期刊文献+
共找到117篇文章
< 1 2 6 >
每页显示 20 50 100
Multi-tasking to Address Diversity in Language Learning
1
作者 雷琨 《海外英语》 2014年第21期98-99,103,共3页
With focus now placed on the learner, more attention is given to his learning style, multiple intelligence and developing learning strategies to enable him to make sense of and use of the target language appropriately... With focus now placed on the learner, more attention is given to his learning style, multiple intelligence and developing learning strategies to enable him to make sense of and use of the target language appropriately in varied contexts and with different uses of the language. To attain this, the teacher is tasked with designing, monitoring and processing language learning activities for students to carry out and in the process learn by doing and reflecting on the learning process they went through as they interacted socially with each other. This paper describes a task named"The Fishbowl Technique"and found to be effective in large ESL classes in the secondary level in the Philippines. 展开更多
关键词 multi-tasking DIVERSITY LEARNING STYLE the fishbow
在线阅读 下载PDF
Identification and Analysis of Multi-tasking Product Information Search Sessions with Query Logs
2
作者 Xiang Zhou Pengyi Zhang Jun Wang 《Journal of Data and Information Science》 2016年第3期79-94,共16页
Purpose: This research aims to identify product search tasks in online shopplng ana analyze the characteristics of consumer multi-tasking search sessions. Design/methodology/approach: The experimental dataset contai... Purpose: This research aims to identify product search tasks in online shopplng ana analyze the characteristics of consumer multi-tasking search sessions. Design/methodology/approach: The experimental dataset contains 8,949 queries of 582 users from 3,483 search sessions. A sequential comparison of the Jaccard similarity coefficient between two adjacent search queries and hierarchical clustering of queries is used to identify search tasks. Findings: (1) Users issued a similar number of queries (1.43 to 1.47) with similar lengths (7.3-7.6 characters) per task in mono-tasking and multi-tasking sessions, and (2) Users spent more time on average in sessions with more tasks, but spent less time for each task when the number of tasks increased in a session. Research limitations: The task identification method that relies only on query terms does not completely reflect the complex nature of consumer shopping behavior.Practical implications: These results provide an exploratory understanding of the relationships among multiple shopping tasks, and can be useful for product recommendation and shopping task prediction. Originality/value: The originality of this research is its use of query clustering with online shopping task identification and analysis, and the analysis of product search session characteristics. 展开更多
关键词 Product search Shopping task identification Shopping task analysis multi-tasking session
在线阅读 下载PDF
A Constraint Adaptive Multi-Tasking Differential Evolution Algorithm:Designed for Dispatch of Integrated Energy System in Coal Mine 被引量:2
3
作者 Canyun Dai Xiaoyan Sun +2 位作者 Hejuan Hu Yong Zhang Dunwei Gong 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第2期368-385,共18页
The dispatch of integrated energy systems in coal mines(IES-CM)with mine-associated supplies is vital for efficient energy utilization and carbon emissions reduction.However,IES-CM dispatch is highly challenging due t... The dispatch of integrated energy systems in coal mines(IES-CM)with mine-associated supplies is vital for efficient energy utilization and carbon emissions reduction.However,IES-CM dispatch is highly challenging due to its feature as multi-objective and strong multi-constraint.Existing constrained multi-objective evolutionary algorithms often fall into locally feasible domains with poorly distributed Pareto front,which greatly deteriorates dispatch performance.To tackle this problem,we transform the traditional dispatch model of IES-CM into two tasks:the main task with all constraints and the helper task with constraint adaptive.Then we propose a constraint adaptive multi-tasking differential evolution algorithm(CA-MTDE)to optimize these two tasks effectively.The helper task with constraint adaptive is developed to obtain infeasible solutions near the feasible domain.The purpose of this infeasible solution is to transfer guiding knowledge to help the main task move away from local search.Additionally,a dynamic dual-learning strategy using DE/current-to-rand/1 and DE/current-to-best/1 is developed to maintain task diversity and convergence.Finally,we comprehensively evaluate the performance of CA-MTDE by applying it to a coal mine in Shanxi Province,considering two IES-CM scenarios.Results demonstrate the feasibility of CA-MTDE and its ability to generate a Pareto front with exceptional convergence,diversity,and distribution. 展开更多
