In order to analyze changes in human settlement in Xuzhou city during the past 20 years, changes in land cover and vegetation were investigated based on multi-temporal remote sensing Landsat TM images. We developed a ...In order to analyze changes in human settlement in Xuzhou city during the past 20 years, changes in land cover and vegetation were investigated based on multi-temporal remote sensing Landsat TM images. We developed a hierarchical classifier system that uses different feature inputs for specific classes and conducted a classification post-processing approach to improve its accuracy. From our statistical analysis of changes in urban land cover from 1987 to 2007, we conclude that built-up land areas have obviously increased, while farmland has seen in a continuous loss due to urban growth and human activities. A NDVI difference approach was used to extract information on changes in vegetation. A false change information elimination approach was developed based on prior knowledge and statistical analysis. The areas of vegetation cover have been in continuous decline over the past 20 years, although some measures have been adopted to protect and maintain urban vegetation. Given the stability of underground coal exploitation since 1990s, urban growth has become the major driving force in vegetation loss, which is different from the vegetation change driven by coal exploitation mainly before 1990.展开更多
Conventional change detection approaches are mainly based on per-pixel processing,which ignore the sub-pixel spectral variation resulted from spectral mixture.Especially for medium-resolution remote sensing images use...Conventional change detection approaches are mainly based on per-pixel processing,which ignore the sub-pixel spectral variation resulted from spectral mixture.Especially for medium-resolution remote sensing images used in urban landcover change monitoring,land use/cover components within a single pixel are usually complicated and heterogeneous due to the limitation of the spatial resolution.Thus,traditional hard detection methods based on pure pixel assumption may lead to a high level of omission and commission errors inevitably,degrading the overall accuracy of change detection.In order to address this issue and find a possible way to exploit the spectral variation in a sub-pixel level,a novel change detection scheme is designed based on the spectral mixture analysis and decision-level fusion.Nonlinear spectral mixture model is selected for spectral unmixing,and change detection is implemented in a sub-pixel level by investigating the inner-pixel subtle changes and combining multiple composition evidences.The proposed method is tested on multi-temporal Landsat Thematic Mapper and China–Brazil Earth Resources Satellite remote sensing images for the land-cover change detection over urban areas.The effectiveness of the proposed approach is confirmed in terms of several accuracy indices in contrast with two pixel-based change detection methods(i.e.change vector analysis and principal component analysis-based method).In particular,the proposed sub-pixel change detection approach not only provides the binary change information,but also obtains the characterization about change direction and intensity,which greatly extends the semantic meaning of the detected change targets.展开更多
The study areas are located in the Katanga province to the South Eastern part of the Democratic Republic of Congo (DRC). It focuses on the Kolwezi and Tenke-Fungurume mining centers, located in the vicinity of the Bas...The study areas are located in the Katanga province to the South Eastern part of the Democratic Republic of Congo (DRC). It focuses on the Kolwezi and Tenke-Fungurume mining centers, located in the vicinity of the Basse-Kando reserve. The 3 study areas have faced large scale human induced the fragmentation of land cover. A combination of ancillary data and satellite imageries was interpreted to construct fragmentation dynamics over the last 30 years. This study is an initial step towards assessing the impact of fragmentation on sustainable land cover in the Katanga. The results bring out that large trends of fragmentation differently occurred over the last 30 years (1979 to 2011) in the three focused areas. The most dominant fragmentation processes were gains in barren soil and cities surface and a sharp reduction in burned areas. In Kolwezi, a close relationship is observed between growth and regression of barren soil and cities over vegetation. The Tenke-Fungurume site shows a growth during the 1980-1990 time slice and regression of vegetation during the following two decades. The Basse-Kando site analyze brings out growth of vegetation and regression of burned area due to vegetation conservation efforts. This is one of the studies in Katanga around mines activities that combine multi-source and spatio-temporal data on land cover to enable long-term quantification of land cover fragmentation.展开更多
Accurate and efficient detection of building changes in remote sensing imagery is crucial for urban planning,disaster emergency response,and resource management.However,existing methods face challenges such as spectra...Accurate and efficient detection of building changes in remote sensing imagery is crucial for urban planning,disaster emergency response,and resource management.However,existing methods face challenges such as spectral similarity between buildings and backgrounds,sensor variations,and insufficient computational efficiency.To address these challenges,this paper proposes a novel Multi-scale Efficient Wavelet-based Change Detection Network(MewCDNet),which integrates the advantages of Convolutional Neural Networks and Transformers,balances computational costs,and achieves high-performance building change detection.The network employs EfficientNet-B4 as the backbone for hierarchical feature extraction,integrates multi-level feature maps through a multi-scale fusion strategy,and incorporates two key modules:Cross-temporal Difference Detection(CTDD)and Cross-scale Wavelet Refinement(CSWR).CTDD adopts a dual-branch architecture that combines pixel-wise differencing with semanticaware Euclidean distance weighting to enhance the distinction between true changes and background noise.CSWR integrates Haar-based Discrete Wavelet Transform with multi-head cross-attention mechanisms,enabling cross-scale feature fusion while significantly improving edge localization and suppressing spurious changes.Extensive experiments on four benchmark datasets demonstrate MewCDNet’s superiority over comparison methods:achieving F1 scores of 91.54%on LEVIR,93.70%on WHUCD,and 64.96%on S2Looking for building change detection.Furthermore,MewCDNet exhibits optimal performance on the multi-class⋅SYSU dataset(F1:82.71%),highlighting its exceptional generalization capability.展开更多
High-resolution remote sensing images(HRSIs)are now an essential data source for gathering surface information due to advancements in remote sensing data capture technologies.However,their significant scale changes an...High-resolution remote sensing images(HRSIs)are now an essential data source for gathering surface information due to advancements in remote sensing data capture technologies.However,their significant scale changes and wealth of spatial details pose challenges for semantic segmentation.While convolutional neural networks(CNNs)excel at capturing local features,they are limited in modeling long-range dependencies.Conversely,transformers utilize multihead self-attention to integrate global context effectively,but this approach often incurs a high computational cost.This paper proposes a global-local multiscale context network(GLMCNet)to extract both global and local multiscale contextual information from HRSIs.A detail-enhanced filtering module(DEFM)is proposed at the end of the encoder to refine the encoder outputs further,thereby enhancing the key details extracted by the encoder and effectively suppressing redundant information.In addition,a global-local multiscale transformer block(GLMTB)is proposed in the decoding stage to enable the modeling of rich multiscale global and local information.We also design a stair fusion mechanism to transmit deep semantic information from deep to shallow layers progressively.Finally,we propose the semantic awareness enhancement module(SAEM),which further enhances the representation of multiscale semantic features through spatial attention and covariance channel attention.Extensive ablation analyses and comparative experiments were conducted to evaluate the performance of the proposed method.Specifically,our method achieved a mean Intersection over Union(mIoU)of 86.89%on the ISPRS Potsdam dataset and 84.34%on the ISPRS Vaihingen dataset,outperforming existing models such as ABCNet and BANet.展开更多
