期刊文献+
共找到1,301篇文章
< 1 2 66 >
每页显示 20 50 100
Pattern-Moving-Based Parameter Identification of Output Error Models with Multi-Threshold Quantized Observations 被引量:2
1
作者 Xiangquan Li Zhengguang Xu +1 位作者 Cheng Han Ning Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第3期1807-1825,共19页
This paper addresses a modified auxiliary model stochastic gradient recursive parameter identification algorithm(M-AM-SGRPIA)for a class of single input single output(SISO)linear output error models with multi-thresho... This paper addresses a modified auxiliary model stochastic gradient recursive parameter identification algorithm(M-AM-SGRPIA)for a class of single input single output(SISO)linear output error models with multi-threshold quantized observations.It proves the convergence of the designed algorithm.A pattern-moving-based system dynamics description method with hybrid metrics is proposed for a kind of practical single input multiple output(SIMO)or SISO nonlinear systems,and a SISO linear output error model with multi-threshold quantized observations is adopted to approximate the unknown system.The system input design is accomplished using the measurement technology of random repeatability test,and the probabilistic characteristic of the explicit metric value is employed to estimate the implicit metric value of the pattern class variable.A modified auxiliary model stochastic gradient recursive algorithm(M-AM-SGRA)is designed to identify the model parameters,and the contraction mapping principle proves its convergence.Two numerical examples are given to demonstrate the feasibility and effectiveness of the achieved identification algorithm. 展开更多
关键词 Pattern moving multi-threshold quantized observations output error model auxiliary model parameter identification
在线阅读 下载PDF
Two-dimensional cross entropy multi-threshold image segmentation based on improved BBO algorithm 被引量:2
2
作者 LI Wei HU Xiao-hui WANG Hong-chuang 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第1期42-49,共8页
In order to improve the global search ability of biogeography-based optimization(BBO)algorithm in multi-threshold image segmentation,a multi-threshold image segmentation based on improved BBO algorithm is proposed.Whe... In order to improve the global search ability of biogeography-based optimization(BBO)algorithm in multi-threshold image segmentation,a multi-threshold image segmentation based on improved BBO algorithm is proposed.When using BBO algorithm to optimize threshold,firstly,the elitist selection operator is used to retain the optimal set of solutions.Secondly,a migration strategy based on fusion of good solution and pending solution is introduced to reduce premature convergence and invalid migration of traditional migration operations.Thirdly,to reduce the blindness of traditional mutation operations,a mutation operation through