关键词 DISPATCH integrated energy system coal mine evolutionary multi-tasking CONSTRAINT differential evolution
原文传递
Evolutionary Multi-Tasking Optimization for High-Efficiency Time Series Data Clustering
4
作者 Rui Wang Wenhua Li +2 位作者 Kaili Shen Tao Zhang Xiangke Liao 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第2期343-355,共13页
Time series clustering is a challenging problem due to the large-volume,high-dimensional,and warping characteristics of time series data.Traditional clustering methods often use a single criterion or distance measure,... Time series clustering is a challenging problem due to the large-volume,high-dimensional,and warping characteristics of time series data.Traditional clustering methods often use a single criterion or distance measure,which may not capture all the features of the data.This paper proposes a novel method for time series clustering based on evolutionary multi-tasking optimization,termed i-MFEA,which uses an improved multifactorial evolutionary algorithm to optimize multiple clustering tasks simultaneously,each with a different validity index or distance measure.Therefore,i-MFEA can produce diverse and robust clustering solutions that satisfy various preferences of decision-makers.Experiments on two artificial datasets show that i-MFEA outperforms single-objective evolutionary algorithms and traditional clustering methods in terms of convergence speed and clustering quality.The paper also discusses how i-MFEA can address two long-standing issues in time series clustering:the choice of appropriate similarity measure and the number of clusters. 展开更多
关键词 time series clustering evolutionary multi-tasking multifactorial optimization clustering validity index distance measure
原文传递
DEEP NEURAL NETWORKS COMBINING MULTI-TASK LEARNING FOR SOLVING DELAY INTEGRO-DIFFERENTIAL EQUATIONS 被引量:1
5
作者 WANG Chen-yao SHI Feng 《数学杂志》 2025年第1期13-38,共26页
Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay di... Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data. 展开更多
关键词 Delay integro-differential equation multi-task learning parameter sharing structure deep neural network sequential training scheme
在线阅读 下载PDF
A Survey of Cooperative Multi-agent Reinforcement Learning for Multi-task Scenarios 被引量:1
6
作者 Jiajun CHAI Zijie ZHAO +1 位作者 Yuanheng ZHU Dongbin ZHAO 《Artificial Intelligence Science and Engineering》 2025年第2期98-121,共24页
Cooperative multi-agent reinforcement learning(MARL)is a key technology for enabling cooperation in complex multi-agent systems.It has achieved remarkable progress in areas such as gaming,autonomous driving,and multi-... Cooperative multi-agent reinforcement learning(MARL)is a key technology for enabling cooperation in complex multi-agent systems.It has achieved remarkable progress in areas such as gaming,autonomous driving,and multi-robot control.Empowering cooperative MARL with multi-task decision-making capabilities is expected to further broaden its application scope.In multi-task scenarios,cooperative MARL algorithms need to address 3 types of multi-task problems:reward-related multi-task,arising from different reward functions;multi-domain multi-task,caused by differences in state and action spaces,state transition functions;and scalability-related multi-task,resulting from the dynamic variation in the number of agents.Most existing studies focus on scalability-related multitask problems.However,with the increasing integration between large language models(LLMs)and multi-agent systems,a growing number of LLM-based multi-agent systems have emerged,enabling more complex multi-task cooperation.This paper provides a comprehensive review of the latest advances in this field.By combining multi-task reinforcement learning with cooperative MARL,we categorize and analyze the 3 major types of multi-task problems under multi-agent settings,offering more fine-grained classifications and summarizing key insights for each.In addition,we summarize commonly used benchmarks and discuss future directions of research in this area,which hold promise for further enhancing the multi-task cooperation capabilities of multi-agent systems and expanding their practical applications in the real world. 展开更多
关键词 multi-task multi-agent reinforcement learning large language models
在线阅读 下载PDF
Short-Term Rolling Prediction of Tropical Cyclone Intensity Based on Multi-Task Learning with Fusion of Deviation-Angle Variance and Satellite Imagery
7
作者 Wei TIAN Ping SONG +5 位作者 Yuanyuan CHEN Yonghong ZHANG Liguang WU Haikun ZHAO Kenny Thiam Choy LIM KAM SIAN Chunyi XIANG 《Advances in Atmospheric Sciences》 2025年第1期111-128,共18页