Remote sensing image super-resolution technology is pivotal for enhancing image quality in critical applications including environmental monitoring,urban planning,and disaster assessment.However,traditional methods ex...Remote sensing image super-resolution technology is pivotal for enhancing image quality in critical applications including environmental monitoring,urban planning,and disaster assessment.However,traditional methods exhibit deficiencies in detail recovery and noise suppression,particularly when processing complex landscapes(e.g.,forests,farmlands),leading to artifacts and spectral distortions that limit practical utility.To address this,we propose an enhanced Super-Resolution Generative Adversarial Network(SRGAN)framework featuring three key innovations:(1)Replacement of L1/L2 loss with a robust Charbonnier loss to suppress noise while preserving edge details via adaptive gradient balancing;(2)A multi-loss joint optimization strategy dynamically weighting Charbonnier loss(β=0.5),Visual Geometry Group(VGG)perceptual loss(α=1),and adversarial loss(γ=0.1)to synergize pixel-level accuracy and perceptual quality;(3)A multi-scale residual network(MSRN)capturing cross-scale texture features(e.g.,forest canopies,mountain contours).Validated on Sentinel-2(10 m)and SPOT-6/7(2.5 m)datasets covering 904 km2 in Motuo County,Xizang,our method outperforms the SRGAN baseline(SR4RS)with Peak Signal-to-Noise Ratio(PSNR)gains of 0.29 dB and Structural Similarity Index(SSIM)improvements of 3.08%on forest imagery.Visual comparisons confirm enhanced texture continuity despite marginal Learned Perceptual Image Patch Similarity(LPIPS)increases.The method significantly improves noise robustness and edge retention in complex geomorphology,demonstrating 18%faster response in forest fire early warning and providing high-resolution support for agricultural/urban monitoring.Future work will integrate spectral constraints and lightweight architectures.展开更多
The importance of accurately mapping and monitoring land cover changes over time is increasing,especially in rapidly growing coastal cities.In this study,three pairs of Landsat images of Yantai,a representative coasta...The importance of accurately mapping and monitoring land cover changes over time is increasing,especially in rapidly growing coastal cities.In this study,three pairs of Landsat images of Yantai,a representative coastal city in China,from 1989,1999,and 2009 were selected to monitor land cover changes and urban sprawl dynamics.To improve the classification accuracy,three classification methods together with the minimum noise fraction(MNF)and pixel purity index(PPI)calculations were performed on the images.The classification results showed that the overall five-class classification accuracies averaged 91.38%for the 20-year period,which produced an accuracy of 83.78%for change maps.The analysis of change maps indicated that from 1989 to 2009,the percentage of urban area increased from 31.41%to 50.28%of the total area,and the newly urbanized area was mainly located in residential areas and the reclaimed harbor region.Analysis of the relationships between urban area and its driving forces obtained from statistical data found that the urban sprawl of Yantai before 2000 was relatively extensive,which is consistent with the conclusion drawn by using remote sensing techniques.The research results could be used as inputs for sustainable urban management and establishing Digital Earth database.展开更多
Landuse and land cover change is regarded as a good indicator that represents the impact of human activities on earth’s environment.When the large collection of multi-temporal satellite images has become available,it...Landuse and land cover change is regarded as a good indicator that represents the impact of human activities on earth’s environment.When the large collection of multi-temporal satellite images has become available,it is possible to study a long-term historical process of land cover change.This study aims to investigate the spatio-temporal pattern and driving force of land cover change in the Pearl River Delta region in southern China,where the rapid development has been witnessed since 1980s.The fast economic growth has been associated with an accelerated expansion of urban landuse,which has been recorded by historical remote sensing images.This paper reports the method and outcome of the research that attempts to model spatio-temporal pattern of land cover change using multi-temporal satellite images.The classified satellite images were compared to detect the change from various landuse types to built-up areas.The trajectories of land cover change have then been established based on the time-series of the classified land cover classes.The correlation between the expansion of built-up areas and selected economic data has also been analysed for better understanding on the driving force of the rapid urbanisation process.The result shows that,since early 1990s,the dominant trend of land cover change has been from farmland to urban landuse.The relationship between economic growth indicator(measured by GDP)and built-up area can well fit into a linear regression model with correlation coefficients greater than 0.9.It is quite clear that cities or towns have been sprawling in general,demonstrating two growth models that were closely related to the economic development stages.展开更多
Colombo port and Hambantota port in Sri Lanka play a key role in transiting and supporting the shipping trade of "the 21 st-Century Maritime Silk Road". In recent years, Chinese enterprises have made huge investment...Colombo port and Hambantota port in Sri Lanka play a key role in transiting and supporting the shipping trade of "the 21 st-Century Maritime Silk Road". In recent years, Chinese enterprises have made huge investments in the infrastructure construction of Colombo port and Hambantota port. The construction progress and development trend of Colombo port and Hambantota port have been attracting the attention of Chinese investment enterprises and the society. In this paper, multi-temporal high spatial resolution remote sensing images are used to monitor the infrastructure construction condition of Colombo port and Hambantota port from 2010 to 2017. According to the interpreted infrastructure information of the two ports, the international container terminal of Colombo and Hambantota port have completed their constructions. By the end of 2017, the international container terminal of Colombo built the container yards with 28.8 ha and roads with 32.6 ha. At the south of the international container terminal of Colombo, the 62.2 ha of reclamation area were built for the planned port city. In Hambantota port, 77 ha of container yards, 48 ha of roads and 2.9 ha of oil storage areas were constructed during this period. Meanwhile, the analysis of potential storage capacity of Colombo port and Hambantota port shows that the throughput of Colombo port may increase by 3 million tons per year while the throughput of Hambantota port will be over its designed 2.5 million tons per year. These analysis results are able to provide a useful reference for Chinese investment enterprises and the related research of "the Belt and Road".展开更多
The increasingly mature computer vision(CV)technology represented by convolutional neural networks(CNN)and available high-resolution remote sensing images(HR-RSIs)provide opportunities to accurately measure the evolut...The increasingly mature computer vision(CV)technology represented by convolutional neural networks(CNN)and available high-resolution remote sensing images(HR-RSIs)provide opportunities to accurately measure the evolution of natural and artificial environments on Earth at a large scale.Based on the advanced CNN method high-resolution net(HRNet)and multi-temporal HR-RSIs,a framework is proposed for monitoring a green evolution of courtyard buildings characterized by their courtyards being roofed(CBR).The proposed framework consists of an expert module focusing on scenes analysis,a CV module for automatic detection,an evaluation module containing thresholds,and an output module for data analysis.Based on this,the changes in the adoption of different CBR technologies(CBRTs),including light-translucent CBRTs(LT-CBRTs)and non-lighttranslucent CBRTs(NLT-CBRTs),in 24 villages in southern Hebei were identified from 2007 to 2021.The evolution of CBRTs was featured as an inverse S-curve,and differences were found in their evolution stage,adoption ratio,and development speed for different villages.LT-CBRTs are the dominant type but are being replaced and surpassed by NLT-CBRTs in some villages,characterizing different preferences for the technology type of villages.The proposed research framework provides a reference for the evolution monitoring of vernacular buildings,and the identified evolution laws enable to trace and predict the adoption of different CBRTs in a particular village.This work lays a foundation for future exploration of the occurrence and development mechanism of the CBR phenomenon and provides an important reference for the optimization and promotion of CBRTs.展开更多