binary computation is created.Then,it is applied to the multi-threshold image segmentation of two-dimensional cross entropy.Finally,this method is used to segment the typical image and compared with two-dimensional multi-threshold segmentation based on particle swarm optimization algorithm and the two-dimensional multi-threshold image segmentation based on standard BBO algorithm.The experimental results show that the method has good convergence stability,it can effectively shorten the time of iteration,and the optimization performance is better than the standard BBO algorithm. 展开更多
关键词 two-dimensional cross entropy biogeography-based optimization(BBO)algorithm multi-threshold image segmentation
在线阅读 下载PDF
Multi-dimensional and Multi-threshold Airframe Damage Region Division Method Based on Correlation Optimization
3
作者 CAI Shuyu SHI Tao SHI Lizhong 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第5期788-799,共12页
In order to obtain the image of airframe damage region and provide the input data for aircraft intelligent maintenance,a multi-dimensional and multi-threshold airframe damage region division method based on correlatio... In order to obtain the image of airframe damage region and provide the input data for aircraft intelligent maintenance,a multi-dimensional and multi-threshold airframe damage region division method based on correlation optimization is proposed.On the basis of airframe damage feature analysis,the multi-dimensional feature entropy is defined to realize the full fusion of multiple feature information of the image,and the division method is extended to multi-threshold to refine the damage division and reduce the impact of the damage adjacent region’s morphological changes on the division.Through the correlation parameter optimization algorithm,the problem of low efficiency of multi-dimensional multi-threshold division method is solved.Finally,the proposed method is compared and verified by instances of airframe damage image.The results show that compared with the traditional threshold division method,the damage region divided by the proposed method is complete and accurate,and the boundary is clear and coherent,which can effectively reduce the interference of many factors such as uneven luminance,chromaticity deviation,dirt attachment,image compression,and so on.The correlation optimization algorithm has high efficiency and stable convergence,and can meet the requirements of aircraft intelligent maintenance. 展开更多
关键词 airframe damage region division multi-dimensional feature entropy multi-threshold correlation optimization aircraft intelligent maintenance
在线阅读 下载PDF
A Steganography Based on Optimal Multi-Threshold Block Labeling
4
作者 Shuying Xu Chin-Chen Chang Ji-Hwei Horng 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期721-739,共19页
