期刊文献+
共找到1,123篇文章
< 1 2 57 >
每页显示 20 50 100
Existence and Numerical Solution for a Coupled System of Multi-term Fractional Differential Equations 被引量:1
1
作者 杨李凡 叶海平 《Journal of Donghua University(English Edition)》 EI CAS 2015年第4期613-619,共7页
An initial value problem was considered for a coupled differential system with multi-term Caputo type fractional derivatives. By means of nonlinear alternative of Leray-Schauder and Banach contraction principle,the ex... An initial value problem was considered for a coupled differential system with multi-term Caputo type fractional derivatives. By means of nonlinear alternative of Leray-Schauder and Banach contraction principle,the existence and uniqueness of solutions for the system were derived. Using a fractional predictorcorrector method, a numerical method was presented for the specified system. An example was given to illustrate the obtained results. 展开更多
关键词 multi-term fractional differential equation Caputo derivative EXISTENCE UNIQUENESS numerical solution
在线阅读 下载PDF
Three-Variable Shifted Jacobi Polynomials Approach for Numerically Solving Three-Dimensional Multi-Term Fractional-Order PDEs with Variable Coefficients
2
作者 Jiaquan Xie Fuqiang Zhao +1 位作者 Zhibin Yao Jun Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第4期67-84,共18页
In this paper,the three-variable shifted Jacobi operational matrix of fractional derivatives is used together with the collocation method for numerical solution of threedimensional multi-term fractional-order PDEs wit... In this paper,the three-variable shifted Jacobi operational matrix of fractional derivatives is used together with the collocation method for numerical solution of threedimensional multi-term fractional-order PDEs with variable coefficients.The main characteristic behind this approach is that it reduces such problems to those of solving a system of algebraic equations which greatly simplifying the problem.The approximate solutions of nonlinear fractional PDEs with variable coefficients thus obtained by threevariable shifted Jacobi polynomials are compared with the exact solutions.Furthermore some theorems and lemmas are introduced to verify the convergence results of our algorithm.Lastly,several numerical examples are presented to test the superiority and efficiency of the proposed method. 展开更多
关键词 Three-variable shifted Jacobi polynomials multi-term FRACTIONAL-ORDER PDES VARIABLE coefficients numerical solution convergence analysis
在线阅读 下载PDF
A Compact Finite Volume Scheme for the Multi-Term Time Fractional Sub-Diffusion Equation
3
作者 Baojin Su Yanan Wang +1 位作者 Jingwen Qi Yousen Li 《Journal of Applied Mathematics and Physics》 2022年第10期3156-3174,共19页
In this paper, we introduce high-order finite volume methods for the multi-term time fractional sub-diffusion equation. The time fractional derivatives are described in Caputo’s sense. By using some operators, we obt... In this paper, we introduce high-order finite volume methods for the multi-term time fractional sub-diffusion equation. The time fractional derivatives are described in Caputo’s sense. By using some operators, we obtain the compact finite volume scheme have high order accuracy. We use a compact operator to deal with spatial direction;then we can get the compact finite volume scheme. It is proved that the finite volume scheme is unconditionally stable and convergent in L<sub>∞</sub>-norm. The convergence order is O(τ<sup>2-α</sup> + h<sup>4</sup>). Finally, two numerical examples are given to confirm the theoretical results. Some tables listed also can explain the stability and convergence of the scheme. 展开更多
关键词 multi-term Time Fractional Sub-Diffusion Equation High-Order Compact Finite Volume Scheme Stable CONVERGENT
在线阅读 下载PDF
On Nonlinear Analysis for Multi-term Delay Fractional Differential Equations Under Hilfer Derivative
4
作者 Dildar Ahmad Amjad Ali +2 位作者 Kamal Shah Bahaaeldin Abdalla Thabet Abdeljawad 《Communications on Applied Mathematics and Computation》 2025年第4期1516-1539,共24页
In this manuscript,a class of multi-term delay fractional differential equations(FDEs)under the Hilfer derivative is considered.Some newly updated results are established under boundary conditions.For the required res... In this manuscript,a class of multi-term delay fractional differential equations(FDEs)under the Hilfer derivative is considered.Some newly updated results are established under boundary conditions.For the required results,we utilize the fixed point theory and tools of the nonlinear functional analysis.Further keeping in mind the importance of stability results,we develop some adequate results about the said aspect.The Hyers-Ulam(H-U)-type concept is used to derive the required stability for the solution of the considered problem.Finally,by appropriate test problems,we justify our findings. 展开更多