East Rennell of Solomon Island is the first natural site under customary law to be inscribed on UNESCO’s World Heritage List.Potential threats due to logging,mining and agriculture led to the site being declared a Wo...East Rennell of Solomon Island is the first natural site under customary law to be inscribed on UNESCO’s World Heritage List.Potential threats due to logging,mining and agriculture led to the site being declared a World Heritage in Danger in 2013.For East Rennell World Heritage Site(ERWHS)to‘shed’its‘Danger’status the management must monitor forest cover both within and outside of ERWHS.We used satellite data from multiple sources to track forest cover changes for the entire East Rennell island since 1998.95%of the island is still covered by undisturbed forests;annual average normalized difference vegetation index(NDVI)for the whole island was above 0.91 in 2015.However,vegetation cover in the island has been slowly decreasing,at a rate of–0.0011 NDVI per year between 2000 and 2015.This decrease less pronounced inside ERWHS compared to areas outside.While potential threats due to forest clearing outside ERWHS remain the forest cover change from 2000 to 2015 has been below 15%.We suggest ways in which the Government of Solomon Islands could use our data as well as unmanned air vehicles and field surveys to monitor forest cover change and ensure the future conservation of ERWHS.展开更多
The maintenance and restoration of wetland habitat is a priority conservation action for most waterfowl and other wetland-dependent species in North America.Despite much progress in targeting habitat management in sta...The maintenance and restoration of wetland habitat is a priority conservation action for most waterfowl and other wetland-dependent species in North America.Despite much progress in targeting habitat management in staging and wintering areas,methods to identify and target high-quality breeding habitats that result in the greatest potential for wildlife are still required.This is particularly true for species that breed in remote,inaccessible areas such as the American black duck,an intensively managed game bird in Eastern North America.Although evidence suggests that black ducks prefer productive,nutrient-rich waterbodies,such as beaver ponds,information about the distribution and quality of these habitats across the vast boreal forest is lacking with accurate identification remaining a challenge.Continuing advancements in remote sensing technologies that provide spatially extensive and temporally repeated information are particularly useful in meeting this information gap.In this study,we used multi-source remotely sensed information and a fuzzy analytical hierarchy process to map the spatial distribution of beaver ponds in Ontario.The use of multi-source data,including a Digital Elevation Model,a Sentinel-2 Multi-Spectral Image,and RadarSat 2 Polarimetric data,enabled us to identify individual beaver ponds on the landscape.Our model correctly identified an average of 83.0%of the known beaver dams and 72.5%of the known beaver ponds based on validation with an independent dataset.This study demonstrates that remote sensing is an effective approach for identifying beaver-modified wetland features and can be applied to map these and other wetland habitat features of interest across large spatial extents.Furthermore,the systematic acquisition strategy of the remote sensors employed is well suited for monitoring changes in wetland conditions that affect the availability of habitats important to waterfowl and other wildlife.展开更多
An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyram...An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyramid network(FPN)structure of the original YOLOv8 mode is replaced by the generalized-FPN(GFPN)structure in GiraffeDet to realize the"cross-layer"and"cross-scale"adaptive feature fusion,to enrich the semantic information and spatial information on the feature map to improve the target detection ability of the model.Secondly,a pyramid-pool module of multi atrous spatial pyramid pooling(MASPP)is designed by using the idea of atrous convolution and feature pyramid structure to extract multi-scale features,so as to improve the processing ability of the model for multi-scale objects.The experimental results show that the detection accuracy of the improved YOLOv8 model on DIOR dataset is 92%and mean average precision(mAP)is 87.9%,respectively 3.5%and 1.7%higher than those of the original model.It is proved the detection and classification ability of the proposed model on multi-dimensional optical remote sensing target has been improved.展开更多
INTRODUCTION.On May 1st,2024,around 2:10 a.m.,a catastrophic collapse occurred along the Meilong Expressway near Meizhou City,Guangdong Province,China,at coordinates 24°29′24″N and 116°40′25″E.This colla...INTRODUCTION.On May 1st,2024,around 2:10 a.m.,a catastrophic collapse occurred along the Meilong Expressway near Meizhou City,Guangdong Province,China,at coordinates 24°29′24″N and 116°40′25″E.This collapse resulted in a pavement failure of approximately 17.9 m in length and covering an area of about 184.3 m^(2)(Chinanews,2024).展开更多
Accurate fine-grained geospatial scene classification using remote sensing imagery is essential for a wide range of applications.However,existing approaches often rely on manually zooming remote sensing images at diff...Accurate fine-grained geospatial scene classification using remote sensing imagery is essential for a wide range of applications.However,existing approaches often rely on manually zooming remote sensing images at different scales to create typical scene samples.This approach fails to adequately support the fixed-resolution image interpretation requirements in real-world scenarios.To address this limitation,we introduce the million-scale fine-grained geospatial scene classification dataset(MEET),which contains over 1.03 million zoom-free remote sensing scene samples,manually annotated into 80 fine-grained categories.In MEET,each scene sample follows a scene-in-scene layout,where the central scene serves as the reference,and auxiliary scenes provide crucial spatial context for fine-grained classification.Moreover,to tackle the emerging challenge of scene-in-scene classification,we present the context-aware transformer(CAT),a model specifically designed for this task,which adaptively fuses spatial context to accurately classify the scene samples.CAT adaptively fuses spatial context to accurately classify the scene samples by learning attentional features that capture the relationships between the center and auxiliary scenes.Based on MEET,we establish a comprehensive benchmark for fine-grained geospatial scene classification,evaluating CAT against 11 competitive baselines.The results demonstrate that CAT significantly outperforms these baselines,achieving a 1.88%higher balanced accuracy(BA)with the Swin-Large backbone,and a notable 7.87%improvement with the Swin-Huge backbone.Further experiments validate the effectiveness of each module in CAT and show the practical applicability of CAT in the urban functional zone mapping.The source code and dataset will be publicly available at https://jerrywyn.github.io/project/MEET.html.展开更多
Yellow rust(Puccinia striiformis f.sp.Tritici,YR)and fusarium head blight(Fusarium graminearum,FHB)are the two main diseases affecting wheat in the main grain-producing areas of East China,which is common for the two ...Yellow rust(Puccinia striiformis f.sp.Tritici,YR)and fusarium head blight(Fusarium graminearum,FHB)are the two main diseases affecting wheat in the main grain-producing areas of East China,which is common for the two diseases to appear simultaneously in some main production areas.It is necessary to discriminate wheat YR and FHB at the regional scale to accurately locate the disease in space,conduct detailed disease severity monitoring,and scientific control.Four images on different dates were acquired from Sentinel-2,Landsat-8,and Gaofen-1 during the critical period of winter wheat,and 22 remote sensing features that characterize the wheat growth status were then calculated.Meanwhile,6 meteorological parameters that reflect the wheat phenological information were also obtained by combining the site meteorological data and spatial interpolation technology.Then,the principal components(PCs)of comprehensive remote sensing and meteorological features were extracted with principal component analysis(PCA).The PCs-based discrimination models were established to map YR and FHB damage using the random forest(RF)and backpropagation neural network(BPNN).The models’performance was verified based on the disease field truth data(57 plots during the filling period)and 5-fold cross-validation.The results revealed that the PCs obtained after PCA dimensionality reduction outperformed the initial features(IFs)from remote sensing and meteorology in discriminating between the two diseases.Compared to the IFs,the average area under the curve for both micro-average and macro-average ROC curves increased by 0.07 in the PCs-based RF models and increased by 0.16 and 0.13,respectively,in the PCs-based BPNN models.Notably,the PCs-based BPNN discrimination model emerged as the most effective,achieving an overall accuracy of 83.9%.Our proposed discrimination model for wheat YR and FHB,coupled with multi-source remote sensing images and meteorological data,overcomes the limitations of a single-sensor and single-phase remote sensing information in multiple stress discrimination in cloudy and rainy areas.It performs well in revealing the damage spatial distribution of the two diseases at a regional scale,providing a basis for detailed disease severity monitoring,and scientific prevention and control.展开更多