Hiding secret data in digital images is one of the major researchfields in information security.Recently,reversible data hiding in encrypted images has attracted extensive attention due to the emergence of cloud servi... Hiding secret data in digital images is one of the major researchfields in information security.Recently,reversible data hiding in encrypted images has attracted extensive attention due to the emergence of cloud services.This paper proposes a novel reversible data hiding method in encrypted images based on an optimal multi-threshold block labeling technique(OMTBL-RDHEI).In our scheme,the content owner encrypts the cover image with block permutation,pixel permutation,and stream cipher,which preserve the in-block correlation of pixel values.After uploading to the cloud service,the data hider applies the prediction error rearrangement(PER),the optimal threshold selection(OTS),and the multi-threshold labeling(MTL)methods to obtain a compressed version of the encrypted image and embed secret data into the vacated room.The receiver can extract the secret,restore the cover image,or do both according to his/her granted authority.The proposed MTL labels blocks of the encrypted image with a list of threshold values which is optimized with OTS based on the features of the current image.Experimental results show that labeling image blocks with the optimized threshold list can efficiently enlarge the amount of vacated room and thus improve the embedding capacity of an encrypted cover image.Security level of the proposed scheme is analyzed and the embedding capacity is compared with state-of-the-art schemes.Both are concluded with satisfactory performance. 展开更多
关键词 Reversible data hiding encryption image prediction error compression multi-threshold block labeling
在线阅读 下载PDF
Multi-Threshold Algorithm Based on Havrda and Charvat Entropy for Edge Detection in Satellite Grayscale Images
5
作者 Mohamed A. El-Sayed Hamida A. M. Sennari 《Journal of Software Engineering and Applications》 2014年第1期42-52,共11页
Automatic edge detection of an image is considered a type of crucial information that can be extracted by applying detectors with different techniques. It is a main tool in pattern recognition, image segmentation, and... Automatic edge detection of an image is considered a type of crucial information that can be extracted by applying detectors with different techniques. It is a main tool in pattern recognition, image segmentation, and scene analysis. This paper introduces an edge-detection algorithm, which generates multi-threshold values. It is based on non-Shannon measures such as Havrda & Charvat’s entropy, which is commonly used in gray level image analysis in many types of images such as satellite grayscale images. The proposed edge detection performance is compared to the previous classic methods, such as Roberts, Prewitt, and Sobel methods. Numerical results underline the robustness of the presented approach and different applications are shown. 展开更多
