Multi-view clustering is a critical research area in computer science aimed at effectively extracting meaningful patterns from complex,high-dimensional data that single-view methods cannot capture.Traditional fuzzy cl...Multi-view clustering is a critical research area in computer science aimed at effectively extracting meaningful patterns from complex,high-dimensional data that single-view methods cannot capture.Traditional fuzzy clustering techniques,such as Fuzzy C-Means(FCM),face significant challenges in handling uncertainty and the dependencies between different views.To overcome these limitations,we introduce a new multi-view fuzzy clustering approach that integrates picture fuzzy sets with a dual-anchor graph method for multi-view data,aiming to enhance clustering accuracy and robustness,termed Multi-view Picture Fuzzy Clustering(MPFC).In particular,the picture fuzzy set theory extends the capability to represent uncertainty by modeling three membership levels:membership degrees,neutral degrees,and refusal degrees.This allows for a more flexible representation of uncertain and conflicting data than traditional fuzzy models.Meanwhile,dual-anchor graphs exploit the similarity relationships between data points and integrate information across views.This combination improves stability,scalability,and robustness when handling noisy and heterogeneous data.Experimental results on several benchmark datasets demonstrate significant improvements in clustering accuracy and efficiency,outperforming traditional methods.Specifically,the MPFC algorithm demonstrates outstanding clustering performance on a variety of datasets,attaining a Purity(PUR)score of 0.6440 and an Accuracy(ACC)score of 0.6213 for the 3 Sources dataset,underscoring its robustness and efficiency.The proposed approach significantly contributes to fields such as pattern recognition,multi-view relational data analysis,and large-scale clustering problems.Future work will focus on extending the method for semi-supervised multi-view clustering,aiming to enhance adaptability,scalability,and performance in real-world applications.展开更多
Binary multi-view clustering has attracted intense attention from researchers due to its efficiency in handling large-scale datasets.However,previous clustering approaches suffer from at least two limitations.First,th...Binary multi-view clustering has attracted intense attention from researchers due to its efficiency in handling large-scale datasets.However,previous clustering approaches suffer from at least two limitations.First,they ignore correlations among the features of original data.As a result,the geometric consistency of data is not preserved in the to-be-learnt binary representation space.Second,redundant and noisy features mixed in original data inevitably limit the ultimate clustering performance.In light of this,we propose a novel discriminative binary multi-view clustering(DBMVC)method to address the issues.Specifically,the proposed DBMVC first maps original data onto the Hamming space to obtain corresponding binary codes,which can effectively reduce the computational complexity and storage costs in the following steps.To enable our method to select useful features from original data and get a discriminative representation,the-norm is used to constrain the feature projection matrix.In addition,a graph regularization term is further introduced to preserve the local manifold structure of the learned binary representation.Finally,an alternative iterative optimization algorithm is designed to solve the optimization problems of the objective function.Comprehensive experiments on six large-scale multi-view datasets validate that the proposed DBMVC markedly outperforms other state-of-the-art methods in terms of effectiveness and efficiency.展开更多
Existing multi-view deep subspace clustering methods aim to learn a unified representation from multi-view data,while the learned representation is difficult to maintain the underlying structure hidden in the origin s...Existing multi-view deep subspace clustering methods aim to learn a unified representation from multi-view data,while the learned representation is difficult to maintain the underlying structure hidden in the origin samples,especially the high-order neighbor relationship between samples.To overcome the above challenges,this paper proposes a novel multi-order neighborhood fusion based multi-view deep subspace clustering model.We creatively integrate the multi-order proximity graph structures of different views into the self-expressive layer by a multi-order neighborhood fusion module.By this design,the multi-order Laplacian matrix supervises the learning of the view-consistent self-representation affinity matrix;then,we can obtain an optimal global affinity matrix where each connected node belongs to one cluster.In addition,the discriminative constraint between views is designed to further improve the clustering performance.A range of experiments on six public datasets demonstrates that the method performs better than other advanced multi-view clustering methods.The code is available at https://github.com/songzuolong/MNF-MDSC(accessed on 25 December 2024).展开更多
The increasing prevalence of multi-view data has made multi-view clustering a crucial technique for discovering latent structures from heterogeneous representations.However,traditional fuzzy clustering algorithms show...The increasing prevalence of multi-view data has made multi-view clustering a crucial technique for discovering latent structures from heterogeneous representations.However,traditional fuzzy clustering algorithms show limitations with the inherent uncertainty and imprecision of such data,as they rely on a single-dimensional membership value.To overcome these limitations,we propose an auto-weighted multi-view neutrosophic fuzzy clustering(AW-MVNFC)algorithm.Our method leverages the neutrosophic framework,an extension of fuzzy sets,to explicitly model imprecision and ambiguity through three membership degrees.The core novelty of AWMVNFC lies in a hierarchical weighting strategy that adaptively learns the contributions of both individual data views and the importance of each feature within a view.Through a unified objective function,AW-MVNFC jointly optimizes the neutrosophic membership assignments,cluster centers,and the distributions of view and feature weights.Comprehensive experiments conducted on synthetic and real-world datasets demonstrate that our algorithm achieves more accurate and stable clustering than existing methods,demonstrating its effectiveness in handling the complexities of multi-view data.展开更多
Although many multi-view clustering(MVC) algorithms with acceptable performances have been presented, to the best of our knowledge, nearly all of them need to be fed with the correct number of clusters. In addition, t...Although many multi-view clustering(MVC) algorithms with acceptable performances have been presented, to the best of our knowledge, nearly all of them need to be fed with the correct number of clusters. In addition, these existing algorithms create only the hard and fuzzy partitions for multi-view objects,which are often located in highly-overlapping areas of multi-view feature space. The adoption of hard and fuzzy partition ignores the ambiguity and uncertainty in the assignment of objects, likely leading to performance degradation. To address these issues, we propose a novel sparse reconstructive multi-view evidential clustering algorithm(SRMVEC). Based on a sparse reconstructive procedure, SRMVEC learns a shared affinity matrix across views, and maps multi-view objects to a 2-dimensional humanreadable chart by calculating 2 newly defined mathematical metrics for each object. From this chart, users can detect the number of clusters and select several objects existing in the dataset as cluster centers. Then, SRMVEC derives a credal partition under the framework of evidence theory, improving the fault tolerance of clustering. Ablation studies show the benefits of adopting the sparse reconstructive procedure and evidence theory. Besides,SRMVEC delivers effectiveness on benchmark datasets by outperforming some state-of-the-art methods.展开更多
