In this work,a method is put forward to obtain the dynamic solution efficiently and accurately for a large-scale train-track-substructure(TTS)system.It is called implicit-explicit integration and multi-time-step solut...In this work,a method is put forward to obtain the dynamic solution efficiently and accurately for a large-scale train-track-substructure(TTS)system.It is called implicit-explicit integration and multi-time-step solution method(abbreviated as mI-nE-MTS method).The TTS system is divided into train-track subsystem and substruc-ture subsystem.Considering that the root cause of low effi-ciency of obtaining TTS solution lies in solving the alge-braic equation of the substructures,the high-efficient Zhai method,an explicit integration scheme,can be introduced to avoid matrix inversion process.The train-track system is solved by implicitly Park method.Moreover,it is known that the requirement of time step size differs for different sub-systems,integration methods and structural frequency response characteristics.A multi-time-step solution is pro-posed,in which time step size for the train-track subsystem and the substructure subsystem can be arbitrarily chosen once satisfying stability and precision demand,namely the time spent for m implicit integral steps is equal to n explicit integral steps,i.e.,mI=nE as mentioned above.The numeri-cal examples show the accuracy,efficiency,and engineering practicality of the proposed method.展开更多
对水质情况进行准确评估和预测对水污染防控至关重要,然而,由于水质受多种因素的影响,其时间序列数据常常具有趋势性、季节性和长期依赖关系,传统的预测方法往往无法很好地捕捉这些特征。为了解决这些问题,首先基于STL(Seasonal and Tre...对水质情况进行准确评估和预测对水污染防控至关重要,然而,由于水质受多种因素的影响,其时间序列数据常常具有趋势性、季节性和长期依赖关系,传统的预测方法往往无法很好地捕捉这些特征。为了解决这些问题,首先基于STL(Seasonal and Trend Decomposition using Loess)和TCN(Temporal Convolutional Network)构建STL-TCN水质预测模型。其中,通过STL模型对水质时间序列数据进行趋势和季节性分解,有效地提取时序数据的周期性特征;利用TCN模型中并行结构和残差连接有效捕捉时间序列数据的长期依赖关系,对分解后的数据进行多步预测。然后,选用福建省浪石断面河流的氨氮数据来验证STL-TCN水质预测模型的预测效果,并与基于长短时记忆网络(LSTM)和门控循环单元结构(GRU)的水质预测模型进行对比实验。实验结果表明,STL-TCN水质预测模型12步预测的MAE平均值达到0.0343、RMSE平均值达到0.0494、R^(2)平均值达到0.94737,相对LSTM和GRU,MAE平均提高7.8%和8.1%、RMSE平均提高2.2%和1.8%、R^(2)平均提高7.9%和7.8%。说明STL-TCN水质预测模型能够有效提高水质预测的准确性和稳定性,可以作为辅助水环境管理和决策的一种有效手段。展开更多
电-热-气-冷多能联供型微网对实现能源可持续发展具有重要的应用价值。针对多能联供系统碳排放量较高和负荷模型预测不准确问题,提出了一种基于滚动优化的电-热-气-冷系统多时间尺度低碳运行策略。首先,建立电-热-气-冷系统设备模型。其...电-热-气-冷多能联供型微网对实现能源可持续发展具有重要的应用价值。针对多能联供系统碳排放量较高和负荷模型预测不准确问题,提出了一种基于滚动优化的电-热-气-冷系统多时间尺度低碳运行策略。首先,建立电-热-气-冷系统设备模型。其次,构建日前与日内两阶段模型,在日前调度阶段引入含赏罚因数的碳交易机制,通过将卷积神经网络(convolutional neural networks,CNN)与双向长短期记忆网络(bi-directional long short term memory,Bi-LSTM)进行结合对风光功率进行预测,并以运行成本最低为目标进行优化。之后,建立日内多时间尺度的优化调度模型,以调度成本最低为目标进行求解。最后,以某市综合能源系统为研究对象进行分析。结果表明,所提出的方法能够有效减少碳排放,提高负荷模型预测的准确度的同时实现多能联供系统的低碳经济运行。展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.52008404,U1934217 and 11790283)Science and Technology Research and Development Program Project of China Railway Group Limited(Major Special Project,No.2020-Special-02)the National Natural Science Foundation of Hunan Province(Grant No.2021JJ30850).
文摘In this work,a method is put forward to obtain the dynamic solution efficiently and accurately for a large-scale train-track-substructure(TTS)system.It is called implicit-explicit integration and multi-time-step solution method(abbreviated as mI-nE-MTS method).The TTS system is divided into train-track subsystem and substruc-ture subsystem.Considering that the root cause of low effi-ciency of obtaining TTS solution lies in solving the alge-braic equation of the substructures,the high-efficient Zhai method,an explicit integration scheme,can be introduced to avoid matrix inversion process.The train-track system is solved by implicitly Park method.Moreover,it is known that the requirement of time step size differs for different sub-systems,integration methods and structural frequency response characteristics.A multi-time-step solution is pro-posed,in which time step size for the train-track subsystem and the substructure subsystem can be arbitrarily chosen once satisfying stability and precision demand,namely the time spent for m implicit integral steps is equal to n explicit integral steps,i.e.,mI=nE as mentioned above.The numeri-cal examples show the accuracy,efficiency,and engineering practicality of the proposed method.
文摘对水质情况进行准确评估和预测对水污染防控至关重要,然而,由于水质受多种因素的影响,其时间序列数据常常具有趋势性、季节性和长期依赖关系,传统的预测方法往往无法很好地捕捉这些特征。为了解决这些问题,首先基于STL(Seasonal and Trend Decomposition using Loess)和TCN(Temporal Convolutional Network)构建STL-TCN水质预测模型。其中,通过STL模型对水质时间序列数据进行趋势和季节性分解,有效地提取时序数据的周期性特征;利用TCN模型中并行结构和残差连接有效捕捉时间序列数据的长期依赖关系,对分解后的数据进行多步预测。然后,选用福建省浪石断面河流的氨氮数据来验证STL-TCN水质预测模型的预测效果,并与基于长短时记忆网络(LSTM)和门控循环单元结构(GRU)的水质预测模型进行对比实验。实验结果表明,STL-TCN水质预测模型12步预测的MAE平均值达到0.0343、RMSE平均值达到0.0494、R^(2)平均值达到0.94737,相对LSTM和GRU,MAE平均提高7.8%和8.1%、RMSE平均提高2.2%和1.8%、R^(2)平均提高7.9%和7.8%。说明STL-TCN水质预测模型能够有效提高水质预测的准确性和稳定性,可以作为辅助水环境管理和决策的一种有效手段。
文摘电-热-气-冷多能联供型微网对实现能源可持续发展具有重要的应用价值。针对多能联供系统碳排放量较高和负荷模型预测不准确问题,提出了一种基于滚动优化的电-热-气-冷系统多时间尺度低碳运行策略。首先,建立电-热-气-冷系统设备模型。其次,构建日前与日内两阶段模型,在日前调度阶段引入含赏罚因数的碳交易机制,通过将卷积神经网络(convolutional neural networks,CNN)与双向长短期记忆网络(bi-directional long short term memory,Bi-LSTM)进行结合对风光功率进行预测,并以运行成本最低为目标进行优化。之后,建立日内多时间尺度的优化调度模型,以调度成本最低为目标进行求解。最后,以某市综合能源系统为研究对象进行分析。结果表明,所提出的方法能够有效减少碳排放,提高负荷模型预测的准确度的同时实现多能联供系统的低碳经济运行。