关键词 multi-threshold EDGE Detection MEASURE ENTROPY Havrda & Charvat’s ENTROPY
在线阅读 下载PDF
Research on Kapur multi-threshold image segmentation based on improved sparrow search algorithm
6
作者 Wu Jin Feng Haoran +1 位作者 Chong Gege Xiong Hao 《The Journal of China Universities of Posts and Telecommunications》 2025年第2期31-43,共13页
Multilevel threshold image segmentation divides an image into several regions with distinct characteristics.While effective,its computational complexity increases exponentially with the number of thresholds,highlighti... Multilevel threshold image segmentation divides an image into several regions with distinct characteristics.While effective,its computational complexity increases exponentially with the number of thresholds,highlighting the need for more efficient and stable methods.An improved sparrow search algorithm(ISSA)that combines multiple strategies to address the dependency on the initial population and solution accuracy issues in the basic sparrow search algorithm(SSA)was proposed in this paper.ISSA leverages circle chaotic mapping to enhance population diversity,a tangent flight operator to improve search diversity,and a triangular random walk to perturb the optimal solution,thereby enhancing global search capability and avoiding local optima.Performance evaluations on 16 benchmark functions demonstrate that ISSA surpasses the gray wolf optimizer(GWO),whale optimization algorithm(WOA),rat swarm optimizer(RSO),moth-flame optimization(MFO),and SSA in terms of search speed,accuracy,and robustness.When applied to multilevel threshold image segmentation,ISSA excels in Kapur's maximum entropy,peak signal-to-noise ratio(PSNR),structural similarity(SSIM),and feature similarity(FSIM),highlighting its significant research value and application potential in the field of image segmentation. 展开更多
关键词 image segmentation sparrow search algorithm(SSA) multi-threshold Kapur's maximum entropy
原文传递
高效的多阈值图像分割算法
7
作者 龙建武 邹婉婷 《重庆理工大学学报(自然科学)》 北大核心 2025年第9期156-165,共10页
多阈值分割是图像分割中常用的技术之一。然而,现有的多阈值方法随着灰度级和阈值数量增加,导致搜索空间急剧扩大,搜索效率下降,并且需要人为指定阈值数,限制了其应用。为了减少搜索范围,避免无效搜索并实现阈值数自适应选择,将采取提... 多阈值分割是图像分割中常用的技术之一。然而,现有的多阈值方法随着灰度级和阈值数量增加,导致搜索空间急剧扩大,搜索效率下降,并且需要人为指定阈值数,限制了其应用。为了减少搜索范围,避免无效搜索并实现阈值数自适应选择,将采取提高搜索效率和快速全局搜索2个策略,提出了一种高效且自适应的多阈值图像分割算法。利用动态规划算法和分治算法降低搜索的时间复杂度,并将阈值搜索问题转化为查找矩阵最值问题,提高分割实效性。在提升效率的基础上,进行不同阈值数的全局搜索,从而确定全局最佳阈值数。实验表明,该算法在BSDS500数据集上的平均运行时间(0.0112 s)显著优于DP+AMasi、HGJO等方法,且在UM、RI、PSNR和SSIM等指标上均表现优异,有效缓解了多阈值分割的速度与精度矛盾。 展开更多
关键词 图像分割 多阈值分割 矩阵搜索算法 OTSU
在线阅读 下载PDF
自适应多阈值图像分割算法
8
作者 龙建武 李继豪 曾谁飞 《通信学报》 北大核心 2025年第8期241-255,共15页