关键词 Hilfer derivative multi-term Existence results STABILITY
在线阅读 下载PDF
Spatial High Accuracy Analysis of FEM for Two-dimensional Multi-term Time-fractional Diffusion-wave Equations 被引量:1
5
作者 Ya-bing WEI Yan-min ZHAO +2 位作者 Zheng-guang SHI Fen-ling WANG Yi-fa TANG 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2018年第4期828-841,共14页
In this paper, high-order numerical analysis of finite element method(FEM) is presented for twodimensional multi-term time-fractional diffusion-wave equation(TFDWE). First of all, a fully-discrete approximate sche... In this paper, high-order numerical analysis of finite element method(FEM) is presented for twodimensional multi-term time-fractional diffusion-wave equation(TFDWE). First of all, a fully-discrete approximate scheme for multi-term TFDWE is established, which is based on bilinear FEM in spatial direction and Crank-Nicolson approximation in temporal direction, respectively. Then the proposed scheme is proved to be unconditionally stable and convergent. And then, rigorous proofs are given here for superclose properties in H-1-norm and temporal convergence in L-2-norm with order O(h-2+ τ-(3-α)), where h and τ are the spatial size and time step, respectively. At the same time, theoretical analysis of global superconvergence in H-1-norm is derived by interpolation postprocessing technique. At last, numerical example is provided to demonstrate the theoretical analysis. 展开更多
关键词 multi-term time-fractional diffusion-wave equation bilinear finite element method Crank-Nicolsonapproximation stability convergence and superconvergence
原文传递
A superlinear numerical scheme for multi-term fractional nonlinear ordinary differential equations 被引量:1
6
作者 Jingna Zhang Haobo Gong +1 位作者 Sadia Arshad Jianfei Huang 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2020年第2期100-114,共15页
In this paper,we present a superlinear numerical method for multi-term fractional nonlinear ordinary differential equations(MTFNODEs).First,the presented problem is equivalently transformed into its integral form with... In this paper,we present a superlinear numerical method for multi-term fractional nonlinear ordinary differential equations(MTFNODEs).First,the presented problem is equivalently transformed into its integral form with multi-term Riemann-Liouville integrals.Second,the compound product trapezoidal rule is used to approximate the fractional integrals.Then,the unconditional stability and convergence with the order 1+αN−1−αN−2 of the proposed scheme are strictly established,whereαN−1 andαN−2 are the maximum and the second maximum fractional indexes in the considered MTFNODEs,respectively.Finally,two numerical examples are provided to support the theoretical results. 展开更多
关键词 multi-term fractional ordinary differential equations nonlinear system numerical method stability convergence
原文传递
Finite element multigrid method for multi-term time fractional advection diffusion equations 被引量:1
7
作者 Weiping Bu Xiangtao Liu +1 位作者 Yifa Tang Jiye Yang 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2015年第1期1-25,共25页
In this paper,a class of multi-term time fractional advection diffusion equations(MTFADEs)is considered.By finite difference method in temporal direction and finite element method in spatial direction,two fully discre... In this paper,a class of multi-term time fractional advection diffusion equations(MTFADEs)is considered.By finite difference method in temporal direction and finite element method in spatial direction,two fully discrete schemes of MTFADEs with different definitions on multi-term time fractional derivative are obtained.The stability and convergence of these numerical schemes are discussed.Next,a V-cycle multigrid method is proposed to solve the resulting linear systems.The convergence of the multigrid method is investigated.Finally,some numerical examples are given for verification of our theoretical analysis. 展开更多
关键词 multi-term time fractional advection diffusion equation finite element method stability CONVERGENCE V-cycle multigrid method
原文传递
