Objective: Study the contribution of the DIVA 3D dissection table in the teaching of anatomy at the Faculty of Medicine and Odontology of Bamako. Material and Methods: This was a qualitative study carried out from Nov...Objective: Study the contribution of the DIVA 3D dissection table in the teaching of anatomy at the Faculty of Medicine and Odontology of Bamako. Material and Methods: This was a qualitative study carried out from November 1 to December 30, 2023 at the clinical and morphological anatomy laboratory of the Faculty of Medicine and Odontostomatology of Bamako. Included in this study were students who participated in practical and tutorial sessions. The variables studied during this study were: the previous performance of dissection on a cadaver by the students, the opinion of the students on dissection on a cadaver, the replacement of dissection on a cadaver by virtual dissection in the absence of a body, the level student satisfaction. Results: We surveyed 130 participants. The average age was 22 ± 0.2 years with extremes of 17 and 29 years. 95.3% of participants were students. According to 66.7% of participants, virtual dissection is a good palliative in the absence of a corpse. 95.3% of participants found using the virtual dissection table easy with an average of 7.88 ± 1.4. The overall assessment was well rated by 99.3% of participants. Conclusion: According to the results of this study, the virtual dissection table should be improved by integrating commented videos. The use of the DIVA 3D virtual dissection table during practical and tutorial sessions is well appreciated by the students. We believe that the teaching of anatomy using 3D digital technology should be included in the study programs of the Faculty of Medicine and Odontostomatology.展开更多
AIM:To present our experience of using 3D virtual intravascular endoscopy(VIE) to characterize and evaluate the intraluminal appearances of aortic dissection.METHODS:Ten patients with known aortic dissection underwent...AIM:To present our experience of using 3D virtual intravascular endoscopy(VIE) to characterize and evaluate the intraluminal appearances of aortic dissection.METHODS:Ten patients with known aortic dissection underwent dual-source computed tomography angiography and were included in the study.In addition to 2D axial and multiplanar reformatted images as well as 3D reconstructions,VIE images were created in each patient to demonstrate intraluminal views of the aorta and its branches,origin of artery branches and artery branch involvement by aortic dissection.RESULTS:Stanford A dissection was found in 8 patients and B dissection in the remaining 2 patients.VIE images were successfully generated in all of the patients with excellent visualization of the normal anatomical structures,intimal flap and intimal entrance tear,communication between true and false lumens,as well as assessment of the extent of aortic dissection.CONCLUSION:Our preliminary experience suggests that VIE could be used as a complementary tool to assist radiologists accurately evaluate aortic dissection so that better patient management can be achieved.展开更多
<strong>Aim:</strong> To carry out a 3D vector reconstruction of the typical cervical vertebra from anatomical sections of the “Korean Visible Human” for educational purposes. <strong>Material and ...<strong>Aim:</strong> To carry out a 3D vector reconstruction of the typical cervical vertebra from anatomical sections of the “Korean Visible Human” for educational purposes. <strong>Material and Methods:</strong> The anatomical subject was a 33-year-old Korean man who died of leukemia. He was 164 cm tall and weighed 55 kg. This man donated his body to science. Her body was frozen and cut into several anatomical sections after an MRI and CT scan. These anatomical sections were made using a special saw called a 0.2 mm thick cryomacrotome. Thus 8100 cuts were obtained. Only the sections numbered 940 to 1200 were used for our study. A segmentation by manual contouring of the different parts of the typical cervical vertebra was made using the software Winsurf version 3.5 on a laptop PC running Windows 7 equipped with a Ram of 8 gigas. <strong>Results:</strong> Our 3D vector model of the typical cervical vertebra is easily manipulated using the Acrobat 3DPDF interface. Each part of the vertebra accessible in a menu can be displayed, hidden or made transparent, and 3D labels are available as well as educational menus for learning anatomy. <strong>Conclusion: </strong>This original work constitutes a remarkable educational tool for the anatomical study of the typical cervical vertebra and can also be used as a 3D atlas for simulation purposes for training in therapeutic gestures.展开更多
<b><span style="font-family:;" "="">Aim:</span></b><span><span><span style="font-family:;" "=""> To perform a vector 3D recon...<b><span style="font-family:;" "="">Aim:</span></b><span><span><span style="font-family:;" "=""> To perform a vector 3D reconstruction of the neck skeleton from the anatomical sections of the “Korean Visible Human” for educational purposes. <b>Material and Methods: </b>The anatomical subject was a 33-year-old Korean male who died of leukemia. It measured 164 cm and weighed 55</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">kgs.</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">The anatomical cuts were made in 2010 after an MRI and a CT scan. A special saw (cryomacrotome) made it possible to make cuts on the frozen body of 0.2 mm thick or 5960 slices. Sections numbered 1500 to 2000 (500 neck sections) were used for this study. Manual contouring segmentation of each anatomical element of the anterior neck area was done using Winsurf software version 3.5 on a PC. <b>Results</b>: Our vector 3D neck model includes the following: cervical vertebrae, hyoid bone, sternum manubrium and clavicles. This vector model has been integrated into the virtual dissection table</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">Diva3d, a new educational tool used by universities and medical schools to learn anatomy. This model was also put online on the Sketchfab website and printed in 3D using an ENDER 3 printer. <b>Conclusion:</b> This original work is a remarkable educational tool for the study of the skeleton of the neck and can also serve as a 3D atlas for simulation purposes for training therapeutic gestures.</span></span></span>展开更多