针对当前大部分多阈值分割方法存在最优阈值组合定位难、阈值增多导致计算复杂度指数增长的问题,提出了一种自适应多阈值图像分割算法。首先,通过双边滤波对直方图进行平滑处理,采用谷底筛选策略有效压缩阈值搜索空间;接着,基于动态规... 针对当前大部分多阈值分割方法存在最优阈值组合定位难、阈值增多导致计算复杂度指数增长的问题,提出了一种自适应多阈值图像分割算法。首先,通过双边滤波对直方图进行平滑处理,采用谷底筛选策略有效压缩阈值搜索空间;接着,基于动态规划算法,将多阈值搜索问题转化为矩阵极值搜索问题,并结合四边形不等式特性,使用分治策略搜索代价矩阵最大值,进一步提高搜索效率;此外,构建基于直方图谷底特征的目标函数,自动确定最佳分割类数,同时将RGB这3个通道直方图各自得到的最佳分割类数进行合并,以获得最佳阈值进而完成彩色图像分割问题;最后,在BSDS500与MSRC数据集上进行系统性实验,验证其在处理不同场景时的有效性与适用性。 展开更多
关键词 多阈值分割 矩阵搜索 动态规划 分治策略
在线阅读 下载PDF
Optimal performance design of bat algorithm:An adaptive multi-stage structure
9
作者 Helong Yu Jiuman Song +4 位作者 Chengcheng Chen Ali Asghar Heidari Yuntao Ma Huiling Chen Yudong Zhang 《CAAI Transactions on Intelligence Technology》 2025年第3期755-814,共60页
The bat algorithm(BA)is a metaheuristic algorithm for global optimisation that simulates the echolocation behaviour of bats with varying pulse rates of emission and loudness,which can be used to find the globally opti... The bat algorithm(BA)is a metaheuristic algorithm for global optimisation that simulates the echolocation behaviour of bats with varying pulse rates of emission and loudness,which can be used to find the globally optimal solutions for various optimisation problems.Knowing the recent criticises of the originality of equations,the principle of BA is concise and easy to implement,and its mathematical structure can be seen as a hybrid particle swarm with simulated annealing.In this research,the authors focus on the performance optimisation of BA as a solver rather than discussing its originality issues.In terms of operation effect,BA has an acceptable convergence speed.However,due to the low proportion of time used to explore the search space,it is easy to converge prematurely and fall into the local optima.The authors propose an adaptive multi-stage bat algorithm(AMSBA).By tuning the algorithm's focus at three different stages of the search process,AMSBA can achieve a better balance between exploration and exploitation and improve its exploration ability by enhancing its performance in escaping local optima as well as maintaining a certain convergence speed.Therefore,AMSBA can achieve solutions with better quality.A convergence analysis was conducted to demonstrate the global convergence of AMSBA.The authors also perform simulation experiments on 30 benchmark functions from IEEE CEC 2017 as the objective functions and compare AMSBA with some original and improved swarm-based algorithms.The results verify the effectiveness and superiority of AMSBA.AMSBA is also compared with eight representative optimisation algorithms on 10 benchmark functions derived from IEEE CEC 2020,while this experiment is carried out on five different dimensions of the objective functions respectively.A balance and diversity analysis was performed on AMSBA to demonstrate its improvement over the original BA in terms of balance.AMSBA was also applied to the multi-threshold image segmentation of Citrus Macular disease,which is a bacterial infection that causes lesions on