The existing multi-view subspace clustering algorithms based on tensor singular value decomposition(t-SVD)predominantly utilize tensor nuclear norm to explore the intra view correlation between views of the same sampl...The existing multi-view subspace clustering algorithms based on tensor singular value decomposition(t-SVD)predominantly utilize tensor nuclear norm to explore the intra view correlation between views of the same samples,while neglecting the correlation among the samples within different views.Moreover,the tensor nuclear norm is not fully considered as a convex approximation of the tensor rank function.Treating different singular values equally may result in suboptimal tensor representation.A hypergraph regularized multi-view subspace clustering algorithm with dual tensor log-determinant(HRMSC-DTL)was proposed.The algorithm used subspace learning in each view to learn a specific set of affinity matrices,and introduced a non-convex tensor log-determinant function to replace the tensor nuclear norm to better improve global low-rankness.It also introduced hyper-Laplacian regularization to preserve the local geometric structure embedded in the high-dimensional space.Furthermore,it rotated the original tensor and incorporated a dual tensor mechanism to fully exploit the intra view correlation of the original tensor and the inter view correlation of the rotated tensor.At the same time,an alternating direction of multipliers method(ADMM)was also designed to solve non-convex optimization model.Experimental evaluations on seven widely used datasets,along with comparisons to several state-of-the-art algorithms,demonstrated the superiority and effectiveness of the HRMSC-DTL algorithm in terms of clustering performance.展开更多
It is challenging to cluster multi-view data in which the clusters have overlapping areas.Existing multi-view clustering methods often misclassify the indistinguishable objects in overlapping areas by forcing them int...It is challenging to cluster multi-view data in which the clusters have overlapping areas.Existing multi-view clustering methods often misclassify the indistinguishable objects in overlapping areas by forcing them into single clusters,increasing clustering errors.Our solution,the multi-view dynamic kernelized evidential clustering method(MvDKE),addresses this by assigning these objects to meta-clusters,a union of several related singleton clusters,effectively capturing the local imprecision in overlapping areas.MvDKE offers two main advantages:firstly,it significantly reduces computational complexity through a dynamic framework for evidential clustering,and secondly,it adeptly handles non-spherical data using kernel techniques within its objective function.Experiments on various datasets confirm MvDKE's superior ability to accurately characterize the local imprecision in multi-view non-spherical data,achieving better efficiency and outperforming existing methods in overall performance.展开更多
Federated learning is a machine learning framework designed to protect privacy by keeping training data on clients’devices without sharing private data.It trains a global model through collaboration between clients a...Federated learning is a machine learning framework designed to protect privacy by keeping training data on clients’devices without sharing private data.It trains a global model through collaboration between clients and the server.However,the presence of data heterogeneity can lead to inefficient model training and even reduce the final model’s accuracy and generalization capability.Meanwhile,data scarcity can result in suboptimal cluster distributions for few-shot clients in centralized clustering tasks,and standalone personalization tasks may cause severe overfitting issues.To address these limitations,we introduce a federated learning dual optimization model based on clustering and personalization strategy(FedCPS).FedCPS adopts a decentralized approach,where clients identify their cluster membership locally without relying on a centralized clustering algorithm.Building on this,FedCPS introduces personalized training tasks locally,adding a regularization term to control deviations between local and cluster models.This improves the generalization ability of the final model while mitigating overfitting.The use of weight-sharing techniques also reduces the computational cost of central machines.Experimental results on MNIST,FMNIST,CIFAR10,and CIFAR100 datasets demonstrate that our method achieves better personalization effects compared to other personalized federated learning methods,with an average test accuracy improvement of 0.81%–2.96%.Meanwhile,we adjusted the proportion of few-shot clients to evaluate the impact on accuracy across different methods.The experiments show that FedCPS reduces accuracy by only 0.2%–3.7%,compared to 2.1%–10%for existing methods.Our method demonstrates its advantages across diverse data environments.展开更多
Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subse...Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subsets via hierarchical clustering,but objective methods to determine the appropriate classification granularity are missing.We recently introduced a technique to systematically identify when to stop subdividing clusters based on the fundamental principle that cells must differ more between than within clusters.Here we present the corresponding protocol to classify cellular datasets by combining datadriven unsupervised hierarchical clustering with statistical testing.These general-purpose functions are applicable to any cellular dataset that can be organized as two-dimensional matrices of numerical values,including molecula r,physiological,and anatomical datasets.We demonstrate the protocol using cellular data from the Janelia MouseLight project to chara cterize morphological aspects of neurons.展开更多
Multi-view Subspace Clustering (MVSC) emerges as an advanced clustering method, designed to integrate diverse views to uncover a common subspace, enhancing the accuracy and robustness of clustering results. The signif...Multi-view Subspace Clustering (MVSC) emerges as an advanced clustering method, designed to integrate diverse views to uncover a common subspace, enhancing the accuracy and robustness of clustering results. The significance of low-rank prior in MVSC is emphasized, highlighting its role in capturing the global data structure across views for improved performance. However, it faces challenges with outlier sensitivity due to its reliance on the Frobenius norm for error measurement. Addressing this, our paper proposes a Low-Rank Multi-view Subspace Clustering Based on Sparse Regularization (LMVSC- Sparse) approach. Sparse regularization helps in selecting the most relevant features or views for clustering while ignoring irrelevant or noisy ones. This leads to a more efficient and effective representation of the data, improving the clustering accuracy and robustness, especially in the presence of outliers or noisy data. By incorporating sparse regularization, LMVSC-Sparse can effectively handle outlier sensitivity, which is a common challenge in traditional MVSC methods relying solely on low-rank priors. Then Alternating Direction Method of Multipliers (ADMM) algorithm is employed to solve the proposed optimization problems. Our comprehensive experiments demonstrate the efficiency and effectiveness of LMVSC-Sparse, offering a robust alternative to traditional MVSC methods.展开更多