文摘Objective: Study the contribution of the DIVA 3D dissection table in the teaching of anatomy at the Faculty of Medicine and Odontology of Bamako. Material and Methods: This was a qualitative study carried out from November 1 to December 30, 2023 at the clinical and morphological anatomy laboratory of the Faculty of Medicine and Odontostomatology of Bamako. Included in this study were students who participated in practical and tutorial sessions. The variables studied during this study were: the previous performance of dissection on a cadaver by the students, the opinion of the students on dissection on a cadaver, the replacement of dissection on a cadaver by virtual dissection in the absence of a body, the level student satisfaction. Results: We surveyed 130 participants. The average age was 22 ± 0.2 years with extremes of 17 and 29 years. 95.3% of participants were students. According to 66.7% of participants, virtual dissection is a good palliative in the absence of a corpse. 95.3% of participants found using the virtual dissection table easy with an average of 7.88 ± 1.4. The overall assessment was well rated by 99.3% of participants. Conclusion: According to the results of this study, the virtual dissection table should be improved by integrating commented videos. The use of the DIVA 3D virtual dissection table during practical and tutorial sessions is well appreciated by the students. We believe that the teaching of anatomy using 3D digital technology should be included in the study programs of the Faculty of Medicine and Odontostomatology.
文摘AIM:To present our experience of using 3D virtual intravascular endoscopy(VIE) to characterize and evaluate the intraluminal appearances of aortic dissection.METHODS:Ten patients with known aortic dissection underwent dual-source computed tomography angiography and were included in the study.In addition to 2D axial and multiplanar reformatted images as well as 3D reconstructions,VIE images were created in each patient to demonstrate intraluminal views of the aorta and its branches,origin of artery branches and artery branch involvement by aortic dissection.RESULTS:Stanford A dissection was found in 8 patients and B dissection in the remaining 2 patients.VIE images were successfully generated in all of the patients with excellent visualization of the normal anatomical structures,intimal flap and intimal entrance tear,communication between true and false lumens,as well as assessment of the extent of aortic dissection.CONCLUSION:Our preliminary experience suggests that VIE could be used as a complementary tool to assist radiologists accurately evaluate aortic dissection so that better patient management can be achieved.
文摘<strong>Aim:</strong> To carry out a 3D vector reconstruction of the typical cervical vertebra from anatomical sections of the “Korean Visible Human” for educational purposes. <strong>Material and Methods:</strong> The anatomical subject was a 33-year-old Korean man who died of leukemia. He was 164 cm tall and weighed 55 kg. This man donated his body to science. Her body was frozen and cut into several anatomical sections after an MRI and CT scan. These anatomical sections were made using a special saw called a 0.2 mm thick cryomacrotome. Thus 8100 cuts were obtained. Only the sections numbered 940 to 1200 were used for our study. A segmentation by manual contouring of the different parts of the typical cervical vertebra was made using the software Winsurf version 3.5 on a laptop PC running Windows 7 equipped with a Ram of 8 gigas. <strong>Results:</strong> Our 3D vector model of the typical cervical vertebra is easily manipulated using the Acrobat 3DPDF interface. Each part of the vertebra accessible in a menu can be displayed, hidden or made transparent, and 3D labels are available as well as educational menus for learning anatomy. <strong>Conclusion: </strong>This original work constitutes a remarkable educational tool for the anatomical study of the typical cervical vertebra and can also be used as a 3D atlas for simulation purposes for training in therapeutic gestures.
文摘<b><span style="font-family:;" "="">Aim:</span></b><span><span><span style="font-family:;" "=""> To perform a vector 3D reconstruction of the neck skeleton from the anatomical sections of the “Korean Visible Human” for educational purposes. <b>Material and Methods: </b>The anatomical subject was a 33-year-old Korean male who died of leukemia. It measured 164 cm and weighed 55</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">kgs.</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">The anatomical cuts were made in 2010 after an MRI and a CT scan. A special saw (cryomacrotome) made it possible to make cuts on the frozen body of 0.2 mm thick or 5960 slices. Sections numbered 1500 to 2000 (500 neck sections) were used for this study. Manual contouring segmentation of each anatomical element of the anterior neck area was done using Winsurf software version 3.5 on a PC. <b>Results</b>: Our vector 3D neck model includes the following: cervical vertebrae, hyoid bone, sternum manubrium and clavicles. This vector model has been integrated into the virtual dissection table</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">Diva3d, a new educational tool used by universities and medical schools to learn anatomy. This model was also put online on the Sketchfab website and printed in 3D using an ENDER 3 printer. <b>Conclusion:</b> This original work is a remarkable educational tool for the study of the skeleton of the neck and can also serve as a 3D atlas for simulation purposes for training therapeutic gestures.</span></span></span>