Cloud detection is a critical preprocessing step in remote sensing image processing, as the presence of clouds significantly affects the accuracy of remote sensing data and limits its applicability across various doma...Cloud detection is a critical preprocessing step in remote sensing image processing, as the presence of clouds significantly affects the accuracy of remote sensing data and limits its applicability across various domains. This study presents an enhanced cloud detection method based on the U-Net architecture, designed to address the challenges of multi-scale cloud features and long-range dependencies inherent in remote sensing imagery. A Multi-Scale Dilated Attention (MSDA) module is introduced to effectively integrate multi-scale information and model long-range dependencies across different scales, enhancing the model’s ability to detect clouds of varying sizes. Additionally, a Multi-Head Self-Attention (MHSA) mechanism is incorporated to improve the model’s capacity for capturing finer details, particularly in distinguishing thin clouds from surface features. A multi-path supervision mechanism is also devised to ensure the model learns cloud features at multiple scales, further boosting the accuracy and robustness of cloud mask generation. Experimental results demonstrate that the enhanced model achieves superior performance compared to other benchmarked methods in complex scenarios. It significantly improves cloud detection accuracy, highlighting its strong potential for practical applications in cloud detection tasks.展开更多
Remote sensing and web-based platforms have emerged as vital tools in the effective monitoring of mangrove ecosystems, which are crucial for coastal protection, biodiversity, and carbon sequestration. Utilizing satell...Remote sensing and web-based platforms have emerged as vital tools in the effective monitoring of mangrove ecosystems, which are crucial for coastal protection, biodiversity, and carbon sequestration. Utilizing satellite imagery and aerial data, remote sensing allows researchers to assess the health and extent of mangrove forests over large areas and time periods, providing insights into changes due to environmental stressors like climate change, urbanization, and deforestation. Coupled with web-based platforms, this technology facilitates real-time data sharing and collaborative research efforts among scientists, policymakers, and conservationists. Thus, there is a need to grow this research interest among experts working in this kind of ecosystem. The aim of this paper is to provide a comprehensive literature review on the effective role of remote sensing and web-based platform in monitoring mangrove ecosystem. The research paper utilized the thematic approach to extract specific information to use in the discussion which helped realize the efficiency of digital monitoring for the environment. Web-based platforms and remote sensing represent a powerful tool for environmental monitoring, particularly in the context of forest ecosystems. They facilitate the accessibility of vital data, promote collaboration among stakeholders, support evidence-based policymaking, and engage communities in conservation efforts. As experts confront the urgent challenges posed by climate change and environmental degradation, leveraging technology through web-based platforms is essential for fostering a sustainable future for the forests of the world.展开更多
Source identification and deformation analysis of disaster bodies are the main contents of high-steep slope risk assessment,the establishment of high-precision model and the quantification of the fine geometric featur...Source identification and deformation analysis of disaster bodies are the main contents of high-steep slope risk assessment,the establishment of high-precision model and the quantification of the fine geometric features of the slope are the prerequisites for the above work.In this study,based on the UAV remote sensing technology in acquiring refined model and quantitative parameters,a semi-automatic dangerous rock identification method based on multi-source data is proposed.In terms of the periodicity UAV-based deformation monitoring,the monitoring accuracy is defined according to the relative accuracy of multi-temporal point cloud.Taking a high-steep slope as research object,the UAV equipped with special sensors was used to obtain multi-source and multitemporal data,including high-precision DOM and multi-temporal 3D point clouds.The geometric features of the outcrop were extracted and superimposed with DOM images to carry out semi-automatic identification of dangerous rock mass,realizes the closed-loop of identification and accuracy verification;changing detection of multi-temporal 3D point clouds was conducted to capture deformation of slope with centimeter accuracy.The results show that the multi-source data-based semiautomatic dangerous rock identification method can complement each other to improve the efficiency and accuracy of identification,and the UAV-based multi-temporal monitoring can reveal the near real-time deformation state of slopes.展开更多
This study presents an AI-driven Spatial Decision Support System (SDSS) aimed at transforming groundwater suitability assessments for domestic and irrigation uses in Visakhapatnam District, Andhra Pradesh, India. By e...This study presents an AI-driven Spatial Decision Support System (SDSS) aimed at transforming groundwater suitability assessments for domestic and irrigation uses in Visakhapatnam District, Andhra Pradesh, India. By employing advanced remote sensing, GIS, and machine learning techniques, groundwater quality data from 50 monitoring wells, sourced from the Central Ground Water Board (CGWB), was meticulously analysed. Key parameters, including pH, electrical conductivity, total dissolved solids, and major ion concentrations, were evaluated against World Health Organization (WHO) standards to determine domestic suitability. For irrigation, advanced metrics such as Sodium Adsorption Ratio (SAR), Kelly’s Ratio, Residual Sodium Carbonate (RSC), and percentage sodium (% Na) were utilized to assess water quality. The integration of GIS for spatial mapping and AI models for predictive analytics allows for a comprehensive visualization of groundwater quality distribution across the district. Additionally, the irrigation water quality was evaluated using the USA Salinity Laboratory diagram, providing essential insights for effective agricultural water management. This innovative SDSS framework promises to significantly enhance groundwater resource management, fostering sustainable practices for both domestic use and agriculture in the region.展开更多
基金supported by the National High Technology Research and Developmemt Program of China (No2007AA12Z162)the Program for New Century Excellent Talents in University, Ministry of Education (NoNCET-06-0476)the Jiangsu Provincial 333 Engineering for High Level Talents(No.BK2006505)
文摘In order to analyze changes in human settlement in Xuzhou city during the past 20 years, changes in land cover and vegetation were investigated based on multi-temporal remote sensing Landsat TM images. We developed a hierarchical classifier system that uses different feature inputs for specific classes and conducted a classification post-processing approach to improve its accuracy. From our statistical analysis of changes in urban land cover from 1987 to 2007, we conclude that built-up land areas have obviously increased, while farmland has seen in a continuous loss due to urban growth and human activities. A NDVI difference approach was used to extract information on changes in vegetation. A false change information elimination approach was developed based on prior knowledge and statistical analysis. The areas of vegetation cover have been in continuous decline over the past 20 years, although some measures have been adopted to protect and maintain urban vegetation. Given the stability of underground coal exploitation since 1990s, urban growth has become the major driving force in vegetation loss, which is different from the vegetation change driven by coal exploitation mainly before 1990.