Tropical cyclones(TCs)are one of the most serious types of natural disasters,and accurate TC activity predictions are key to disaster prevention and mitigation.Recently,TC track predictions have made significant progr... Tropical cyclones(TCs)are one of the most serious types of natural disasters,and accurate TC activity predictions are key to disaster prevention and mitigation.Recently,TC track predictions have made significant progress,but the ability to predict their intensity is obviously lagging behind.At present,research on TC intensity prediction takes atmospheric reanalysis data as the research object and mines the relationship between TC-related environmental factors and intensity through deep learning.However,reanalysis data are non-real-time in nature,which does not meet the requirements for operational forecasting applications.Therefore,a TC intensity prediction model named TC-Rolling is proposed,which can simultaneously extract the degree of symmetry for strong TC convective cloud and convection intensity,and fuse the deviation-angle variance with satellite images to construct the correlation between TC convection structure and intensity.For TCs'complex dynamic processes,a convolutional neural network(CNN)is used to learn their temporal and spatial features.For real-time intensity estimation,multi-task learning acts as an implicit time-series enhancement.The model is designed with a rolling strategy that aims to moderate the long-term dependent decay problem and improve accuracy for short-term intensity predictions.Since multiple tasks are correlated,the loss function of 12 h and 24 h are corrected.After testing on a sample of TCs in the Northwest Pacific,with a 4.48 kt root-mean-square error(RMSE)of 6 h intensity prediction,5.78 kt for 12 h,and 13.94 kt for 24 h,TC records from official agencies are used to assess the validity of TC-Rolling. 展开更多
关键词 tropical cyclone INTENSITY structure rolling prediction multi-task
在线阅读 下载PDF
Explainable AI Based Multi-Task Learning Method for Stroke Prognosis
8
作者 Nan Ding Xingyu Zeng +1 位作者 Jianping Wu Liutao Zhao 《Computers, Materials & Continua》 2025年第9期5299-5315,共17页
Predicting the health status of stroke patients at different stages of the disease is a critical clinical task.The onset and development of stroke are affected by an array of factors,encompassing genetic predispositio... Predicting the health status of stroke patients at different stages of the disease is a critical clinical task.The onset and development of stroke are affected by an array of factors,encompassing genetic predisposition,environmental exposure,unhealthy lifestyle habits,and existing medical conditions.Although existing machine learning-based methods for predicting stroke patients’health status have made significant progress,limitations remain in terms of prediction accuracy,model explainability,and system optimization.This paper proposes a multi-task learning approach based on Explainable Artificial Intelligence(XAI)for predicting the health status of stroke patients.First,we design a comprehensive multi-task learning framework that utilizes the task correlation of predicting various health status indicators in patients,enabling the parallel prediction of multiple health indicators.Second,we develop a multi-task Area Under Curve(AUC)optimization algorithm based on adaptive low-rank representation,which removes irrelevant information from the model structure to enhance the performance of multi-task AUC optimization.Additionally,the model’s explainability is analyzed through the stability analysis of SHAP values.Experimental results demonstrate that our approach outperforms comparison algorithms in key prognostic metrics F1 score and Efficiency. 展开更多
关键词 Explainable AI stroke prognosis multi-task learning AUC optimization
在线阅读 下载PDF
Joint Retrieval of PM_(2.5) Concentration and Aerosol Optical Depth over China Using Multi-Task Learning on FY-4A AGRI
9
作者 Bo LI Disong FU +4 位作者 Ling YANG Xuehua FAN Dazhi YANG Hongrong SHI Xiang’ao XIA 《Advances in Atmospheric Sciences》 2025年第1期94-110,共17页
Aerosol optical depth(AOD)and fine particulate matter with a diameter of less than or equal to 2.5μm(PM_(2.5))play crucial roles in air quality,human health,and climate change.However,the complex correlation of AOD–... Aerosol optical depth(AOD)and fine particulate matter with a diameter of less than or equal to 2.5μm(PM_(2.5))play crucial roles in air quality,human health,and climate change.However,the complex correlation of AOD–PM_(2.5)and the limitations of existing algorithms pose a significant challenge in realizing the accurate joint retrieval of these two parameters at the same location.On this point,a multi-task learning(MTL)model,which enables the joint retrieval of PM_(2.5)concentration and AOD,is proposed and applied on the top-of-the-atmosphere