 Zikang Yang An Xi Chunhui Yang Xiangkui Zhang Ping Hu 《Acta Mechanica Solida Sinica》 2025年第5期764-775,共12页
To address the challenges associated with multi-sided shells in traditional isogeometric analysis(IGA),this paper introduces a novel isogeometric shell method for trimmed CAD geometries based on toric surfaces and Rei... To address the challenges associated with multi-sided shells in traditional isogeometric analysis(IGA),this paper introduces a novel isogeometric shell method for trimmed CAD geometries based on toric surfaces and Reissner–Mindlin shell theory.By utilizing toric surface patches,both trimmed and untrimmed elements of the CAD surfaces are represented through a unified geometric framework,ensuring continuity and an accurate geometric description.Toric-Bernstein basis functions are employed to accurately interpolate the geometry and displacement of the trimmed shell.For singularities and corner points on the toric surface,the normal vector is defined as the unit directional vector from the center of curvature to the corresponding control point.Several numerical examples of polygonal shells are presented to evaluate the effectiveness and robustness of the proposed method.This approach significantly simplifies the treatment of trimmed shell IGA and provides a promising solution for simulating complex shell structures with intricate boundaries. 展开更多
关键词 Toric surfaces Reissner–Mindlin shell theory Multi-sided geometry Isogeometric analysis
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部