基金partially supported by the National Natural Science Foundation of China(No.41171323)Jiangsu Provincial Natural Science Foundation(No.BK2012018)+2 种基金the Key Laboratory of Geo-Informatics of National Administration of Surveying,Mapping and Geoinformation of China(No.201109)partially supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Fundamental Research Funds for the Central Universities.
文摘Conventional change detection approaches are mainly based on per-pixel processing,which ignore the sub-pixel spectral variation resulted from spectral mixture.Especially for medium-resolution remote sensing images used in urban landcover change monitoring,land use/cover components within a single pixel are usually complicated and heterogeneous due to the limitation of the spatial resolution.Thus,traditional hard detection methods based on pure pixel assumption may lead to a high level of omission and commission errors inevitably,degrading the overall accuracy of change detection.In order to address this issue and find a possible way to exploit the spectral variation in a sub-pixel level,a novel change detection scheme is designed based on the spectral mixture analysis and decision-level fusion.Nonlinear spectral mixture model is selected for spectral unmixing,and change detection is implemented in a sub-pixel level by investigating the inner-pixel subtle changes and combining multiple composition evidences.The proposed method is tested on multi-temporal Landsat Thematic Mapper and China–Brazil Earth Resources Satellite remote sensing images for the land-cover change detection over urban areas.The effectiveness of the proposed approach is confirmed in terms of several accuracy indices in contrast with two pixel-based change detection methods(i.e.change vector analysis and principal component analysis-based method).In particular,the proposed sub-pixel change detection approach not only provides the binary change information,but also obtains the characterization about change direction and intensity,which greatly extends the semantic meaning of the detected change targets.
文摘The study areas are located in the Katanga province to the South Eastern part of the Democratic Republic of Congo (DRC). It focuses on the Kolwezi and Tenke-Fungurume mining centers, located in the vicinity of the Basse-Kando reserve. The 3 study areas have faced large scale human induced the fragmentation of land cover. A combination of ancillary data and satellite imageries was interpreted to construct fragmentation dynamics over the last 30 years. This study is an initial step towards assessing the impact of fragmentation on sustainable land cover in the Katanga. The results bring out that large trends of fragmentation differently occurred over the last 30 years (1979 to 2011) in the three focused areas. The most dominant fragmentation processes were gains in barren soil and cities surface and a sharp reduction in burned areas. In Kolwezi, a close relationship is observed between growth and regression of barren soil and cities over vegetation. The Tenke-Fungurume site shows a growth during the 1980-1990 time slice and regression of vegetation during the following two decades. The Basse-Kando site analyze brings out growth of vegetation and regression of burned area due to vegetation conservation efforts. This is one of the studies in Katanga around mines activities that combine multi-source and spatio-temporal data on land cover to enable long-term quantification of land cover fragmentation.
基金supported by the Henan Province Key R&D Project under Grant 241111210400the Henan Provincial Science and Technology Research Project under Grants 252102211047,252102211062,252102211055 and 232102210069+2 种基金the Jiangsu Provincial Scheme Double Initiative Plan JSS-CBS20230474,the XJTLU RDF-21-02-008the Science and Technology Innovation Project of Zhengzhou University of Light Industry under Grant 23XNKJTD0205the Higher Education Teaching Reform Research and Practice Project of Henan Province under Grant 2024SJGLX0126。
文摘Accurate and efficient detection of building changes in remote sensing imagery is crucial for urban planning,disaster emergency response,and resource management.However,existing methods face challenges such as spectral similarity between buildings and backgrounds,sensor variations,and insufficient computational efficiency.To address these challenges,this paper proposes a novel Multi-scale Efficient Wavelet-based Change Detection Network(MewCDNet),which integrates the advantages of Convolutional Neural Networks and Transformers,balances computational costs,and achieves high-performance building change detection.The network employs EfficientNet-B4 as the backbone for hierarchical feature extraction,integrates multi-level feature maps through a multi-scale fusion strategy,and incorporates two key modules:Cross-temporal Difference Detection(CTDD)and Cross-scale Wavelet Refinement(CSWR).CTDD adopts a dual-branch architecture that combines pixel-wise differencing with semanticaware Euclidean distance weighting to enhance the distinction between true changes and background noise.CSWR integrates Haar-based Discrete Wavelet Transform with multi-head cross-attention mechanisms,enabling cross-scale feature fusion while significantly improving edge localization and suppressing spurious changes.Extensive experiments on four benchmark datasets demonstrate MewCDNet’s superiority over comparison methods:achieving F1 scores of 91.54%on LEVIR,93.70%on WHUCD,and 64.96%on S2Looking for building change detection.Furthermore,MewCDNet exhibits optimal performance on the multi-class⋅SYSU dataset(F1:82.71%),highlighting its exceptional generalization capability.
基金provided by the Science Research Project of Hebei Education Department under grant No.BJK2024115.
文摘High-resolution remote sensing images(HRSIs)are now an essential data source for gathering surface information due to advancements in remote sensing data capture technologies.However,their significant scale changes and wealth of spatial details pose challenges for semantic segmentation.While convolutional neural networks(CNNs)excel at capturing local features,they are limited in modeling long-range dependencies.Conversely,transformers utilize multihead self-attention to integrate global context effectively,but this approach often incurs a high computational cost.This paper proposes a global-local multiscale context network(GLMCNet)to extract both global and local multiscale contextual information from HRSIs.A detail-enhanced filtering module(DEFM)is proposed at the end of the encoder to refine the encoder outputs further,thereby enhancing the key details extracted by the encoder and effectively suppressing redundant information.In addition,a global-local multiscale transformer block(GLMTB)is proposed in the decoding stage to enable the modeling of rich multiscale global and local information.We also design a stair fusion mechanism to transmit deep semantic information from deep to shallow layers progressively.Finally,we propose the semantic awareness enhancement module(SAEM),which further enhances the representation of multiscale semantic features through spatial attention and covariance channel attention.Extensive ablation analyses and comparative experiments were conducted to evaluate the performance of the proposed method.Specifically,our method achieved a mean Intersection over Union(mIoU)of 86.89%on the ISPRS Potsdam dataset and 84.34%on the ISPRS Vaihingen dataset,outperforming existing models such as ABCNet and BANet.