Deep multi-view subspace clustering (DMVSC) based on self-expression has attracted increasing attention dueto its outstanding performance and nonlinear application. However, most existing methods neglect that viewpriv...Deep multi-view subspace clustering (DMVSC) based on self-expression has attracted increasing attention dueto its outstanding performance and nonlinear application. However, most existing methods neglect that viewprivatemeaningless information or noise may interfere with the learning of self-expression, which may lead to thedegeneration of clustering performance. In this paper, we propose a novel framework of Contrastive Consistencyand Attentive Complementarity (CCAC) for DMVsSC. CCAC aligns all the self-expressions of multiple viewsand fuses them based on their discrimination, so that it can effectively explore consistent and complementaryinformation for achieving precise clustering. Specifically, the view-specific self-expression is learned by a selfexpressionlayer embedded into the auto-encoder network for each view. To guarantee consistency across views andreduce the effect of view-private information or noise, we align all the view-specific self-expressions by contrastivelearning. The aligned self-expressions are assigned adaptive weights by channel attention mechanism according totheir discrimination. Then they are fused by convolution kernel to obtain consensus self-expression withmaximumcomplementarity ofmultiple views. Extensive experimental results on four benchmark datasets and one large-scaledataset of the CCAC method outperformother state-of-the-artmethods, demonstrating its clustering effectiveness.展开更多
For multi-vehicle networks,Cooperative Positioning(CP)technique has become a promising way to enhance vehicle positioning accuracy.Especially,the CP performance could be further improved by introducing Sensor-Rich Veh...For multi-vehicle networks,Cooperative Positioning(CP)technique has become a promising way to enhance vehicle positioning accuracy.Especially,the CP performance could be further improved by introducing Sensor-Rich Vehicles(SRVs)into CP networks,which is called SRV-aided CP.However,the CP system may split into several sub-clusters that cannot be connected with each other in dense urban environments,in which the sub-clusters with few SRVs will suffer from degradation of CP performance.Since Unmanned Aerial Vehicles(UAVs)have been widely used to aid vehicular communications,we intend to utilize UAVs to assist sub-clusters in CP.In this paper,a UAV-aided CP network is constructed to fully utilize information from SRVs.First,the inter-node connection structure among the UAV and vehicles is designed to share available information from SRVs.After that,the clustering optimization strategy is proposed,in which the UAV cooperates with the high-precision sub-cluster to obtain available information from SRVs,and then broadcasts this positioning-related information to other low-precision sub-clusters.Finally,the Locally-Centralized Factor Graph Optimization(LC-FGO)algorithm is designed to fuse positioning information from cooperators.Simulation results indicate that the positioning accuracy of the CP system could be improved by fully utilizing positioning-related information from SRVs.展开更多
Customer segmentation according to load-shape profiles using smart meter data is an increasingly important application to vital the planning and operation of energy systems and to enable citizens’participation in the...Customer segmentation according to load-shape profiles using smart meter data is an increasingly important application to vital the planning and operation of energy systems and to enable citizens’participation in the energy transition.This study proposes an innovative multi-step clustering procedure to segment customers based on load-shape patterns at the daily and intra-daily time horizons.Smart meter data is split between daily and hourly normalized time series to assess monthly,weekly,daily,and hourly seasonality patterns separately.The dimensionality reduction implicit in the splitting allows a direct approach to clustering raw daily energy time series data.The intraday clustering procedure sequentially identifies representative hourly day-unit profiles for each customer and the entire population.For the first time,a step function approach is applied to reduce time series dimensionality.Customer attributes embedded in surveys are employed to build external clustering validation metrics using Cramer’s V correlation factors and to identify statistically significant determinants of load-shape in energy usage.In addition,a time series features engineering approach is used to extract 16 relevant demand flexibility indicators that characterize customers and corresponding clusters along four different axes:available Energy(E),Temporal patterns(T),Consistency(C),and Variability(V).The methodology is implemented on a real-world electricity consumption dataset of 325 Small and Medium-sized Enterprise(SME)customers,identifying 4 daily and 6 hourly easy-to-interpret,well-defined clusters.The application of the methodology includes selecting key parameters via grid search and a thorough comparison of clustering distances and methods to ensure the robustness of the results.Further research can test the scalability of the methodology to larger datasets from various customer segments(households and large commercial)and locations with different weather and socioeconomic conditions.展开更多
To enhance the denoising performance of event-based sensors,we introduce a clustering-based temporal deep neural network denoising method(CBTDNN).Firstly,to cluster the sensor output data and obtain the respective clu...To enhance the denoising performance of event-based sensors,we introduce a clustering-based temporal deep neural network denoising method(CBTDNN).Firstly,to cluster the sensor output data and obtain the respective cluster centers,a combination of density-based spatial clustering of applications with noise(DBSCAN)and Kmeans++is utilized.Subsequently,long short-term memory(LSTM)is employed to fit and yield optimized cluster centers with temporal information.Lastly,based on the new cluster centers and denoising ratio,a radius threshold is set,and noise points beyond this threshold are removed.The comprehensive denoising metrics F1_score of CBTDNN have achieved 0.8931,0.7735,and 0.9215 on the traffic sequences dataset,pedestrian detection dataset,and turntable dataset,respectively.And these metrics demonstrate improvements of 49.90%,33.07%,19.31%,and 22.97%compared to four contrastive algorithms,namely nearest neighbor(NNb),nearest neighbor with polarity(NNp),Autoencoder,and multilayer perceptron denoising filter(MLPF).These results demonstrate that the proposed method enhances the denoising performance of event-based sensors.展开更多
Numerous clustering algorithms are valuable in pattern recognition in forest vegetation,with new ones continually being proposed.While some are well-known,others are underutilized in vegetation science.This study comp...Numerous clustering algorithms are valuable in pattern recognition in forest vegetation,with new ones continually being proposed.While some are well-known,others are underutilized in vegetation science.This study compares the performance of practical iterative reallocation algorithms with model-based clustering algorithms.The data is from forest vegetation in Virginia(United States),the Hyrcanian Forest(Asia),and European beech forests.Practical iterative reallocation algorithms were applied as non-hierarchical methods and Finite Gaussian mixture modeling was used as a model-based clustering method.Due to limitations on dimensionality in model-based clustering,principal coordinates analysis was employed to reduce the dataset’s dimensions.A log transformation was applied to achieve a normal distribution for the pseudo-species data before calculating the Bray-Curtis dissimilarity.The findings indicate that the reallocation of misclassified objects based on silhouette width(OPTSIL)with Flexible-β(-0.25)had the highest mean among the tested clustering algorithms with Silhouette width 1(REMOS1)with Flexible-β(-0.25)second.However,model-based clustering performed poorly.Based on these results,it is recommended using OPTSIL with Flexible-β(-0.25)and REMOS1 with Flexible-β(-0.25)for forest vegetation classification instead of model-based clustering particularly for heterogeneous datasets common in forest vegetation community data.展开更多