Controllability of multi-term time-fractional differential systems 被引量:1
8
作者 Vikram Singh Dwijendra N.Pandey 《Journal of Control and Decision》 EI 2020年第2期109-125,共17页
In this paper,an abstract multi-term time-fractional differential system is considered and the exact controllability results are investigated.In this theory,we tend to implement the basic tools of fractional calculus ... In this paper,an abstract multi-term time-fractional differential system is considered and the exact controllability results are investigated.In this theory,we tend to implement the basic tools of fractional calculus and measure of noncompactness to come up with a new set of sufficient conditions for the exact controllability by utilisation of Mönch fixed point theorem.Finally,an application is given to illustrate the obtained results. 展开更多
关键词 Fractional calculus exact controllability multi-term time-fractional delay differential system measure of noncompactness
原文传递
Nonconforming Mixed FEM Analysis for Multi-Term Time-Fractional Mixed Sub-Diffusion and Diffusion-Wave Equation with Time-Space Coupled Derivative 被引量:1
9
作者 Fangfang Cao Yanmin Zhao +2 位作者 Fenling Wang Yanhua Shi Changhui Yao 《Advances in Applied Mathematics and Mechanics》 SCIE 2023年第2期322-358,共37页
The main contents of this paper are to establish a finite element fully-discrete approximate scheme for multi-term time-fractional mixed sub-diffusion and diffusionwave equation with spatial variable coefficient,which... The main contents of this paper are to establish a finite element fully-discrete approximate scheme for multi-term time-fractional mixed sub-diffusion and diffusionwave equation with spatial variable coefficient,which contains a time-space coupled derivative.The nonconforming EQ^(rot)_(1)element and Raviart-Thomas element are employed for spatial discretization,and L1 time-stepping method combined with the Crank-Nicolson scheme are applied for temporal discretization.Firstly,based on some significant lemmas,the unconditional stability analysis of the fully-discrete scheme is acquired.With the assistance of the interpolation operator I_(h)and projection operator Rh,superclose and convergence results of the variable u in H^(1)-norm and the flux~p=k_(5)(x)ru(x,t)in L^(2)-norm are obtained,respectively.Furthermore,the global superconvergence results are derived by applying the interpolation postprocessing technique.Finally,the availability and accuracy of the theoretical analysis are corroborated by experimental results of numerical examples on anisotropic meshes. 展开更多
关键词 multi-term time-fractional mixed sub-diffusion and diffusion-wave equation nonconforming EQ^(rot)_(1)mixed FEM L1 approximation and Crank-Nicolson scheme convergence and superconvergence
在线阅读 下载PDF
ANALYSIS OF A MULTI-TERM VARIABLE-ORDER TIME-FRACTIONAL DIFFUSION EQUATION AND ITS GALERKIN FINITE ELEMENT APPROXIMATION
10
作者 Huan Liu Xiangcheng Zheng Hongfei Fu 《Journal of Computational Mathematics》 SCIE CSCD 2022年第5期814-834,共21页
In this paper,we study the well-posedness and solution regularity of a multi-term variable-order time-fractional diffusion equation,and then develop an optimal Galerkin finite element scheme without any regularity ass... In this paper,we study the well-posedness and solution regularity of a multi-term variable-order time-fractional diffusion equation,and then develop an optimal Galerkin finite element scheme without any regularity assumption on its true solution.We show that the solution regularity of the considered problem can be affected by the maximum value of variable-order at initial time t=0.More precisely,we prove that the solution to the multi-term variable-order time-fractional diffusion equation belongs to C 2([0,T])in time provided that the maximum value has an integer limit near the initial time and the data has sufficient smoothness,otherwise the solution exhibits the same singular behavior like its constant-order counterpart.Based on these regularity results,we prove optimalorder convergence rate of the Galerkin finite element scheme.Furthermore,we develop an efficient parallel-in-time algorithm to reduce the computational costs of the evaluation of multi-term variable-order fractional derivatives.Numerical experiments are put forward to verify the theoretical findings and to demonstrate the efficiency of the proposed scheme. 展开更多
关键词 Variable-order multi-term time-fractional diffusion equation Solution regularity Galerkin finite element Parareal method.