reflectance data gathered by the Fengyun-4A Advanced Geosynchronous Radiation Imager(FY-4A AGRI),and compared to that of two single-task learning models—namely,Random Forest(RF)and Deep Neural Network(DNN).Specifically,MTL achieves a coefficient of determination(R^(2))of 0.88 and a root-mean-square error(RMSE)of 0.10 in AOD retrieval.In comparison to RF,the R^(2)increases by 0.04,the RMSE decreases by 0.02,and the percentage of retrieval results falling within the expected error range(Within-EE)rises by 5.55%.The R^(2)and RMSE of PM_(2.5)retrieval by MTL are 0.84 and 13.76μg m~(-3)respectively.Compared with RF,the R^(2)increases by 0.06,the RMSE decreases by 4.55μg m~(-3),and the Within-EE increases by 7.28%.Additionally,compared to DNN,MTL shows an increase of 0.01 in R^(2)and a decrease of 0.02 in RMSE in AOD retrieval,with a corresponding increase of 2.89%in Within-EE.For PM_(2.5)retrieval,MTL exhibits an increase of 0.05 in R^(2),a decrease of 1.76μg m~(-3)in RMSE,and an increase of 6.83%in Within-EE.The evaluation suggests that MTL is able to provide simultaneously improved AOD and PM_(2.5)retrievals,demonstrating a significant advantage in efficiently capturing the spatial distribution of PM_(2.5)concentration and AOD. 展开更多
关键词 AOD PM_(2.5) FY-4A multi-task learning joint retrieval
在线阅读 下载PDF
Skillful bias correction of offshore near-surface wind field forecasting based on a multi-task machine learning model
10
作者 Qiyang Liu Anboyu Guo +5 位作者 Fengxue Qiao Xinjian Ma Yan-An Liu Yong Huang Rui Wang Chunyan Sheng 《Atmospheric and Oceanic Science Letters》 2025年第5期28-35,共8页
Accurate short-term forecast of offshore wind fields is still challenging for numerical weather prediction models.Based on three years of 48-hour forecast data from the European Centre for Medium-Range Weather Forecas... Accurate short-term forecast of offshore wind fields is still challenging for numerical weather prediction models.Based on three years of 48-hour forecast data from the European Centre for Medium-Range Weather Forecasts Integrated Forecasting System global model(ECMWF-IFS)over 14 offshore weather stations along the coast of Shandong Province,this study introduces a multi-task learning(MTL)model(TabNet-MTL),which significantly improves the forecast bias of near-surface wind direction and speed simultaneously.TabNet-MTL adopts the feature engineering method,utilizes mean square error as the loss function,and employs the 5-fold cross validation method to ensure the generalization ability of the trained model.It demonstrates superior skills in wind field correction across different forecast lead times over all stations compared to its single-task version(TabNet-STL)and three other popular single-task learning models(Random Forest,LightGBM,and XGBoost).Results show that it significantly reduces root mean square error of the ECMWF-IFS wind speed forecast from 2.20 to 1.25 m s−1,and increases the forecast accuracy of wind direction from 50%to 65%.As an explainable deep learning model,the weather stations and long-term temporal statistics of near-surface wind speed are identified as the most influential variables for TabNet-MTL in constructing its feature engineering. 展开更多
关键词 Forecast bias correction Wind field multi-task learning Feature engineering Explainable AI
在线阅读 下载PDF
MolP-PC:a multi-view fusion and multi-task learning framework for drug ADMET property prediction
11
作者 Sishu Li Jing Fan +2 位作者 Haiyang He Ruifeng Zhou Jun Liao 《Chinese Journal of Natural Medicines》 2025年第11期1293-1300,共8页
The accurate prediction of drug absorption,distribution,metabolism,excretion,and toxicity(ADMET)properties represents a crucial step in early drug development for reducing failure risk.Current deep learning approaches... The accurate prediction of drug absorption,distribution,metabolism,excretion,and toxicity(ADMET)properties represents a crucial step in early drug development for reducing failure risk.Current deep learning approaches face challenges with data sparsity and information loss due to single-molecule representation limitations and isolated predictive tasks.This research proposes molecular properties prediction with parallel-view and collaborative learning(MolP-PC),a multi-view fusion and multi-task deep learning framework that integrates 1D molecular fingerprints(MFs),2D molecular graphs,and 3D geometric representations,incorporating an attention-gated fusion mechanism and multi-task adaptive learning strategy for precise ADMET property predictions.Experimental results demonstrate that MolP-PC achieves optimal performance in 27 of 54 tasks,with its multi-task learning(MTL)mechanism significantly enhancing predictive performance on small-scale datasets and surpassing single-task models in 41 of 54 tasks.Additional ablation studies