The characterization and clustering of rock discontinuity sets are a crucial and challenging task in rock mechanics and geotechnical engineering.Over the past few decades,the clustering of discontinuity sets has under...The characterization and clustering of rock discontinuity sets are a crucial and challenging task in rock mechanics and geotechnical engineering.Over the past few decades,the clustering of discontinuity sets has undergone rapid and remarkable development.However,there is no relevant literature summarizing these achievements,and this paper attempts to elaborate on the current status and prospects in this field.Specifically,this review aims to discuss the development process of clustering methods for discontinuity sets and the state-of-the-art relevant algorithms.First,we introduce the importance of discontinuity clustering analysis and follow the comprehensive characterization approaches of discontinuity data.A bibliometric analysis is subsequently conducted to clarify the current status and development characteristics of the clustering of discontinuity sets.The methods for the clustering analysis of rock discontinuities are reviewed in terms of single-and multi-parameter clustering methods.Single-parameter methods can be classified into empirical judgment methods,dynamic clustering methods,relative static clustering methods,and static clustering methods,reflecting the continuous optimization and improvement of clustering algorithms.Moreover,this paper compares the current mainstream of single-parameter clustering methods with multi-parameter clustering methods.It is emphasized that the current single-parameter clustering methods have reached their performance limits,with little room for improvement,and that there is a need to extend the study of multi-parameter clustering methods.Finally,several suggestions are offered for future research on the clustering of discontinuity sets.展开更多
Symplectic symmetry approach to clustering(SSAC)in atomic nuclei,recently proposed,is modified and further developed in more detail.It is firstly applied to the light two-cluster^(20)Ne+αsystem of^(24)Mg,the latter e...Symplectic symmetry approach to clustering(SSAC)in atomic nuclei,recently proposed,is modified and further developed in more detail.It is firstly applied to the light two-cluster^(20)Ne+αsystem of^(24)Mg,the latter exhibiting well developed low-energy K^(π)=0_(1)^(+),k^(π)=2_(1)^(+) and π^(π)=0_(1)^(-) rotational bands in its spectrum.A simple algebraic Hamiltonian,consisting of dynamical symmetry,residual and vertical mixing parts is used to describe these three lowest rotational bands of positive and negative parity in^(24)Mg.A good description of the excitation energies is obtained by considering only the SU(3)cluster states restricted to the stretched many-particle Hilbert subspace,built on the leading Pauli allowed SU(3)multiplet for the positive-and negative-parity states,respectively.The coupling to the higher cluster-model configurations allows us to describe the known low-lying experimentally observed B(E2)transition probabilities within and between the cluster states of the three bands under consideration without the use of an effective charge.展开更多
Cluster-basedmodels have numerous application scenarios in vehicular ad-hoc networks(VANETs)and can greatly help improve the communication performance of VANETs.However,the frequent movement of vehicles can often lead...Cluster-basedmodels have numerous application scenarios in vehicular ad-hoc networks(VANETs)and can greatly help improve the communication performance of VANETs.However,the frequent movement of vehicles can often lead to changes in the network topology,thereby reducing cluster stability in urban scenarios.To address this issue,we propose a clustering model based on the density peak clustering(DPC)method and sparrow search algorithm(SSA),named SDPC.First,the model constructs a fitness function based on the parameters obtained from the DPC method and deploys the SSA for iterative optimization to select cluster heads(CHs).Then,the vehicles that have not been selected as CHs are assigned to appropriate clusters by comprehensively considering the distance parameter and link-reliability parameter.Finally,cluster maintenance strategies are considered to tackle the changes in the clusters’organizational structure.To verify the performance of the model,we conducted a simulation on a real-world scenario for multiple metrics related to clusters’stability.The results show that compared with the APROVE and the GAPC,SDPC showed clear performance advantages,indicating that SDPC can effectively ensure VANETs’cluster stability in urban scenarios.展开更多
Attribute-graph clustering aims to divide the graph nodes into distinct clusters in an unsupervised manner,which usually encodes the node attribute feature and the corresponding graph structure into a latent feature s...Attribute-graph clustering aims to divide the graph nodes into distinct clusters in an unsupervised manner,which usually encodes the node attribute feature and the corresponding graph structure into a latent feature space.However,traditional attribute-graph clustering methods often neglect the effect of neighbor information on clustering,leading to suboptimal clustering results as they fail to fully leverage the rich contextual information provided by neighboring nodes,which is crucial for capturing the intrinsic relationships between nodes and improving clustering performance.In this paper,we propose a novel Neighbor Dual-Consistency Constrained Attribute-Graph Clustering that leverages information from neighboring nodes in two significant aspects:neighbor feature consistency and neighbor distribution consistency.To enhance feature consistency among nodes and their neighbors,we introduce a neighbor contrastive loss that encourages the embeddings of nodes to be closer to those of their similar neighbors in the feature space while pushing them further apart from dissimilar neighbors.This method helps the model better capture local feature information.Furthermore,to ensure consistent cluster assignments between nodes and their neighbors,we introduce a neighbor distribution consistency module,which combines structural information from the graph with similarity of attributes to align cluster assignments between nodes and their neighbors.By integrating both local structural information and global attribute information,our approach effectively captures comprehensive patterns within the graph.Overall,our method demonstrates superior performance in capturing comprehensive patterns within the graph and achieves state-of-the-art clustering results on multiple datasets.展开更多
Underwater wireless sensor networks(UWSNs)have emerged as a new paradigm of real-time organized systems,which are utilized in a diverse array of scenarios to manage the underwater environment surrounding them.One of t...Underwater wireless sensor networks(UWSNs)have emerged as a new paradigm of real-time organized systems,which are utilized in a diverse array of scenarios to manage the underwater environment surrounding them.One of the major challenges that these systems confront is topology control via clustering,which reduces the overload of wireless communications within a network and ensures low energy consumption and good scalability.This study aimed to present a clustering technique in which the clustering process and cluster head(CH)selection are performed based on the Markov decision process and deep reinforcement learning(DRL).DRL algorithm selects the CH by maximizing the defined reward function.Subsequently,the sensed data are collected by the CHs and then sent to the autonomous underwater vehicles.In the final phase,the consumed energy by each sensor is calculated,and its residual energy is updated.Then,the autonomous underwater vehicle performs all clustering and CH selection operations.This procedure persists until the point of cessation when the sensor’s power has been reduced to such an extent that no node can become a CH.Through analysis of the findings from this investigation and their comparison with alternative frameworks,the implementation of this method can be used to control the cluster size and the number of CHs,which ultimately augments the energy usage of nodes and prolongs the lifespan of the network.Our simulation results illustrate that the suggested methodology surpasses the conventional low-energy adaptive clustering hierarchy,the distance-and energy-constrained K-means clustering scheme,and the vector-based forward protocol and is viable for deployment in an actual operational environment.展开更多
基金funded by the Research Project:THTETN.05/24-25,VietnamAcademy of Science and Technology.