原文传递
A Novel Error Analysis of Spectral Method for the Anomalous Subdiffusion Problems with Multi-term Time-fractional Derivative
11
作者 Bo TANG Yan-ping CHEN +1 位作者 Bin XIE Xiu-xiu LIN 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2023年第4期943-961,共19页
This paper aims to extend a space-time spectral method to address the multi-term time-fractional subdiffusion equations with Caputo derivative. In this method, the Jacobi polynomials are adopted as the basis functions... This paper aims to extend a space-time spectral method to address the multi-term time-fractional subdiffusion equations with Caputo derivative. In this method, the Jacobi polynomials are adopted as the basis functions for temporal discretization and the Lagrangian polynomials are used for spatial discretization. An efficient spectral approximation of the weak solution is established. The main work is the demonstration of the well-posedness for the weak problem and the derivation of a posteriori error estimates for the spectral Galerkin approximation. Extensive numerical experiments are presented to perform the validity of a posteriori error estimators, which support our theoretical results. 展开更多
关键词 space-time spectral methods multi-term time-fractional WELL-POSEDNESS a posteriori error estimates
原文传递
ANISOTROPIC EQ^(ROT)_(1) FINITE ELEMENT APPROXIMATION FOR A MULTI-TERM TIME-FRACTIONAL MIXED SUB-DIFFUSION AND DIFFUSION-WAVE EQUATION
12
作者 Huijun Fan Yanmin Zhao +2 位作者 Fenling Wang Yanhua Shi Fawang Liu 《Journal of Computational Mathematics》 SCIE CSCD 2023年第3期458-481,共24页
By employing EQ^(ROT)_(1) nonconforming finite element,the numerical approximation is presented for multi-term time-fractional mixed sub-diffusion and diffusion-wave equation on anisotropic meshes.Comparing with the m... By employing EQ^(ROT)_(1) nonconforming finite element,the numerical approximation is presented for multi-term time-fractional mixed sub-diffusion and diffusion-wave equation on anisotropic meshes.Comparing with the multi-term time-fractional sub-diffusion equation or diffusion-wave equation,the mixed case contains a special time-space coupled derivative,which leads to many difficulties in numerical analysis.Firstly,a fully discrete scheme is established by using nonconforming finite element method(FEM)in spatial direction and L1 approximation