基金This study was supported by:Inner Mongolia Academy of Forestry Sciences Open Research Project(Grant No.KF2024MS03)The Project to Improve the Scientific Research Capacity of the Inner Mongolia Academy of Forestry Sciences(Grant No.2024NLTS04)The Innovation and Entrepreneurship Training Program for Undergraduates of Beijing Forestry University(Grant No.X202410022268).
文摘Remote sensing image super-resolution technology is pivotal for enhancing image quality in critical applications including environmental monitoring,urban planning,and disaster assessment.However,traditional methods exhibit deficiencies in detail recovery and noise suppression,particularly when processing complex landscapes(e.g.,forests,farmlands),leading to artifacts and spectral distortions that limit practical utility.To address this,we propose an enhanced Super-Resolution Generative Adversarial Network(SRGAN)framework featuring three key innovations:(1)Replacement of L1/L2 loss with a robust Charbonnier loss to suppress noise while preserving edge details via adaptive gradient balancing;(2)A multi-loss joint optimization strategy dynamically weighting Charbonnier loss(β=0.5),Visual Geometry Group(VGG)perceptual loss(α=1),and adversarial loss(γ=0.1)to synergize pixel-level accuracy and perceptual quality;(3)A multi-scale residual network(MSRN)capturing cross-scale texture features(e.g.,forest canopies,mountain contours).Validated on Sentinel-2(10 m)and SPOT-6/7(2.5 m)datasets covering 904 km2 in Motuo County,Xizang,our method outperforms the SRGAN baseline(SR4RS)with Peak Signal-to-Noise Ratio(PSNR)gains of 0.29 dB and Structural Similarity Index(SSIM)improvements of 3.08%on forest imagery.Visual comparisons confirm enhanced texture continuity despite marginal Learned Perceptual Image Patch Similarity(LPIPS)increases.The method significantly improves noise robustness and edge retention in complex geomorphology,demonstrating 18%faster response in forest fire early warning and providing high-resolution support for agricultural/urban monitoring.Future work will integrate spectral constraints and lightweight architectures.
基金This study was supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(No.kzcx2-yw-224)the National Natural Science Foundation of China(No.40801016)the Natural Science Foundation of Shandong Province(No.ZR2009EM005).
文摘The importance of accurately mapping and monitoring land cover changes over time is increasing,especially in rapidly growing coastal cities.In this study,three pairs of Landsat images of Yantai,a representative coastal city in China,from 1989,1999,and 2009 were selected to monitor land cover changes and urban sprawl dynamics.To improve the classification accuracy,three classification methods together with the minimum noise fraction(MNF)and pixel purity index(PPI)calculations were performed on the images.The classification results showed that the overall five-class classification accuracies averaged 91.38%for the 20-year period,which produced an accuracy of 83.78%for change maps.The analysis of change maps indicated that from 1989 to 2009,the percentage of urban area increased from 31.41%to 50.28%of the total area,and the newly urbanized area was mainly located in residential areas and the reclaimed harbor region.Analysis of the relationships between urban area and its driving forces obtained from statistical data found that the urban sprawl of Yantai before 2000 was relatively extensive,which is consistent with the conclusion drawn by using remote sensing techniques.The research results could be used as inputs for sustainable urban management and establishing Digital Earth database.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2006CB701304)Research Grants Council General Research Fund of Hong Kong(Grant No.HKBU2029/07P)Hong Kong Baptist University Faculty Research Grant(Grant No.FRG/06-07/II-76)
文摘Landuse and land cover change is regarded as a good indicator that represents the impact of human activities on earth’s environment.When the large collection of multi-temporal satellite images has become available,it is possible to study a long-term historical process of land cover change.This study aims to investigate the spatio-temporal pattern and driving force of land cover change in the Pearl River Delta region in southern China,where the rapid development has been witnessed since 1980s.The fast economic growth has been associated with an accelerated expansion of urban landuse,which has been recorded by historical remote sensing images.This paper reports the method and outcome of the research that attempts to model spatio-temporal pattern of land cover change using multi-temporal satellite images.The classified satellite images were compared to detect the change from various landuse types to built-up areas.The trajectories of land cover change have then been established based on the time-series of the classified land cover classes.The correlation between the expansion of built-up areas and selected economic data has also been analysed for better understanding on the driving force of the rapid urbanisation process.The result shows that,since early 1990s,the dominant trend of land cover change has been from farmland to urban landuse.The relationship between economic growth indicator(measured by GDP)and built-up area can well fit into a linear regression model with correlation coefficients greater than 0.9.It is quite clear that cities or towns have been sprawling in general,demonstrating two growth models that were closely related to the economic development stages.
基金Key Program of Chinese Academy of Sciences,No.ZDRW-ZS-2016-6-3-4Strategic Priority Research Program of Chinese Academy of Sciences,No.XDA20030302
文摘Colombo port and Hambantota port in Sri Lanka play a key role in transiting and supporting the shipping trade of "the 21 st-Century Maritime Silk Road". In recent years, Chinese enterprises have made huge investments in the infrastructure construction of Colombo port and Hambantota port. The construction progress and development trend of Colombo port and Hambantota port have been attracting the attention of Chinese investment enterprises and the society. In this paper, multi-temporal high spatial resolution remote sensing images are used to monitor the infrastructure construction condition of Colombo port and Hambantota port from 2010 to 2017. According to the interpreted infrastructure information of the two ports, the international container terminal of Colombo and Hambantota port have completed their constructions. By the end of 2017, the international container terminal of Colombo built the container yards with 28.8 ha and roads with 32.6 ha. At the south of the international container terminal of Colombo, the 62.2 ha of reclamation area were built for the planned port city. In Hambantota port, 77 ha of container yards, 48 ha of roads and 2.9 ha of oil storage areas were constructed during this period. Meanwhile, the analysis of potential storage capacity of Colombo port and Hambantota port shows that the throughput of Colombo port may increase by 3 million tons per year while the throughput of Hambantota port will be over its designed 2.5 million tons per year. These analysis results are able to provide a useful reference for Chinese investment enterprises and the related research of "the Belt and Road".
基金supported by National Natural Science Foundation of China (No.52108010).