citrus trees.The segmentation results were analysed by comparing each comparative algorithm's peak signal-to-noise ratio,structural similarity index and feature similarity index.The results show that the proposed BA-based algorithm has apparent advantages,and it can effectively segment the disease spots from citrus leaves when the segmentation threshold is at a low level.Based on a comprehensive study,the authors think the proposed optimiser has mitigated the main drawbacks of the BA,and it can be utilised as an effective optimisation tool. 展开更多
关键词 bat-inspired algorithm Citrus Macular disease global optimization multi-threshold image segmentation Otsu algorithm
在线阅读 下载PDF
基于空中计算CoMAC架构的不同计算场景叠加符号判决算法
10
作者 秦晓卫 周子涵 陈力 《中山大学学报(自然科学版)(中英文)》 CAS 北大核心 2025年第1期61-70,共10页
本文研究不同场景下基于空中计算的多址信道计算(CoMAC)架构的覆盖符号决策算法。首先,从理论上分析了XOR、ADD、MOD三种场景中加性高斯白噪声(AWGN)多址接入信道下叠加符号的概率密度分布,提出了一种基于先验概率的最优门限判决策略。... 本文研究不同场景下基于空中计算的多址信道计算(CoMAC)架构的覆盖符号决策算法。首先,从理论上分析了XOR、ADD、MOD三种场景中加性高斯白噪声(AWGN)多址接入信道下叠加符号的概率密度分布,提出了一种基于先验概率的最优门限判决策略。其次,推导了系统最优门限及对应误码率的理论表达式。最后,通过仿真验证了不同信噪比、传感器节点个数及先验概率对于该门限判决方案的鲁棒性和可靠性的影响。与通信计算相分离的传统方案相比,空中计算判决方案具有更好的检测性能,为多址接入信道下的信号识别提供了新的参考方案。 展开更多
关键词 空中计算 多址接入信道 最优门限判决 检测性能
在线阅读 下载PDF
基于ICEEMDAN和改进小波阈值的输电线路故障行波信号降噪 被引量:1
11
作者 王玲桃 任宏伟 +2 位作者 王紫瑜 王韦涛 李健 《电子设计工程》 2025年第12期56-61,共6页
为了有效地滤除输电线路故障行波信号中的噪声,提出一种基于改进的自适应噪声完备集合经验模态分解(Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,ICEEMDAN)和改进小波阈值相结合的降噪方法。该方法通... 为了有效地滤除输电线路故障行波信号中的噪声,提出一种基于改进的自适应噪声完备集合经验模态分解(Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,ICEEMDAN)和改进小波阈值相结合的降噪方法。该方法通过ICEEMDAN将含噪的故障行波信号分解为一系列频率逐渐降低的固有模态分量(Intrinsic Mode Function,IMF),根据复合多尺度散布熵(Composite Multi-scale Dispersion Entropy,CMDE)将IMF划分为噪声分量和真实分量,利用改进小波阈值对噪声分量降噪处理,并与有用的真实分量重构,得到最终所需的故障行波信号。实验结果表明,与小波阈值降噪、ICEEMDAN降噪和ICEEMDAN-CMDE-小波阈值降噪方法相比,所提方法降噪后信噪比平均提升了19.1%、均方根误差平均降低了20.9%,能够更加真实地反映故障行波信号的特征。 展开更多
关键词 输电线路故障行波 ICEEMDAN 改进小波阈值 复合多尺度散布熵 信号降噪
在线阅读 下载PDF
围栏封育对藏北高寒草地植物多样性与生态系统多功能性的影响 被引量:6
12
作者 李振威 缪雨珏 宗宁 《草地学报》 北大核心 2025年第2期596-608,共13页
本研究选择藏北高原降雨梯度带四种类型高寒草地(高寒草甸、高寒草甸草原、高寒草原、高寒荒漠草原),通过测定围栏封育与自由放牧样地中与养分循环和牧草供给等功能密切相关的指标,利用平均值法和多阈值法来探讨围栏封育工程对生态系统... 本研究选择藏北高原降雨梯度带四种类型高寒草地(高寒草甸、高寒草甸草原、高寒草原、高寒荒漠草原),通过测定围栏封育与自由放牧样地中与养分循环和牧草供给等功能密切相关的指标,利用平均值法和多阈值法来探讨围栏封育工程对生态系统多功能性的影响。结果表明:高寒草地植物多样性、物种丰富度和生态系统多功能性都会随降水量减少而降低(P<0.05)。围栏封育显著提高植物多样性、物种丰富度以及地上生物量。进一步分析发现,生态系统多功能性与Margalef指数、Simpson指数和Shannon-Weiner指数、物种丰富度均呈显著正相关(P<0.05),而与Pielou指数不相关。多阈值法显示围栏封育和自由放牧样地物种丰富度对生态系统多功能性的有效驱动分别在1%~84%和5%~82%阈值区间内,最大效应值分别是0.69和0.70。综上,围栏封育会使植物多样性发生变化,进而影响生态系统多功能性,保护物种多样性对于维持生态系统多功能性具有重要意义。 展开更多
关键词 生态系统多功能性 植物多样性 藏北高寒草地 围栏封育与自由放牧 平均值法 多阈值法
在线阅读 下载PDF
一种基于多段迭代策略的流量阈值分析方法
13
作者 刘宏建 杨富琨 +1 位作者 刘斌 王位 《测绘科学技术学报》 2025年第1期74-79,共6页
针对地表径流漫流模型进行沟谷网络提取过程中最优流量阈值确定的问题,提出并实现了基于多段迭代策略的流量阈值分析方法。结果表明,相较于传统的均值变点法,经多段迭代策略改良后的算法模型,采用可变步长的方法将拐点计算过程进行简化... 针对地表径流漫流模型进行沟谷网络提取过程中最优流量阈值确定的问题,提出并实现了基于多段迭代策略的流量阈值分析方法。结果表明,相较于传统的均值变点法,经多段迭代策略改良后的算法模型,采用可变步长的方法将拐点计算过程进行简化。在此过程中减少了对无效数据的计算,较大提高了最优流量阈值计算的效率。 展开更多