coupled with Crank-Nicolson(L1-CN)scheme in temporal direction.Furthermore,the fully discrete scheme is proved to be unconditional stable.Besides,convergence and superclose results are derived by using the properties of EQ^(ROT)_(1) nonconforming finite element.What's more,the global superconvergence is obtained via the interpolation postprocessing technique.Finally,several numerical results are provided to demonstrate the theoretical analysis on anisotropic meshes. 展开更多
关键词 multi-term time-fractional mixed sub-diffusion and diffusion-wave equation Nonconforming FEM L1-CN scheme Anisotropic meshes Convergence and superconvergence
原文传递
Numerical Inversion for the Initial Distribution in the Multi-TermTime-FractionalDiffusion Equation Using Final Observations
13
作者 Chunlong Sun Gongsheng Li Xianzheng Jia 《Advances in Applied Mathematics and Mechanics》 SCIE 2017年第6期1525-1546,共22页
This article deals with numerical inversion for the initial distribution in the multi-term time-fractional diffusion equation using final observations.The inversion problem is of instability,but it is uniquely solvabl... This article deals with numerical inversion for the initial distribution in the multi-term time-fractional diffusion equation using final observations.The inversion problem is of instability,but it is uniquely solvable based on the solution’s expression for the forward problem and estimation to the multivariate Mittag-Leffler function.From view point of optimality,solving the inversion problem is transformed to minimizing a cost functional,and existence of a minimum is proved by the weakly lower semi-continuity of the functional.Furthermore,the homotopy regularization algorithm is introduced based on the minimization problem to perform numerical inversions,and the inversion solutions with noisy data give good approximations to the exact initial distribution demonstrating the efficiency of the inversion algorithm. 展开更多
关键词 multi-term time-fractional diffusion multivariate Mittag-Leffler function backward problem ILL-POSEDNESS numerical inversion
在线阅读 下载PDF
计及库容租赁与电量损益的混合式抽水蓄能电站容量电价计算 被引量:1
14
作者 郭爱军 畅建霞 +3 位作者 王义民 谢正义 杨琪 王学斌 《水利学报》 北大核心 2025年第2期193-204,共12页