文摘Multi-view clustering is a critical research area in computer science aimed at effectively extracting meaningful patterns from complex,high-dimensional data that single-view methods cannot capture.Traditional fuzzy clustering techniques,such as Fuzzy C-Means(FCM),face significant challenges in handling uncertainty and the dependencies between different views.To overcome these limitations,we introduce a new multi-view fuzzy clustering approach that integrates picture fuzzy sets with a dual-anchor graph method for multi-view data,aiming to enhance clustering accuracy and robustness,termed Multi-view Picture Fuzzy Clustering(MPFC).In particular,the picture fuzzy set theory extends the capability to represent uncertainty by modeling three membership levels:membership degrees,neutral degrees,and refusal degrees.This allows for a more flexible representation of uncertain and conflicting data than traditional fuzzy models.Meanwhile,dual-anchor graphs exploit the similarity relationships between data points and integrate information across views.This combination improves stability,scalability,and robustness when handling noisy and heterogeneous data.Experimental results on several benchmark datasets demonstrate significant improvements in clustering accuracy and efficiency,outperforming traditional methods.Specifically,the MPFC algorithm demonstrates outstanding clustering performance on a variety of datasets,attaining a Purity(PUR)score of 0.6440 and an Accuracy(ACC)score of 0.6213 for the 3 Sources dataset,underscoring its robustness and efficiency.The proposed approach significantly contributes to fields such as pattern recognition,multi-view relational data analysis,and large-scale clustering problems.Future work will focus on extending the method for semi-supervised multi-view clustering,aiming to enhance adaptability,scalability,and performance in real-world applications.
基金supported by the National Natural Science Foundation of China under Grant Nos.62476258,62076228,and 62325604.
文摘Binary multi-view clustering has attracted intense attention from researchers due to its efficiency in handling large-scale datasets.However,previous clustering approaches suffer from at least two limitations.First,they ignore correlations among the features of original data.As a result,the geometric consistency of data is not preserved in the to-be-learnt binary representation space.Second,redundant and noisy features mixed in original data inevitably limit the ultimate clustering performance.In light of this,we propose a novel discriminative binary multi-view clustering(DBMVC)method to address the issues.Specifically,the proposed DBMVC first maps original data onto the Hamming space to obtain corresponding binary codes,which can effectively reduce the computational complexity and storage costs in the following steps.To enable our method to select useful features from original data and get a discriminative representation,the-norm is used to constrain the feature projection matrix.In addition,a graph regularization term is further introduced to preserve the local manifold structure of the learned binary representation.Finally,an alternative iterative optimization algorithm is designed to solve the optimization problems of the objective function.Comprehensive experiments on six large-scale multi-view datasets validate that the proposed DBMVC markedly outperforms other state-of-the-art methods in terms of effectiveness and efficiency.
基金supported by the National Key R&D Program of China(2023YFC3304600).
文摘Existing multi-view deep subspace clustering methods aim to learn a unified representation from multi-view data,while the learned representation is difficult to maintain the underlying structure hidden in the origin samples,especially the high-order neighbor relationship between samples.To overcome the above challenges,this paper proposes a novel multi-order neighborhood fusion based multi-view deep subspace clustering model.We creatively integrate the multi-order proximity graph structures of different views into the self-expressive layer by a multi-order neighborhood fusion module.By this design,the multi-order Laplacian matrix supervises the learning of the view-consistent self-representation affinity matrix;then,we can obtain an optimal global affinity matrix where each connected node belongs to one cluster.In addition,the discriminative constraint between views is designed to further improve the clustering performance.A range of experiments on six public datasets demonstrates that the method performs better than other advanced multi-view clustering methods.The code is available at https://github.com/songzuolong/MNF-MDSC(accessed on 25 December 2024).
文摘The increasing prevalence of multi-view data has made multi-view clustering a crucial technique for discovering latent structures from heterogeneous representations.However,traditional fuzzy clustering algorithms show limitations with the inherent uncertainty and imprecision of such data,as they rely on a single-dimensional membership value.To overcome these limitations,we propose an auto-weighted multi-view neutrosophic fuzzy clustering(AW-MVNFC)algorithm.Our method leverages the neutrosophic framework,an extension of fuzzy sets,to explicitly model imprecision and ambiguity through three membership degrees.The core novelty of AWMVNFC lies in a hierarchical weighting strategy that adaptively learns the contributions of both individual data views and the importance of each feature within a view.Through a unified objective function,AW-MVNFC jointly optimizes the neutrosophic membership assignments,cluster centers,and the distributions of view and feature weights.Comprehensive experiments conducted on synthetic and real-world datasets demonstrate that our algorithm achieves more accurate and stable clustering than existing methods,demonstrating its effectiveness in handling the complexities of multi-view data.
基金supported in part by NUS startup grantthe National Natural Science Foundation of China (52076037)。
文摘Although many multi-view clustering(MVC) algorithms with acceptable performances have been presented, to the best of our knowledge, nearly all of them need to be fed with the correct number of clusters. In addition, these existing algorithms create only the hard and fuzzy partitions for multi-view objects,which are often located in highly-overlapping areas of multi-view feature space. The adoption of hard and fuzzy partition ignores the ambiguity and uncertainty in the assignment of objects, likely leading to performance degradation. To address these issues, we propose a novel sparse reconstructive multi-view evidential clustering algorithm(SRMVEC). Based on a sparse reconstructive procedure, SRMVEC learns a shared affinity matrix across views, and maps multi-view objects to a 2-dimensional humanreadable chart by calculating 2 newly defined mathematical metrics for each object. From this chart, users can detect the number of clusters and select several objects existing in the dataset as cluster centers. Then, SRMVEC derives a credal partition under the framework of evidence theory, improving the fault tolerance of clustering. Ablation studies show the benefits of adopting the sparse reconstructive procedure and evidence theory. Besides,SRMVEC delivers effectiveness on benchmark datasets by outperforming some state-of-the-art methods.