关键词 沟谷网络 最优汇流累积阈值 均值变点法 多段迭代策略 流量阈值
在线阅读 下载PDF
多源信息耦合的重型载货汽车运行安全风险辨识
14
作者 孙文财 包贺予 +3 位作者 翟学文 权隽毅 苗沐阳 李世武 《交通科技与经济》 2025年第5期1-8,共8页
为提升重载货车行车安全性,解决固定阈值预警安全性不足及个性化场景分析缺失问题,从道路材料、地形、车辆自身及天气等方面剖析安全影响因素,基于TruckSim与Simulink联合仿真,运用控制变量法调整参数并完成1 200组工况模拟,捕捉车辆侧... 为提升重载货车行车安全性,解决固定阈值预警安全性不足及个性化场景分析缺失问题,从道路材料、地形、车辆自身及天气等方面剖析安全影响因素,基于TruckSim与Simulink联合仿真,运用控制变量法调整参数并完成1 200组工况模拟,捕捉车辆侧翻、打滑等临界状态以确定安全阈值,经数据预处理,采用Savitzky-Golay算法对横向载荷转移率、动态质心偏移量等9项关键指标降噪,并通过线性插值与三次样条插值对缺失数据插值补偿,利用分位数统计法提取阈值特征,经“仿真-理论”双闭环验证修正,建立整合车辆参数、道路条件及环境信息的阈值库。 展开更多
关键词 汽车工程 重载货车行车安全 联合仿真技术 阈值辨识 多源信息耦合 安全风险
在线阅读 下载PDF
基于新型忆阻器的多端输入LIF神经元电路的设计 被引量:1
15
作者 柯善武 金尧耀 +3 位作者 蒙嘉豪 吴鑫江 王今朝 叶葱 《微电子学与计算机》 2025年第2期86-92,共7页
由于传统的互补金属-氧化物-半导体(Complementary Metal Oxide Semiconductor,CMOS)神经元电路与生物学的契合性较差且电路复杂,提出了一种基于忆阻器的多端口输入的泄露-整合-激发(Leaky-Integrate-Fire,LIF)神经元电路。该电路由运... 由于传统的互补金属-氧化物-半导体(Complementary Metal Oxide Semiconductor,CMOS)神经元电路与生物学的契合性较差且电路复杂,提出了一种基于忆阻器的多端口输入的泄露-整合-激发(Leaky-Integrate-Fire,LIF)神经元电路。该电路由运放、逻辑门等器件以及忆阻器构成,主要分为信号叠加模块和神经元信号产生模块。通过施加多个双尖峰脉冲信号并调节输入信号的数量和频率,模拟了生物神经元受到的不同程度刺激。研究发现施加到神经元上信号的数量和频率达到一定的值,神经元电路才会输出电压信号,这与生物体中只有受到一定程度的刺激时才会做出反应的现象是一致的。进一步,调节该电路中神经元信号产生模块的阈值电压大小,研究发现输入相同的信号,只有当电路的阈值电压较低时,神经元电路才能输出电压信号,这与生物中不同部位受到相同的刺激,神经元兴奋程度越高,越容易做出反应的现象一致。由此,该文所提出的LIF神经元电路不仅解决了传统电路输入信号单一、输入信号波形与生物信号波形差异大等问题,而且能模拟生物神经元的兴奋程度,这为人工神经网络的设计提供理论依据。 展开更多
关键词 忆阻器 LIF神经元电路 多端输入 阈值电压 人工神经网络
在线阅读 下载PDF
基于阈值法与Elman神经网络的多量程电子压力扫描阀温度补偿方法
16
作者 刘丹 李愿 +1 位作者 王欢 黄哲志 《软件》 2025年第6期1-7,共7页
为解决国产电子压力扫描阀量程单一及宽温区工作精度不足的问题,本文提出了一种基于阈值法与Elman神经网络的多量程电子压力扫描阀温度补偿方法。首先,研究了多量程标定技术,成功突破了传统单一量程的限制;其次,设计并搭建了一个覆盖宽... 为解决国产电子压力扫描阀量程单一及宽温区工作精度不足的问题,本文提出了一种基于阈值法与Elman神经网络的多量程电子压力扫描阀温度补偿方法。首先,研究了多量程标定技术,成功突破了传统单一量程的限制;其次,设计并搭建了一个覆盖宽温区的电子压力扫描阀标定实验系统,实现-40~70℃的数据采集;最后,采用阈值法与Elman神经网络相结合的方法进行温度补偿分析。实验结果表明,在700kPa绝压量程和300kPa绝压量程下,采用该方法的64通道电子压力扫描阀补偿后,精度分别达到0.034%F.S和0.046%F.S,相较于最小二乘法、BP神经网络、RBF神经网络表现出显著优势。该方法不仅提高了宽温区的温度补偿精度,还为电子压力扫描阀的多量程、高精度开发提供了理论与技术支持。 展开更多
关键词 电子压力扫描阀 多量程标定 高精度温度补偿 阈值法 ELMAN神经网络
在线阅读 下载PDF
基于多属性优势的松弛函数依赖的数据质量检测
17
作者 唐雨薇 《计算机应用与软件》 北大核心 2025年第7期315-325,391,共12页
为了同时兼顾松弛函数依赖检测效果,并降低计算复杂度,提出一种基于多属性优势的松弛函数依赖的数据质量检测。提出一种松弛函数依赖的数据质量检测算法,该算法通过多属性决策理论中的优势概念将多属性值之间的距离表示为指标,从而能够... 为了同时兼顾松弛函数依赖检测效果,并降低计算复杂度,提出一种基于多属性优势的松弛函数依赖的数据质量检测。提出一种松弛函数依赖的数据质量检测算法,该算法通过多属性决策理论中的优势概念将多属性值之间的距离表示为指标,从而能够自动推断相似性阈值;引入一个效用函数可以根据松弛函数依赖的基数和阈值对其进行排序。最后,对真实数据集进行了实验评估,结果表明该方法具有较高的检测精度与较低的计算复杂度。 展开更多
关键词 多属性决策 松弛函数依赖 相似性阈值 计算复杂度
在线阅读 下载PDF
改进算数优化算法的多阈值图像分割方法 被引量:1
18
作者 崔心惠 李文萱 +1 位作者 袁荣荣 胡瑞 《宜宾学院学报》 2025年第6期24-30,81,共8页
针对多阈值图像分割中存在的分割准确率低,随阈值增加计算量大、运行时间长等问题,提出一种改进算数优化算法(IAOA)的多阈值图像分割方法.通过引入混沌映射策略丰富种群多样性和分布均匀性,扩大种群搜索范围,增强算法的勘探能力.为了提... 针对多阈值图像分割中存在的分割准确率低,随阈值增加计算量大、运行时间长等问题,提出一种改进算数优化算法(IAOA)的多阈值图像分割方法.通过引入混沌映射策略丰富种群多样性和分布均匀性,扩大种群搜索范围,增强算法的勘探能力.为了提高原算数优化算法的收敛速度和寻优精度,采用Levy飞行策略最大限度地实现搜索域的多样化并快速跳出局部最优,将Kapur熵作为适应度函数求解多阈值图像分割问题.选取伯克利经典测试图像进行测试,把平均适应度值和峰值信噪比作为重要评价指标,与当前流行算法进行对比,IAOA具有更高的分割精度和效率. 展开更多