容量电价是体现抽水蓄能电站“弥补成本、合理收益”原则的重要方式,现有核定办法主要面向纯抽水蓄能电站,难以应用于具备特有成本、收益组成的混合式抽水蓄能电站。本文首先厘清混合式抽水蓄能电站典型的成本与收益组成,包括库容租赁... 容量电价是体现抽水蓄能电站“弥补成本、合理收益”原则的重要方式,现有核定办法主要面向纯抽水蓄能电站,难以应用于具备特有成本、收益组成的混合式抽水蓄能电站。本文首先厘清混合式抽水蓄能电站典型的成本与收益组成,包括库容租赁、增发季节性弃水电量以及抽发运行导致上下库电站电量损益等;其次,构建含混合式抽水蓄能电站的梯级水电站短期—中长期多尺度协同调峰模型,联合混合整数线性规划方法与粒子群优化算法求解;最后,与经营期定价模型耦合,提出计及库容租赁与电量损益的电站容量电价计算模型,为抽蓄电站经济性评估提供支撑。以西北某混合式抽水蓄能电站为例,结果表明:混合式抽水蓄能电站年均增发季节性弃水电量2.452亿kWh、年均库容租赁量约1063万m^(3),上游水电站年均发电量增加0.019亿kWh,下游水电站年均发电量减小0.057亿kWh。不考虑库容租赁与电量损益时,电站容量电价730元(kW·a);考虑二者时,按水电电价0.30元(kWh)、库容租赁单价0.5元m^(3)方案计算,容量电价为633元(kW·a),降幅近100元(kW·a),电站增发季节性弃水电量是降低容量电价的主要因素,库容租赁费用抬高了容量电价。研究完善了抽水蓄能电站容量电价计算体系,可为混合式抽水蓄能电站规划设计提供支撑。 展开更多
关键词 混合式抽水蓄能电站 容量电价 短期-中长期多尺度协同调峰 库容租赁 电量损益
在线阅读 下载PDF
一种考虑电量执行率的短期多目标优化模型
15
作者 覃晖 胡淼 +5 位作者 侯栋凯 汪涛 徐杨 许筱乐 李永祥 黎江桥 《长江科学院院报》 北大核心 2025年第9期202-211,共10页
梯级水库群短期优化调度受电站水力联系、环境等诸多因素影响,其调度决策具有高度复杂性。围绕梯级水库群短期多目标联合优化调度问题,首先利用数据挖掘方法对水电站历史数据进行聚类数量分析,提取基于最优聚类数的典型出力。进一步考... 梯级水库群短期优化调度受电站水力联系、环境等诸多因素影响,其调度决策具有高度复杂性。围绕梯级水库群短期多目标联合优化调度问题,首先利用数据挖掘方法对水电站历史数据进行聚类数量分析,提取基于最优聚类数的典型出力。进一步考虑电站的电量执行率,以发电量最大与计划执行完成率最高为目标,使用电站的特征相似度综合衡量偏差程度与调度目标满足程度,建立水库群短期多目标优化调度模型,利用NSGA-Ⅱ对模型进行求解,最后基于熵权法与多准则妥协解排序法优选调度方案作为梯级水库运行的最终方案。研究结果表明,所提模型能够兼顾发电效益与出力过程偏差,量化不同计划执行完成率下的发电优化效果,优选梯级调度计划,为调度决策者提供可靠的参考信息。 展开更多
关键词 短期优化 多目标调度 数据挖掘 典型出力提取 计划执行完成率
在线阅读 下载PDF
积极应对人口老龄化背景下多层次长期护理保障体系建设的国际经验与启示 被引量:1
16
作者 薛惠元 《河北大学学报(哲学社会科学版)》 2025年第5期113-124,共12页
随着全球老龄化进程加速,构建多层次长期护理保障体系成为各国应对失能风险的核心议题。基于责任分担视角,将国外长期护理保障体系划分为低、中、高三类个人责任型,并从法律制度、保障项目、资金来源及服务体系四个维度构建分析框架,选... 随着全球老龄化进程加速,构建多层次长期护理保障体系成为各国应对失能风险的核心议题。基于责任分担视角,将国外长期护理保障体系划分为低、中、高三类个人责任型,并从法律制度、保障项目、资金来源及服务体系四个维度构建分析框架,选取荷兰、德国、日本等典型国家进行分析。研究发现,法律法规是制度可持续性的顶层保障,保障项目的精准性决定服务覆盖范围,多元化筹资模式支撑运行稳健性,而服务供给主体与类型的协同直接影响服务可及性。在积极应对人口老龄化背景下,提出完善我国多层次长期护理保障体系的建议:完善法律法规和政策支持,系统规划多层次长期护理保障体系;加强护理保障制度体系建设,丰富多层次长期护理保障项目;探索多渠道和可持续的筹资模式,扩大多层次长期护理资金来源;建立协同体系,构建多元一体的多层次长期护理服务体系。 展开更多
关键词 长期护理保障 多层次体系 国际经验 积极老龄化
在线阅读 下载PDF
基于个体优势识别的“长效—多方位”系统评析方法构建
17
作者 赵希男 陈俊领 孙晨曦 《中国管理科学》 北大核心 2025年第6期116-128,共13页
对事物动态发展状况的掌握催生了动态评价方法的需求。为弥补单视角动态评价方法所得到的评价结果信息量少,对决策支持力度较弱,以及多种评价方法的组合评价不协调的问题,提出基于个体优势识别的“长效-多方位”系统评析方法。首先,为... 对事物动态发展状况的掌握催生了动态评价方法的需求。为弥补单视角动态评价方法所得到的评价结果信息量少,对决策支持力度较弱,以及多种评价方法的组合评价不协调的问题,提出基于个体优势识别的“长效-多方位”系统评析方法。首先,为保证评价过程的动态长效性,并从充分挖掘被评价对象个体价值角度,构建了包括战略观念下的价值指标体系、动态数据标准化、指标权重、评价方法的选择和评价角度与方位的研究框架;其次,为满足多方位评价的需求,在“个体代理评价”的基础上,进一步构建了多主体多因素动态评析(T-O-F)、时点截面动态评析(t-O-F)、单主体多因素动态评析(T-o-F)和多主体单因素动态评析(T-O-f)的评价框架。最后,通过对我国26个省份2015—2019年区域科技创新能力进行应用研究,多方位揭示我国区域科技创新能力状况,为相关部门提供决策支持;同时,也表明基于个体优势识别的“长效-多方位”系统评析方法为实现多方位系统综合评价开拓了新方式。 展开更多