and interpretability analyses confirm the significance of multi-view fusion in capturing multi-dimensional molecular information and enhancing model generalization.A case study examining the anticancer compound Oroxylin A demonstrates MolP-PC’s effective generalization in predicting key pharmacokinetic parameters such as half-life(T0.5)and clearance(CL),indicating its practical utility in drug modeling.However,the model exhibits a tendency to underestimate volume of distribution(VD),indicating potential for improvement in analyzing compounds with high tissue distribution.This study presents an efficient and interpretable approach for ADMET property prediction,establishing a novel framework for molecular optimization and risk assessment in drug development. 展开更多
关键词 Molecular ADMET prediction Multi-view fusion Attention mechanism multi-task deep learning
原文传递
A multi-task learning method for blast furnace gas forecasting based on coupling correlation analysis and inverted transformer
12
作者 Sheng Xie Jing-shu Zhang +2 位作者 Da-tao Shi Yang Guo Qi Zhang 《Journal of Iron and Steel Research International》 2025年第10期3280-3297,共18页
Accurate forecasting of blast furnace gas(BFG)production is an essential prerequisite for reasonable energy scheduling and management to reduce carbon emissions.Coupling forecasting between BFG generation and consumpt... Accurate forecasting of blast furnace gas(BFG)production is an essential prerequisite for reasonable energy scheduling and management to reduce carbon emissions.Coupling forecasting between BFG generation and consumption dynamics was taken as the research object.A multi-task learning(MTL)method for BFG forecasting was proposed,which integrated a coupling correlation coefficient(CCC)and an inverted transformer structure.The CCC method could enhance key information extraction by establishing relationships between multiple prediction targets and relevant factors,while MTL effectively captured the inherent correlations between BFG generation and consumption.Finally,a real-world case study was conducted to compare the proposed model with four benchmark models.Results indicated significant reductions in average mean absolute percentage error by 33.37%,achieving 1.92%,with a computational time of 76 s.The sensitivity analysis of hyperparameters such as learning rate,batch size,and units of the long short-term memory layer highlights the importance of hyperparameter tuning. 展开更多
关键词 Byproduct gases forecasting Coupling correlation coefficient multi-task learning Inverted transformer Bi-directional long short-term memory Blast furnace gas
原文传递
MAMGBR: Group-Buying Recommendation Model Based on Multi-Head Attention Mechanism and Multi-Task Learning
13
作者 Zongzhe Xu Ming Yu 《Computers, Materials & Continua》 2025年第8期2805-2826,共22页
As the group-buying model shows significant progress in attracting new users,enhancing user engagement,and increasing platform profitability,providing personalized recommendations for group-buying users has emerged as... As the group-buying model shows significant progress in attracting new users,enhancing user engagement,and increasing platform profitability,providing personalized recommendations for group-buying users has emerged as a new challenge in the field of recommendation systems.This paper introduces a group-buying recommendation model based on multi-head attention mechanisms and multi-task learning,termed the Multi-head Attention Mechanisms and Multi-task Learning Group-Buying Recommendation(MAMGBR)model,specifically designed to optimize group-buying recommendations on e-commerce platforms.The core dataset of this study comes from the Chinese maternal and infant e-commerce platform“Beibei,”encompassing approximately 430,000 successful groupbuying actions and over 120,000 users.Themodel focuses on twomain tasks:recommending items for group organizers(Task Ⅰ)and recommending participants for a given group-buying event(Task Ⅱ).In model evaluation,MAMGBR achieves an MRR@10 of 0.7696 for Task I,marking a 20.23%improvement over baseline models.Furthermore,in Task II,where complex interaction patterns prevail,MAMGBR utilizes auxiliary loss functions to effectively model the multifaceted roles of users,items,and participants,leading to a 24.08%increase in MRR@100 under a 1:99 sample ratio.Experimental results show that compared to benchmark models,such as NGCF and EATNN,MAMGBR’s integration ofmulti-head attentionmechanisms,expert networks,and gating mechanisms enables more accurate modeling of user preferences and social associations within group-buying scenarios,significantly enhancing recommendation accuracy and platform group-buying success rates. 展开更多
关键词 Group-buying recommendation multi-head attention mechanism multi-task learning
在线阅读 下载PDF