文摘The increasingly mature computer vision(CV)technology represented by convolutional neural networks(CNN)and available high-resolution remote sensing images(HR-RSIs)provide opportunities to accurately measure the evolution of natural and artificial environments on Earth at a large scale.Based on the advanced CNN method high-resolution net(HRNet)and multi-temporal HR-RSIs,a framework is proposed for monitoring a green evolution of courtyard buildings characterized by their courtyards being roofed(CBR).The proposed framework consists of an expert module focusing on scenes analysis,a CV module for automatic detection,an evaluation module containing thresholds,and an output module for data analysis.Based on this,the changes in the adoption of different CBR technologies(CBRTs),including light-translucent CBRTs(LT-CBRTs)and non-lighttranslucent CBRTs(NLT-CBRTs),in 24 villages in southern Hebei were identified from 2007 to 2021.The evolution of CBRTs was featured as an inverse S-curve,and differences were found in their evolution stage,adoption ratio,and development speed for different villages.LT-CBRTs are the dominant type but are being replaced and surpassed by NLT-CBRTs in some villages,characterizing different preferences for the technology type of villages.The proposed research framework provides a reference for the evolution monitoring of vernacular buildings,and the identified evolution laws enable to trace and predict the adoption of different CBRTs in a particular village.This work lays a foundation for future exploration of the occurrence and development mechanism of the CBR phenomenon and provides an important reference for the optimization and promotion of CBRTs.
基金supported by the National Key Research and Development Programs of China(Grant No.2016YFA0600302 and 2016YFB0501502)the Hainan Provincial key technology research and demonstration programs of farmland improvement(HNGDhs2015)+1 种基金the programs of the National Natural Science Foundation of China(Grant No.61801443 and 61401461)the Hainan Provincial Department of Science and Technology under the Grant No.ZDKJ2016021 and ZDKJ2016015-1.
文摘East Rennell of Solomon Island is the first natural site under customary law to be inscribed on UNESCO’s World Heritage List.Potential threats due to logging,mining and agriculture led to the site being declared a World Heritage in Danger in 2013.For East Rennell World Heritage Site(ERWHS)to‘shed’its‘Danger’status the management must monitor forest cover both within and outside of ERWHS.We used satellite data from multiple sources to track forest cover changes for the entire East Rennell island since 1998.95%of the island is still covered by undisturbed forests;annual average normalized difference vegetation index(NDVI)for the whole island was above 0.91 in 2015.However,vegetation cover in the island has been slowly decreasing,at a rate of–0.0011 NDVI per year between 2000 and 2015.This decrease less pronounced inside ERWHS compared to areas outside.While potential threats due to forest clearing outside ERWHS remain the forest cover change from 2000 to 2015 has been below 15%.We suggest ways in which the Government of Solomon Islands could use our data as well as unmanned air vehicles and field surveys to monitor forest cover change and ensure the future conservation of ERWHS.
基金supported by the Natural Sciences and Engineering Research Council of Canada[RGPIN-2021-03624].
文摘The maintenance and restoration of wetland habitat is a priority conservation action for most waterfowl and other wetland-dependent species in North America.Despite much progress in targeting habitat management in staging and wintering areas,methods to identify and target high-quality breeding habitats that result in the greatest potential for wildlife are still required.This is particularly true for species that breed in remote,inaccessible areas such as the American black duck,an intensively managed game bird in Eastern North America.Although evidence suggests that black ducks prefer productive,nutrient-rich waterbodies,such as beaver ponds,information about the distribution and quality of these habitats across the vast boreal forest is lacking with accurate identification remaining a challenge.Continuing advancements in remote sensing technologies that provide spatially extensive and temporally repeated information are particularly useful in meeting this information gap.In this study,we used multi-source remotely sensed information and a fuzzy analytical hierarchy process to map the spatial distribution of beaver ponds in Ontario.The use of multi-source data,including a Digital Elevation Model,a Sentinel-2 Multi-Spectral Image,and RadarSat 2 Polarimetric data,enabled us to identify individual beaver ponds on the landscape.Our model correctly identified an average of 83.0%of the known beaver dams and 72.5%of the known beaver ponds based on validation with an independent dataset.This study demonstrates that remote sensing is an effective approach for identifying beaver-modified wetland features and can be applied to map these and other wetland habitat features of interest across large spatial extents.Furthermore,the systematic acquisition strategy of the remote sensors employed is well suited for monitoring changes in wetland conditions that affect the availability of habitats important to waterfowl and other wildlife.
基金supported by the National Natural Science Foundation of China(No.62241109)the Tianjin Science and Technology Commissioner Project(No.20YDTPJC01110)。
文摘An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyramid network(FPN)structure of the original YOLOv8 mode is replaced by the generalized-FPN(GFPN)structure in GiraffeDet to realize the"cross-layer"and"cross-scale"adaptive feature fusion,to enrich the semantic information and spatial information on the feature map to improve the target detection ability of the model.Secondly,a pyramid-pool module of multi atrous spatial pyramid pooling(MASPP)is designed by using the idea of atrous convolution and feature pyramid structure to extract multi-scale features,so as to improve the processing ability of the model for multi-scale objects.The experimental results show that the detection accuracy of the improved YOLOv8 model on DIOR dataset is 92%and mean average precision(mAP)is 87.9%,respectively 3.5%and 1.7%higher than those of the original model.It is proved the detection and classification ability of the proposed model on multi-dimensional optical remote sensing target has been improved.
基金supported by the National Natural Science Foundation of China(Nos.42371094,41907253)partially supported by the Interdisciplinary Cultivation Program of Xidian University(No.21103240005)the Postdoctoral Fellowship Program of CPSF(No.GZB20240589)。
文摘INTRODUCTION.On May 1st,2024,around 2:10 a.m.,a catastrophic collapse occurred along the Meilong Expressway near Meizhou City,Guangdong Province,China,at coordinates 24°29′24″N and 116°40′25″E.This collapse resulted in a pavement failure of approximately 17.9 m in length and covering an area of about 184.3 m^(2)(Chinanews,2024).
基金supported by the National Natural Science Foundation of China(42030102,42371321).
文摘Accurate fine-grained geospatial scene classification using remote sensing imagery is essential for a wide range of applications.However,existing approaches often rely on manually zooming remote sensing images at different scales to create typical scene samples.This approach fails to adequately support the fixed-resolution image interpretation requirements in real-world scenarios.To address this limitation,we introduce the million-scale fine-grained geospatial scene classification dataset(MEET),which contains over 1.03 million zoom-free remote sensing scene samples,manually annotated into 80 fine-grained categories.In MEET,each scene sample follows a scene-in-scene layout,where the central scene serves as the reference,and auxiliary scenes provide crucial spatial context for fine-grained classification.Moreover,to tackle the emerging challenge of scene-in-scene classification,we present the context-aware transformer(CAT),a model specifically designed for this task,which adaptively fuses spatial context to accurately classify the scene samples.CAT adaptively fuses spatial context to accurately classify the scene samples by learning attentional features that capture the relationships between the center and auxiliary scenes.Based on MEET,we establish a comprehensive benchmark for fine-grained geospatial scene classification,evaluating CAT against 11 competitive baselines.The results demonstrate that CAT significantly outperforms these baselines,achieving a 1.88%higher balanced accuracy(BA)with the Swin-Large backbone,and a notable 7.87%improvement with the Swin-Huge backbone.Further experiments validate the effectiveness of each module in CAT and show the practical applicability of CAT in the urban functional zone mapping.The source code and dataset will be publicly available at https://jerrywyn.github.io/project/MEET.html.