关键词 动态评价体系 长效性 多方位 个体代理 系统评析
原文传递
基于GCN-LSTM的多交叉口信号灯控制 被引量:1
18
作者 徐东伟 朱宏俊 +2 位作者 郭海锋 周晓刚 汤立新 《高技术通讯》 北大核心 2025年第5期472-479,共8页
强化学习(reinforcement learning,RL)由于其解决高度动态环境中复杂决策问题的能力,成为信号灯控制中一种具有前景的解决方案。大多数基于强化学习的方法独立生成智能体的动作,它们可能导致交叉口的动作冲突、道路资源浪费。因此,本文... 强化学习(reinforcement learning,RL)由于其解决高度动态环境中复杂决策问题的能力,成为信号灯控制中一种具有前景的解决方案。大多数基于强化学习的方法独立生成智能体的动作,它们可能导致交叉口的动作冲突、道路资源浪费。因此,本文提出了基于图卷积网络和长短期记忆(graph convolution network-long short-term memory,GCNLSTM)的多交叉口信号灯控制方法。首先,基于二进制权重网络对多交叉口进行构图。其次,通过图卷积网络聚合周围交叉口的空间状态信息,利用长短期记忆(long short-term memory,LSTM)获得交叉口的历史状态信息。最后,通过基于竞争网络框架的Q值网络进行动作的选择,实现对交叉口相位的控制。实验结果表明,与其他强化学习方法相比,本文方法在多交叉口的信号灯控制中能够减少交叉口的队列长度,并使道路网络中的车辆获得更少的等待时间。 展开更多
关键词 智能交通系统 交通信号灯控制 多智能体强化学习 长短期记忆 图卷积网络
在线阅读 下载PDF
考虑异常数据的多层神经网络交通流预测模型
19
作者 王庆荣 慕壮壮 +2 位作者 朱昌锋 何润田 高桓伊 《地球信息科学学报》 北大核心 2025年第10期2466-2481,共16页
【目的】交通流预测对于城市管理、智能交通至关重要。针对交通流数据中由外部干扰、突发事件等导致的异常数据、蕴含的复杂时空信息等问题。【方法】本文提出了一种考虑异常数据的多层神经网络预测模型(MLNN-CAD)。考虑孤立森林算法因... 【目的】交通流预测对于城市管理、智能交通至关重要。针对交通流数据中由外部干扰、突发事件等导致的异常数据、蕴含的复杂时空信息等问题。【方法】本文提出了一种考虑异常数据的多层神经网络预测模型(MLNN-CAD)。考虑孤立森林算法因参数单一而存在异常识别不精确的问题,结合各交通参数间的约束关系与交通流内在结构和规律,提出多级孤立森林算法,以提高异常数据识别精度;结合节点间的距离、皮尔逊相关系数及交通流量构建异常影响动态图,弥补传统M阶矩阵存在的缺陷,精准捕获异常影响动态范围;结合交通拥堵指数构建重要节点动态图,解决由节点出入都筛选重要区域的不足,并捕获交通流局部动态信息。融合图卷积网络(GCN)与含残差链接的多层图注意力网络(ResGAT),提取交通流的全局、异常影响及重要节点各动态空间信息。利用Informer提取全局时空信息,扩展长短期记忆网络(XLSTM)提取异常影响和重要节点时空信息,并通过卷积融合层获取交通流预测值。【结果】研究采用2018年1月1日—2月18日的PeMS04及PeMS08真实交通流量数据对本文模型预测精度进行验证。结果表明,本文模型优于Informer、XLSTM、STSGCN、STFGCN、VMD-AGCGRN等现有模型,相较于VMD-AGCGRN在PeMS04数据集上MAE、RMSE及MAPE提升7.68%、10.36%、6.06%。【结论】本文所提出的MLNN-CAD模型为异常数据下的短时交通流预测提供了具有可行性的理论基础。 展开更多
关键词 短时交通流预测 多层神经网络 多级孤立森林 INFORMER 扩展长短期记忆网络
原文传递
基于Modelica-LSTM双驱动的数字孪生机床热误差补偿模型构建
20
作者 孙丽 王诗灏 +3 位作者 姜锋 关咏臻 徐家淳 刘荣玺 《制造技术与机床》 北大核心 2025年第10期205-213,共9页
针对数控机床在高速、高负载运行中因热变形导致的热误差问题,提出一种基于Modelica多领域建模与长短期记忆网络(long short-term memory,LSTM)联合驱动的热误差补偿方法。通过Modelica构建机床机械、电气、热力学多物理场耦合的高保真... 针对数控机床在高速、高负载运行中因热变形导致的热误差问题,提出一种基于Modelica多领域建模与长短期记忆网络(long short-term memory,LSTM)联合驱动的热误差补偿方法。通过Modelica构建机床机械、电气、热力学多物理场耦合的高保真数字孪生模型,结合LSTM对机理模型未覆盖的非线性动态误差进行数据驱动补偿。实验以五轴数控加工中心DMG MORI DMU 50为对象,在预热、阶梯加载及扰动工况下采集温度、振动和热误差数据,验证模型性能。结果表明,Modelica-LSTM双驱动模型相较于单一Modelica机理模型,均方根误差降低51.2%,补偿后误差波动幅度减少72%,在高温及动态工况下显著提升预测精度。该方法为高精密机床热误差补偿提供了物理与数据协同驱动的有效解决方案。 展开更多
关键词 数控机床 热误差补偿 MODELICA 长短期记忆网络 多领域建模 数字孪生
在线阅读 下载PDF
上一页 1 2 57 下一页 到第
使用帮助 返回顶部