MDTCNet:Multi-Task Classifications Network and TCNN for Direction of Arrival Estimation
14
作者 Yu Jiarun Wang Yafeng 《China Communications》 SCIE CSCD 2024年第10期148-166,共19页
The direction-of-arrival(DoA) estimation is one of the hot research areas in signal processing. To overcome the DoA estimation challenge without the prior information about signal sources number and multipath number i... The direction-of-arrival(DoA) estimation is one of the hot research areas in signal processing. To overcome the DoA estimation challenge without the prior information about signal sources number and multipath number in millimeter wave system,the multi-task deep residual shrinkage network(MTDRSN) and transfer learning-based convolutional neural network(TCNN), namely MDTCNet, are proposed. The sampling covariance matrix based on the received signal is used as the input to the proposed network. A DRSN-based multi-task classifications model is first introduced to estimate signal sources number and multipath number simultaneously. Then, the DoAs with multi-signal and multipath are estimated by the regression model. The proposed CNN is applied for DoAs estimation with the predicted number of signal sources and paths. Furthermore, the modelbased transfer learning is also introduced into the regression model. The TCNN inherits the partial network parameters of the already formed optimization model obtained by the CNN. A series of experimental results show that the MDTCNet-based DoAs estimation method can accurately predict the signal sources number and multipath number under a range of signal-to-noise ratios. Remarkably, the proposed method achieves the lower root mean square error compared with some existing deep learning-based and traditional methods. 展开更多
关键词 DoA estimation MDTCNet millimeter wave system multi-task classifications model regression model
在线阅读 下载PDF
Fu-Rec:Multi-Task Learning Recommendation Model Fusing Neighbor-Discrimination and Self-Discrimination
15
作者 ZHENG Sirui HUANG Bo +4 位作者 LIU Jin ZENG Guohui YIN Ling LI Zhi SUN Tie 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2024年第2期134-144,共11页
In recent years,self-supervised learning has achieved great success in areas such as computer vision and natural language processing because it can mine supervised signals from unlabeled data and reduce the reliance o... In recent years,self-supervised learning has achieved great success in areas such as computer vision and natural language processing because it can mine supervised signals from unlabeled data and reduce the reliance on manual labels.However,the currently generated self-supervised signals are either neighbor discrimination or self-discrimination,and there is no model to integrate neighbor discrimination and self-discrimination.Based on this,this paper proposes Fu-Rec that integrates neighbor-discrimination contrastive learning and self-discrimination contrastive learning,which consists of three modules:(1)neighbor-discrimination contrastive learning,(2)selfdiscrimination contrastive learning,and(3)recommendation module.The neighbor-discrimination contrastive learning and selfdiscrimination contrastive learning tasks are used as auxiliary tasks to assist the recommendation task.The Fu-Rec model effectively utilizes the respective advantages of neighbor-discrimination and self-discrimination to consider the information of the user’s neighbors as well as the user and the item itself for the recommendation,which results in better performance of the recommendation module.Experimental results on several public datasets demonstrate the effectiveness of the Fu-Rec proposed in this paper. 展开更多
关键词 self-supervised learning recommendation system contrastive learning multi-task learning
原文传递
Multi-task learning for seismic elastic parameter inversion with the lateral constraint of angle-gather difference
16
作者 Pu Wang Yi-An Cui +4 位作者 Lin Zhou Jing-Ye Li Xin-Peng Pan Ya Sun Jian-Xin Liu 《Petroleum Science》 CSCD 2024年第6期4001-4009,共9页
Pre-stack seismic inversion is an effective way to investigate the characteristics of hydrocarbon-bearing reservoirs.Multi-parameter application is the key to identifying reservoir lithology and fluid in pre-stack inv... Pre-stack seismic inversion is an effective way to investigate the characteristics of hydrocarbon-bearing reservoirs.Multi-parameter application is the key to identifying reservoir lithology and fluid in pre-stack inversion.However,multi-parameter inversion may bring coupling effects on the parameters and destabilize the inversion.In addition,the lateral recognition accuracy of geological structures receives great attention.To address these challenges,a multi-task learning network considering the angle-gather difference is proposed in this work.The deep learning network is usually assumed as