基金supported by National Natural Science Foundation of China(No.61806006)Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘The existing multi-view subspace clustering algorithms based on tensor singular value decomposition(t-SVD)predominantly utilize tensor nuclear norm to explore the intra view correlation between views of the same samples,while neglecting the correlation among the samples within different views.Moreover,the tensor nuclear norm is not fully considered as a convex approximation of the tensor rank function.Treating different singular values equally may result in suboptimal tensor representation.A hypergraph regularized multi-view subspace clustering algorithm with dual tensor log-determinant(HRMSC-DTL)was proposed.The algorithm used subspace learning in each view to learn a specific set of affinity matrices,and introduced a non-convex tensor log-determinant function to replace the tensor nuclear norm to better improve global low-rankness.It also introduced hyper-Laplacian regularization to preserve the local geometric structure embedded in the high-dimensional space.Furthermore,it rotated the original tensor and incorporated a dual tensor mechanism to fully exploit the intra view correlation of the original tensor and the inter view correlation of the rotated tensor.At the same time,an alternating direction of multipliers method(ADMM)was also designed to solve non-convex optimization model.Experimental evaluations on seven widely used datasets,along with comparisons to several state-of-the-art algorithms,demonstrated the superiority and effectiveness of the HRMSC-DTL algorithm in terms of clustering performance.
基金supported in part by the Youth Foundation of Shanxi Province(5113240053)the Fundamental Research Funds for the Central Universities(G2023KY05102)+2 种基金the Natural Science Foundation of China(61976120)the Natural Science Foundation of Jiangsu Province(BK20231337)the Natural Science Key Foundation of Jiangsu Education Department(21KJA510004)。
文摘It is challenging to cluster multi-view data in which the clusters have overlapping areas.Existing multi-view clustering methods often misclassify the indistinguishable objects in overlapping areas by forcing them into single clusters,increasing clustering errors.Our solution,the multi-view dynamic kernelized evidential clustering method(MvDKE),addresses this by assigning these objects to meta-clusters,a union of several related singleton clusters,effectively capturing the local imprecision in overlapping areas.MvDKE offers two main advantages:firstly,it significantly reduces computational complexity through a dynamic framework for evidential clustering,and secondly,it adeptly handles non-spherical data using kernel techniques within its objective function.Experiments on various datasets confirm MvDKE's superior ability to accurately characterize the local imprecision in multi-view non-spherical data,achieving better efficiency and outperforming existing methods in overall performance.
基金supported by the Foundation of President of Hebei University(XZJJ202303).
文摘Federated learning is a machine learning framework designed to protect privacy by keeping training data on clients’devices without sharing private data.It trains a global model through collaboration between clients and the server.However,the presence of data heterogeneity can lead to inefficient model training and even reduce the final model’s accuracy and generalization capability.Meanwhile,data scarcity can result in suboptimal cluster distributions for few-shot clients in centralized clustering tasks,and standalone personalization tasks may cause severe overfitting issues.To address these limitations,we introduce a federated learning dual optimization model based on clustering and personalization strategy(FedCPS).FedCPS adopts a decentralized approach,where clients identify their cluster membership locally without relying on a centralized clustering algorithm.Building on this,FedCPS introduces personalized training tasks locally,adding a regularization term to control deviations between local and cluster models.This improves the generalization ability of the final model while mitigating overfitting.The use of weight-sharing techniques also reduces the computational cost of central machines.Experimental results on MNIST,FMNIST,CIFAR10,and CIFAR100 datasets demonstrate that our method achieves better personalization effects compared to other personalized federated learning methods,with an average test accuracy improvement of 0.81%–2.96%.Meanwhile,we adjusted the proportion of few-shot clients to evaluate the impact on accuracy across different methods.The experiments show that FedCPS reduces accuracy by only 0.2%–3.7%,compared to 2.1%–10%for existing methods.Our method demonstrates its advantages across diverse data environments.
基金supported in part by NIH grants R01NS39600,U01MH114829RF1MH128693(to GAA)。
文摘Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subsets via hierarchical clustering,but objective methods to determine the appropriate classification granularity are missing.We recently introduced a technique to systematically identify when to stop subdividing clusters based on the fundamental principle that cells must differ more between than within clusters.Here we present the corresponding protocol to classify cellular datasets by combining datadriven unsupervised hierarchical clustering with statistical testing.These general-purpose functions are applicable to any cellular dataset that can be organized as two-dimensional matrices of numerical values,including molecula r,physiological,and anatomical datasets.We demonstrate the protocol using cellular data from the Janelia MouseLight project to chara cterize morphological aspects of neurons.
文摘Multi-view Subspace Clustering (MVSC) emerges as an advanced clustering method, designed to integrate diverse views to uncover a common subspace, enhancing the accuracy and robustness of clustering results. The significance of low-rank prior in MVSC is emphasized, highlighting its role in capturing the global data structure across views for improved performance. However, it faces challenges with outlier sensitivity due to its reliance on the Frobenius norm for error measurement. Addressing this, our paper proposes a Low-Rank Multi-view Subspace Clustering Based on Sparse Regularization (LMVSC- Sparse) approach. Sparse regularization helps in selecting the most relevant features or views for clustering while ignoring irrelevant or noisy ones. This leads to a more efficient and effective representation of the data, improving the clustering accuracy and robustness, especially in the presence of outliers or noisy data. By incorporating sparse regularization, LMVSC-Sparse can effectively handle outlier sensitivity, which is a common challenge in traditional MVSC methods relying solely on low-rank priors. Then Alternating Direction Method of Multipliers (ADMM) algorithm is employed to solve the proposed optimization problems. Our comprehensive experiments demonstrate the efficiency and effectiveness of LMVSC-Sparse, offering a robust alternative to traditional MVSC methods.