关键词 算数优化算法 多阈值分割 Kapur熵 混沌映射 Levy飞行策略
在线阅读 下载PDF
Spatiotemporal Variations of Meteorological Droughts in China During 1961–2014: An Investigation Based on Multi-Threshold Identification 被引量:7
19
作者 Jun He Xiaohua Yang +2 位作者 Zhe Li Xuejun Zhang Qiuhong Tang 《International Journal of Disaster Risk Science》 SCIE CSCD 2016年第1期63-76,共14页
As a major agricultural country, China suffers from severe meteorological drought almost every year.Previous studies have applied a single threshold to identify the onset of drought events, which may cause problems to... As a major agricultural country, China suffers from severe meteorological drought almost every year.Previous studies have applied a single threshold to identify the onset of drought events, which may cause problems to adequately characterize long-term patterns of droughts.This study analyzes meteorological droughts in China based on a set of daily gridded(0.5° 9 0.5°) precipitation data from 1961 to 2014. By using a multi-threshold run theory approach to evaluate the monthly percentage of precipitation anomalies index(Pa), a drought events sequence was identified at each grid cell. The spatiotemporal variations of drought in China were further investigated based on statistics of the frequency, duration,severity, and intensity of all drought events. Analysis of the results show that China has five distinct meteorological drought-prone regions: the Huang-Huai-Hai Plain, Northeast China, Southwest China, South China coastal region,and Northwest China. Seasonal analysis further indicates that there are evident spatial variations in the seasonal contribution to regional drought. But overall, most contribution to annual drought events in China come from the winter. Decadal variation analysis suggests that most of China's water resource regions have undergone an increase in drought frequency, especially in the Liaohe, Haihe, and Yellow River basins, although drought duration and severity clearly have decreased after the 1960 s. 展开更多
关键词 China Meteorological drought multi-threshold run theory method Spatiotemporal variations
原文传递
基于FOX-VMD联合小波阈值去噪的短期光伏功率预测研究 被引量:1
20
作者 郭文凯 王果 +2 位作者 闵永智 苏鹏飞 刘昕玥 《太阳能学报》 北大核心 2025年第6期260-270,共11页
针对光伏功率数据中的噪声干扰、蕴含信息难以提取以及预测模型误差较大等问题,提出一种优化数据处理以及预测误差修正的多阶段短期光伏功率预测模型。首先,采用组合赋权法计算气象特征相关性,利用赤狐优化算法(FOX)优化变分模态分解方... 针对光伏功率数据中的噪声干扰、蕴含信息难以提取以及预测模型误差较大等问题,提出一种优化数据处理以及预测误差修正的多阶段短期光伏功率预测模型。首先,采用组合赋权法计算气象特征相关性,利用赤狐优化算法(FOX)优化变分模态分解方法(VMD)参数,结合最优小波阈值方法(WT)进行数据预处理;其次,对每个固有模态函数(IMF)分量构建双向长短期记忆网络(BiLSTM)模型,叠加重构得到初步预测结果;最后,建立误差修正模型,修正初步预测结果,获得最终预测值。算例分析表明,实验数据测试集的均方根误差(RMSE)、平均绝对误差(MAE)和平均绝对百分比误差(MAPE)值分别为5.21 kW、3.01 kW和0.01%,相比原始BiLSTM模型降低81.01%、82.80%和88.89%,证明所提模型可有效提取信息,减少噪声干扰,降低预测误差。 展开更多
关键词 光伏发电 功率预测 模态分解 小波阈值去噪 多阶段预测模型
原文传递
上一页 1 2 66 下一页 到第
使用帮助 返回顶部