a black box and it is unclear what it can learn.However,the introduction of angle-gather difference can force the deep learning network to focus on the lateral differences,thus improving the lateral accuracy of the prediction profile.The proposed deep learning network includes input and output blocks.First,angle gathers and the angle-gather difference are fed into two separate input blocks with Res Net architecture and Unet architecture,respectively.Then,three elastic parameters,including P-and S-wave velocities and density,are simultaneously predicted based on the idea of multi-task learning by using three separate output blocks with the same convolutional network layers.Experimental and field data tests demonstrate the effectiveness of the proposed method in improving the prediction accuracy of seismic elastic parameters. 展开更多
关键词 Seismic inversion multi-task learning network Angle gathers Lateral accuracy Elastic parameter
原文传递
A Multi-Task Deep Learning Framework for Simultaneous Detection of Thoracic Pathology through Image Classification
17
作者 Nada Al Zahrani Ramdane Hedjar +4 位作者 Mohamed Mekhtiche Mohamed Bencherif Taha Al Fakih Fattoh Al-Qershi Muna Alrazghan 《Journal of Computer and Communications》 2024年第4期153-170,共18页
Thoracic diseases pose significant risks to an individual's chest health and are among the most perilous medical diseases. They can impact either one or both lungs, which leads to a severe impairment of a person’... Thoracic diseases pose significant risks to an individual's chest health and are among the most perilous medical diseases. They can impact either one or both lungs, which leads to a severe impairment of a person’s ability to breathe normally. Some notable examples of such diseases encompass pneumonia, lung cancer, coronavirus disease 2019 (COVID-19), tuberculosis, and chronic obstructive pulmonary disease (COPD). Consequently, early and precise detection of these diseases is paramount during the diagnostic process. Traditionally, the primary methods employed for the detection involve the use of X-ray imaging or computed tomography (CT) scans. Nevertheless, due to the scarcity of proficient radiologists and the inherent similarities between these diseases, the accuracy of detection can be compromised, leading to imprecise or erroneous results. To address this challenge, scientists have turned to computer-based solutions, aiming for swift and accurate diagnoses. The primary objective of this study is to develop two machine learning models, utilizing single-task and multi-task learning frameworks, to enhance classification accuracy. Within the multi-task learning architecture, two principal approaches exist soft parameter sharing and hard parameter sharing. Consequently, this research adopts a multi-task deep learning approach that leverages CNNs to achieve improved classification performance for the specified tasks. These tasks, focusing on pneumonia and COVID-19, are processed and learned simultaneously within a multi-task model. To assess the effectiveness of the trained model, it is rigorously validated using three different real-world datasets for training and testing. 展开更多
关键词 PNEUMONIA Thoracic Pathology COVID-19 Deep Learning multi-task Learning
暂未订购
Collaborative Trajectory Planning for Stereoscopic Agricultural Multi-UAVs Driven by the Aquila Optimizer
18
作者 Xinyu Liu Longfei Wang +1 位作者 Yuxin Ma Peng Shao 《Computers, Materials & Continua》 SCIE EI 2025年第1期1349-1376,共28页
Stereoscopic agriculture,as an advanced method of agricultural production,poses new challenges for multi-task trajectory planning of unmanned aerial vehicles(UAVs).To address the need for UAVs to perform multi-task tr... Stereoscopic agriculture,as an advanced method of agricultural production,poses new challenges for multi-task trajectory planning of unmanned aerial vehicles(UAVs).To address the need for UAVs to perform multi-task trajectory planning in stereoscopic agriculture,a multi-task trajectory planning model and algorithm(IEP-AO)that synthesizes flight safety and flight efficiency is proposed.Based on the requirements of stereoscopic agricultural geomorphological features and operational characteristics,the multi-task trajectory planning model is ensured by constructing targeted constraints at five aspects,including the path,slope,altitude,corner,energy and obstacle threat,to improve the effectiveness of the trajectory planning model.And combined with the path optimization algorithm,an Aquila optimizer(IEP-AO)based on the interference-enhanced combination model is proposed,which can help UAVs to improve the trajectory search capability in complex operation space and large-scale operation tasks,and jump out of the locally optimal trajectory path region timely,to generate the optimal trajectory planning plan that can adapt to the diversity of the tasks and the flight efficiency.Meanwhile,four simulated flights with different operation scales and different scene constraints were conducted under the constructed real 3Dimension scene,and the experimental results can show that the proposedmulti-task trajectory planning method canmeet themulti-task requirements in stereoscopic agriculture and improve the mission execution efficiency and agricultural production effect of UAV. 展开更多