基金supported by National Key R&D Program of China(2022YFD2000100)National Natural Science Foundation of China(42401400)Zhejiang Provincial Key Research and Development Program(2023C02018).
文摘Yellow rust(Puccinia striiformis f.sp.Tritici,YR)and fusarium head blight(Fusarium graminearum,FHB)are the two main diseases affecting wheat in the main grain-producing areas of East China,which is common for the two diseases to appear simultaneously in some main production areas.It is necessary to discriminate wheat YR and FHB at the regional scale to accurately locate the disease in space,conduct detailed disease severity monitoring,and scientific control.Four images on different dates were acquired from Sentinel-2,Landsat-8,and Gaofen-1 during the critical period of winter wheat,and 22 remote sensing features that characterize the wheat growth status were then calculated.Meanwhile,6 meteorological parameters that reflect the wheat phenological information were also obtained by combining the site meteorological data and spatial interpolation technology.Then,the principal components(PCs)of comprehensive remote sensing and meteorological features were extracted with principal component analysis(PCA).The PCs-based discrimination models were established to map YR and FHB damage using the random forest(RF)and backpropagation neural network(BPNN).The models’performance was verified based on the disease field truth data(57 plots during the filling period)and 5-fold cross-validation.The results revealed that the PCs obtained after PCA dimensionality reduction outperformed the initial features(IFs)from remote sensing and meteorology in discriminating between the two diseases.Compared to the IFs,the average area under the curve for both micro-average and macro-average ROC curves increased by 0.07 in the PCs-based RF models and increased by 0.16 and 0.13,respectively,in the PCs-based BPNN models.Notably,the PCs-based BPNN discrimination model emerged as the most effective,achieving an overall accuracy of 83.9%.Our proposed discrimination model for wheat YR and FHB,coupled with multi-source remote sensing images and meteorological data,overcomes the limitations of a single-sensor and single-phase remote sensing information in multiple stress discrimination in cloudy and rainy areas.It performs well in revealing the damage spatial distribution of the two diseases at a regional scale,providing a basis for detailed disease severity monitoring,and scientific prevention and control.
文摘Cloud detection is a critical preprocessing step in remote sensing image processing, as the presence of clouds significantly affects the accuracy of remote sensing data and limits its applicability across various domains. This study presents an enhanced cloud detection method based on the U-Net architecture, designed to address the challenges of multi-scale cloud features and long-range dependencies inherent in remote sensing imagery. A Multi-Scale Dilated Attention (MSDA) module is introduced to effectively integrate multi-scale information and model long-range dependencies across different scales, enhancing the model’s ability to detect clouds of varying sizes. Additionally, a Multi-Head Self-Attention (MHSA) mechanism is incorporated to improve the model’s capacity for capturing finer details, particularly in distinguishing thin clouds from surface features. A multi-path supervision mechanism is also devised to ensure the model learns cloud features at multiple scales, further boosting the accuracy and robustness of cloud mask generation. Experimental results demonstrate that the enhanced model achieves superior performance compared to other benchmarked methods in complex scenarios. It significantly improves cloud detection accuracy, highlighting its strong potential for practical applications in cloud detection tasks.
文摘Remote sensing and web-based platforms have emerged as vital tools in the effective monitoring of mangrove ecosystems, which are crucial for coastal protection, biodiversity, and carbon sequestration. Utilizing satellite imagery and aerial data, remote sensing allows researchers to assess the health and extent of mangrove forests over large areas and time periods, providing insights into changes due to environmental stressors like climate change, urbanization, and deforestation. Coupled with web-based platforms, this technology facilitates real-time data sharing and collaborative research efforts among scientists, policymakers, and conservationists. Thus, there is a need to grow this research interest among experts working in this kind of ecosystem. The aim of this paper is to provide a comprehensive literature review on the effective role of remote sensing and web-based platform in monitoring mangrove ecosystem. The research paper utilized the thematic approach to extract specific information to use in the discussion which helped realize the efficiency of digital monitoring for the environment. Web-based platforms and remote sensing represent a powerful tool for environmental monitoring, particularly in the context of forest ecosystems. They facilitate the accessibility of vital data, promote collaboration among stakeholders, support evidence-based policymaking, and engage communities in conservation efforts. As experts confront the urgent challenges posed by climate change and environmental degradation, leveraging technology through web-based platforms is essential for fostering a sustainable future for the forests of the world.
基金financially supported by the Youth Innovation Promotion Association CAS(No.2021325)the National Natural Science Foundation of China(Nos.52179117,U21A20159)the Research project of Panzhihua Iron and Steel Group Mining Co.,Ltd.(No.2021-P6-D2-05)。
文摘Source identification and deformation analysis of disaster bodies are the main contents of high-steep slope risk assessment,the establishment of high-precision model and the quantification of the fine geometric features of the slope are the prerequisites for the above work.In this study,based on the UAV remote sensing technology in acquiring refined model and quantitative parameters,a semi-automatic dangerous rock identification method based on multi-source data is proposed.In terms of the periodicity UAV-based deformation monitoring,the monitoring accuracy is defined according to the relative accuracy of multi-temporal point cloud.Taking a high-steep slope as research object,the UAV equipped with special sensors was used to obtain multi-source and multitemporal data,including high-precision DOM and multi-temporal 3D point clouds.The geometric features of the outcrop were extracted and superimposed with DOM images to carry out semi-automatic identification of dangerous rock mass,realizes the closed-loop of identification and accuracy verification;changing detection of multi-temporal 3D point clouds was conducted to capture deformation of slope with centimeter accuracy.The results show that the multi-source data-based semiautomatic dangerous rock identification method can complement each other to improve the efficiency and accuracy of identification,and the UAV-based multi-temporal monitoring can reveal the near real-time deformation state of slopes.
文摘This study presents an AI-driven Spatial Decision Support System (SDSS) aimed at transforming groundwater suitability assessments for domestic and irrigation uses in Visakhapatnam District, Andhra Pradesh, India. By employing advanced remote sensing, GIS, and machine learning techniques, groundwater quality data from 50 monitoring wells, sourced from the Central Ground Water Board (CGWB), was meticulously analysed. Key parameters, including pH, electrical conductivity, total dissolved solids, and major ion concentrations, were evaluated against World Health Organization (WHO) standards to determine domestic suitability. For irrigation, advanced metrics such as Sodium Adsorption Ratio (SAR), Kelly’s Ratio, Residual Sodium Carbonate (RSC), and percentage sodium (% Na) were utilized to assess water quality. The integration of GIS for spatial mapping and AI models for predictive analytics allows for a comprehensive visualization of groundwater quality distribution across the district. Additionally, the irrigation water quality was evaluated using the USA Salinity Laboratory diagram, providing essential insights for effective agricultural water management. This innovative SDSS framework promises to significantly enhance groundwater resource management, fostering sustainable practices for both domestic use and agriculture in the region.