文摘Deep multi-view subspace clustering (DMVSC) based on self-expression has attracted increasing attention dueto its outstanding performance and nonlinear application. However, most existing methods neglect that viewprivatemeaningless information or noise may interfere with the learning of self-expression, which may lead to thedegeneration of clustering performance. In this paper, we propose a novel framework of Contrastive Consistencyand Attentive Complementarity (CCAC) for DMVsSC. CCAC aligns all the self-expressions of multiple viewsand fuses them based on their discrimination, so that it can effectively explore consistent and complementaryinformation for achieving precise clustering. Specifically, the view-specific self-expression is learned by a selfexpressionlayer embedded into the auto-encoder network for each view. To guarantee consistency across views andreduce the effect of view-private information or noise, we align all the view-specific self-expressions by contrastivelearning. The aligned self-expressions are assigned adaptive weights by channel attention mechanism according totheir discrimination. Then they are fused by convolution kernel to obtain consensus self-expression withmaximumcomplementarity ofmultiple views. Extensive experimental results on four benchmark datasets and one large-scaledataset of the CCAC method outperformother state-of-the-artmethods, demonstrating its clustering effectiveness.
基金supported by the National Natural Science Foundation of China(No.62271399)the National Key Research and Development Program of China(No.2022YFB1807102)。
文摘For multi-vehicle networks,Cooperative Positioning(CP)technique has become a promising way to enhance vehicle positioning accuracy.Especially,the CP performance could be further improved by introducing Sensor-Rich Vehicles(SRVs)into CP networks,which is called SRV-aided CP.However,the CP system may split into several sub-clusters that cannot be connected with each other in dense urban environments,in which the sub-clusters with few SRVs will suffer from degradation of CP performance.Since Unmanned Aerial Vehicles(UAVs)have been widely used to aid vehicular communications,we intend to utilize UAVs to assist sub-clusters in CP.In this paper,a UAV-aided CP network is constructed to fully utilize information from SRVs.First,the inter-node connection structure among the UAV and vehicles is designed to share available information from SRVs.After that,the clustering optimization strategy is proposed,in which the UAV cooperates with the high-precision sub-cluster to obtain available information from SRVs,and then broadcasts this positioning-related information to other low-precision sub-clusters.Finally,the Locally-Centralized Factor Graph Optimization(LC-FGO)algorithm is designed to fuse positioning information from cooperators.Simulation results indicate that the positioning accuracy of the CP system could be improved by fully utilizing positioning-related information from SRVs.
基金supported by the Spanish Ministry of Science and Innovation under Projects PID2022-137680OB-C32 and PID2022-139187OB-I00.
文摘Customer segmentation according to load-shape profiles using smart meter data is an increasingly important application to vital the planning and operation of energy systems and to enable citizens’participation in the energy transition.This study proposes an innovative multi-step clustering procedure to segment customers based on load-shape patterns at the daily and intra-daily time horizons.Smart meter data is split between daily and hourly normalized time series to assess monthly,weekly,daily,and hourly seasonality patterns separately.The dimensionality reduction implicit in the splitting allows a direct approach to clustering raw daily energy time series data.The intraday clustering procedure sequentially identifies representative hourly day-unit profiles for each customer and the entire population.For the first time,a step function approach is applied to reduce time series dimensionality.Customer attributes embedded in surveys are employed to build external clustering validation metrics using Cramer’s V correlation factors and to identify statistically significant determinants of load-shape in energy usage.In addition,a time series features engineering approach is used to extract 16 relevant demand flexibility indicators that characterize customers and corresponding clusters along four different axes:available Energy(E),Temporal patterns(T),Consistency(C),and Variability(V).The methodology is implemented on a real-world electricity consumption dataset of 325 Small and Medium-sized Enterprise(SME)customers,identifying 4 daily and 6 hourly easy-to-interpret,well-defined clusters.The application of the methodology includes selecting key parameters via grid search and a thorough comparison of clustering distances and methods to ensure the robustness of the results.Further research can test the scalability of the methodology to larger datasets from various customer segments(households and large commercial)and locations with different weather and socioeconomic conditions.
基金supported by the National Natural Science Foundation of China(No.62134004).
文摘To enhance the denoising performance of event-based sensors,we introduce a clustering-based temporal deep neural network denoising method(CBTDNN).Firstly,to cluster the sensor output data and obtain the respective cluster centers,a combination of density-based spatial clustering of applications with noise(DBSCAN)and Kmeans++is utilized.Subsequently,long short-term memory(LSTM)is employed to fit and yield optimized cluster centers with temporal information.Lastly,based on the new cluster centers and denoising ratio,a radius threshold is set,and noise points beyond this threshold are removed.The comprehensive denoising metrics F1_score of CBTDNN have achieved 0.8931,0.7735,and 0.9215 on the traffic sequences dataset,pedestrian detection dataset,and turntable dataset,respectively.And these metrics demonstrate improvements of 49.90%,33.07%,19.31%,and 22.97%compared to four contrastive algorithms,namely nearest neighbor(NNb),nearest neighbor with polarity(NNp),Autoencoder,and multilayer perceptron denoising filter(MLPF).These results demonstrate that the proposed method enhances the denoising performance of event-based sensors.
基金financially supported by the vice chancellor for research and technology of Urmia University
文摘Numerous clustering algorithms are valuable in pattern recognition in forest vegetation,with new ones continually being proposed.While some are well-known,others are underutilized in vegetation science.This study compares the performance of practical iterative reallocation algorithms with model-based clustering algorithms.The data is from forest vegetation in Virginia(United States),the Hyrcanian Forest(Asia),and European beech forests.Practical iterative reallocation algorithms were applied as non-hierarchical methods and Finite Gaussian mixture modeling was used as a model-based clustering method.Due to limitations on dimensionality in model-based clustering,principal coordinates analysis was employed to reduce the dataset’s dimensions.A log transformation was applied to achieve a normal distribution for the pseudo-species data before calculating the Bray-Curtis dissimilarity.The findings indicate that the reallocation of misclassified objects based on silhouette width(OPTSIL)with Flexible-β(-0.25)had the highest mean among the tested clustering algorithms with Silhouette width 1(REMOS1)with Flexible-β(-0.25)second.However,model-based clustering performed poorly.Based on these results,it is recommended using OPTSIL with Flexible-β(-0.25)and REMOS1 with Flexible-β(-0.25)for forest vegetation classification instead of model-based clustering particularly for heterogeneous datasets common in forest vegetation community data.