关键词 Stereoscopic agriculture unmanned aerial vehicle multi-task interference model Aquila optimizer
在线阅读 下载PDF
Learning Manipulation from Expert Demonstrations Based on Multiple Data Associations and Physical Constraints
19
作者 Yangqing Ye Yaojie Mao +5 位作者 Shiming Qiu Chuan’guo Tang Zhirui Pan Weiwei Wan Shibo Cai Guanjun Bao 《Chinese Journal of Mechanical Engineering》 2025年第2期279-294,共16页
Learning from demonstration is widely regarded as a promising paradigm for robots to acquire diverse skills.Other than the artificial learning from observation-action pairs for machines,humans can learn to imitate in ... Learning from demonstration is widely regarded as a promising paradigm for robots to acquire diverse skills.Other than the artificial learning from observation-action pairs for machines,humans can learn to imitate in a more versatile and effective manner:acquiring skills through mere“observation”.Video to Command task is widely perceived as a promising approach for task-based learning,which yet faces two key challenges:(1)High redundancy and low frame rate of fine-grained action sequences make it difficult to manipulate objects robustly and accurately.(2)Video to Command models often prioritize accuracy and richness of output commands over physical capabilities,leading to impractical or unsafe instructions for robots.This article presents a novel Video to Command framework that employs multiple data associations and physical constraints.First,we introduce an object-level appearancecontrasting multiple data association strategy to effectively associate manipulated objects in visually complex environments,capturing dynamic changes in video content.Then,we propose a multi-task Video to Command model that utilizes object-level video content changes to compile expert demonstrations into manipulation commands.Finally,a multi-task hybrid loss function is proposed to train a Video to Command model that adheres to the constraints of the physical world and manipulation tasks.Our method achieved over 10%on BLEU_N,METEOR,ROUGE_L,and CIDEr compared to the up-to-date methods.The dual-arm robot prototype was established to demonstrate the whole process of learning from an expert demonstration of multiple skills and then executing the tasks by a robot. 展开更多
关键词 Videos to command Multiple data associations multi-task model multi-task hybrid loss function Physical constraints
在线阅读 下载PDF
LEGF-DST:LLMs-Enhanced Graph-Fusion Dual-Stream Transformer for Fine-Grained Chinese Malicious SMS Detection
20
作者 Xin Tong Jingya Wang +3 位作者 Ying Yang Tian Peng Hanming Zhai Guangming Ling 《Computers, Materials & Continua》 2025年第2期1901-1924,共24页
With the widespread use of SMS(Short Message Service),the proliferation of malicious SMS has emerged as a pressing societal issue.While deep learning-based text classifiers offer promise,they often exhibit suboptimal ... With the widespread use of SMS(Short Message Service),the proliferation of malicious SMS has emerged as a pressing societal issue.While deep learning-based text classifiers offer promise,they often exhibit suboptimal performance in fine-grained detection tasks,primarily due to imbalanced datasets and insufficient model representation capabilities.To address this challenge,this paper proposes an LLMs-enhanced graph fusion dual-stream Transformer model for fine-grained Chinese malicious SMS detection.During the data processing stage,Large Language Models(LLMs)are employed for data augmentation,mitigating dataset imbalance.In the data input stage,both word-level and character-level features are utilized as model inputs,enhancing the richness of features and preventing information loss.A dual-stream Transformer serves as the backbone network in the learning representation stage,complemented by a graph-based feature fusion mechanism.At the output stage,both supervised classification cross-entropy loss and supervised contrastive learning loss are used as multi-task optimization objectives,further enhancing the model’s feature representation.Experimental results demonstrate that the proposed method significantly outperforms baselines on a publicly available Chinese malicious SMS dataset. 展开更多
关键词 Transformers malicious SMS multi-task learning large language models
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部