基金funding support from the National Natural Science Foundation of China(Grant No.42007269)the Young Talent Fund of Xi'an Association for Science and Technology(Grant No.959202313094)the Fundamental Research Funds for the Central Universities,CHD(Grant No.300102263401).
文摘The characterization and clustering of rock discontinuity sets are a crucial and challenging task in rock mechanics and geotechnical engineering.Over the past few decades,the clustering of discontinuity sets has undergone rapid and remarkable development.However,there is no relevant literature summarizing these achievements,and this paper attempts to elaborate on the current status and prospects in this field.Specifically,this review aims to discuss the development process of clustering methods for discontinuity sets and the state-of-the-art relevant algorithms.First,we introduce the importance of discontinuity clustering analysis and follow the comprehensive characterization approaches of discontinuity data.A bibliometric analysis is subsequently conducted to clarify the current status and development characteristics of the clustering of discontinuity sets.The methods for the clustering analysis of rock discontinuities are reviewed in terms of single-and multi-parameter clustering methods.Single-parameter methods can be classified into empirical judgment methods,dynamic clustering methods,relative static clustering methods,and static clustering methods,reflecting the continuous optimization and improvement of clustering algorithms.Moreover,this paper compares the current mainstream of single-parameter clustering methods with multi-parameter clustering methods.It is emphasized that the current single-parameter clustering methods have reached their performance limits,with little room for improvement,and that there is a need to extend the study of multi-parameter clustering methods.Finally,several suggestions are offered for future research on the clustering of discontinuity sets.
文摘Symplectic symmetry approach to clustering(SSAC)in atomic nuclei,recently proposed,is modified and further developed in more detail.It is firstly applied to the light two-cluster^(20)Ne+αsystem of^(24)Mg,the latter exhibiting well developed low-energy K^(π)=0_(1)^(+),k^(π)=2_(1)^(+) and π^(π)=0_(1)^(-) rotational bands in its spectrum.A simple algebraic Hamiltonian,consisting of dynamical symmetry,residual and vertical mixing parts is used to describe these three lowest rotational bands of positive and negative parity in^(24)Mg.A good description of the excitation energies is obtained by considering only the SU(3)cluster states restricted to the stretched many-particle Hilbert subspace,built on the leading Pauli allowed SU(3)multiplet for the positive-and negative-parity states,respectively.The coupling to the higher cluster-model configurations allows us to describe the known low-lying experimentally observed B(E2)transition probabilities within and between the cluster states of the three bands under consideration without the use of an effective charge.
文摘Cluster-basedmodels have numerous application scenarios in vehicular ad-hoc networks(VANETs)and can greatly help improve the communication performance of VANETs.However,the frequent movement of vehicles can often lead to changes in the network topology,thereby reducing cluster stability in urban scenarios.To address this issue,we propose a clustering model based on the density peak clustering(DPC)method and sparrow search algorithm(SSA),named SDPC.First,the model constructs a fitness function based on the parameters obtained from the DPC method and deploys the SSA for iterative optimization to select cluster heads(CHs).Then,the vehicles that have not been selected as CHs are assigned to appropriate clusters by comprehensively considering the distance parameter and link-reliability parameter.Finally,cluster maintenance strategies are considered to tackle the changes in the clusters’organizational structure.To verify the performance of the model,we conducted a simulation on a real-world scenario for multiple metrics related to clusters’stability.The results show that compared with the APROVE and the GAPC,SDPC showed clear performance advantages,indicating that SDPC can effectively ensure VANETs’cluster stability in urban scenarios.
基金supported by National Natural Science Foundation of China(Nos.62272015,62441232).
文摘Attribute-graph clustering aims to divide the graph nodes into distinct clusters in an unsupervised manner,which usually encodes the node attribute feature and the corresponding graph structure into a latent feature space.However,traditional attribute-graph clustering methods often neglect the effect of neighbor information on clustering,leading to suboptimal clustering results as they fail to fully leverage the rich contextual information provided by neighboring nodes,which is crucial for capturing the intrinsic relationships between nodes and improving clustering performance.In this paper,we propose a novel Neighbor Dual-Consistency Constrained Attribute-Graph Clustering that leverages information from neighboring nodes in two significant aspects:neighbor feature consistency and neighbor distribution consistency.To enhance feature consistency among nodes and their neighbors,we introduce a neighbor contrastive loss that encourages the embeddings of nodes to be closer to those of their similar neighbors in the feature space while pushing them further apart from dissimilar neighbors.This method helps the model better capture local feature information.Furthermore,to ensure consistent cluster assignments between nodes and their neighbors,we introduce a neighbor distribution consistency module,which combines structural information from the graph with similarity of attributes to align cluster assignments between nodes and their neighbors.By integrating both local structural information and global attribute information,our approach effectively captures comprehensive patterns within the graph.Overall,our method demonstrates superior performance in capturing comprehensive patterns within the graph and achieves state-of-the-art clustering results on multiple datasets.
文摘Underwater wireless sensor networks(UWSNs)have emerged as a new paradigm of real-time organized systems,which are utilized in a diverse array of scenarios to manage the underwater environment surrounding them.One of the major challenges that these systems confront is topology control via clustering,which reduces the overload of wireless communications within a network and ensures low energy consumption and good scalability.This study aimed to present a clustering technique in which the clustering process and cluster head(CH)selection are performed based on the Markov decision process and deep reinforcement learning(DRL).DRL algorithm selects the CH by maximizing the defined reward function.Subsequently,the sensed data are collected by the CHs and then sent to the autonomous underwater vehicles.In the final phase,the consumed energy by each sensor is calculated,and its residual energy is updated.Then,the autonomous underwater vehicle performs all clustering and CH selection operations.This procedure persists until the point of cessation when the sensor’s power has been reduced to such an extent that no node can become a CH.Through analysis of the findings from this investigation and their comparison with alternative frameworks,the implementation of this method can be used to control the cluster size and the number of CHs,which ultimately augments the energy usage of nodes and prolongs the lifespan of the network.Our simulation results illustrate that the suggested methodology surpasses the conventional low-energy adaptive clustering hierarchy,the distance-and energy-constrained K-means clustering scheme,and the vector-based forward protocol and is viable for deployment in an actual operational environment.