期刊文献+
共找到246,101篇文章
< 1 2 250 >
每页显示 20 50 100
DEEP NEURAL NETWORKS COMBINING MULTI-TASK LEARNING FOR SOLVING DELAY INTEGRO-DIFFERENTIAL EQUATIONS 被引量:1
1
作者 WANG Chen-yao SHI Feng 《数学杂志》 2025年第1期13-38,共26页
Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay di... Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data. 展开更多
关键词 Delay integro-differential equation multi-task learning parameter sharing structure deep neural network sequential training scheme
在线阅读 下载PDF
Joint Retrieval of PM_(2.5) Concentration and Aerosol Optical Depth over China Using Multi-Task Learning on FY-4A AGRI
2
作者 Bo LI Disong FU +4 位作者 Ling YANG Xuehua FAN Dazhi YANG Hongrong SHI Xiang’ao XIA 《Advances in Atmospheric Sciences》 2025年第1期94-110,共17页
Aerosol optical depth(AOD)and fine particulate matter with a diameter of less than or equal to 2.5μm(PM_(2.5))play crucial roles in air quality,human health,and climate change.However,the complex correlation of AOD–... Aerosol optical depth(AOD)and fine particulate matter with a diameter of less than or equal to 2.5μm(PM_(2.5))play crucial roles in air quality,human health,and climate change.However,the complex correlation of AOD–PM_(2.5)and the limitations of existing algorithms pose a significant challenge in realizing the accurate joint retrieval of these two parameters at the same location.On this point,a multi-task learning(MTL)model,which enables the joint retrieval of PM_(2.5)concentration and AOD,is proposed and applied on the top-of-the-atmosphere reflectance data gathered by the Fengyun-4A Advanced Geosynchronous Radiation Imager(FY-4A AGRI),and compared to that of two single-task learning models—namely,Random Forest(RF)and Deep Neural Network(DNN).Specifically,MTL achieves a coefficient of determination(R^(2))of 0.88 and a root-mean-square error(RMSE)of 0.10 in AOD retrieval.In comparison to RF,the R^(2)increases by 0.04,the RMSE decreases by 0.02,and the percentage of retrieval results falling within the expected error range(Within-EE)rises by 5.55%.The R^(2)and RMSE of PM_(2.5)retrieval by MTL are 0.84 and 13.76μg m~(-3)respectively.Compared with RF,the R^(2)increases by 0.06,the RMSE decreases by 4.55μg m~(-3),and the Within-EE increases by 7.28%.Additionally,compared to DNN,MTL shows an increase of 0.01 in R^(2)and a decrease of 0.02 in RMSE in AOD retrieval,with a corresponding increase of 2.89%in Within-EE.For PM_(2.5)retrieval,MTL exhibits an increase of 0.05 in R^(2),a decrease of 1.76μg m~(-3)in RMSE,and an increase of 6.83%in Within-EE.The evaluation suggests that MTL is able to provide simultaneously improved AOD and PM_(2.5)retrievals,demonstrating a significant advantage in efficiently capturing the spatial distribution of PM_(2.5)concentration and AOD. 展开更多
关键词 AOD PM_(2.5) FY-4A multi-task learning joint retrieval
在线阅读 下载PDF
A multi-task learning method for blast furnace gas forecasting based on coupling correlation analysis and inverted transformer
3
作者 Sheng Xie Jing-shu Zhang +2 位作者 Da-tao Shi Yang Guo Qi Zhang 《Journal of Iron and Steel Research International》 2025年第10期3280-3297,共18页
Accurate forecasting of blast furnace gas(BFG)production is an essential prerequisite for reasonable energy scheduling and management to reduce carbon emissions.Coupling forecasting between BFG generation and consumpt... Accurate forecasting of blast furnace gas(BFG)production is an essential prerequisite for reasonable energy scheduling and management to reduce carbon emissions.Coupling forecasting between BFG generation and consumption dynamics was taken as the research object.A multi-task learning(MTL)method for BFG forecasting was proposed,which integrated a coupling correlation coefficient(CCC)and an inverted transformer structure.The CCC method could enhance key information extraction by establishing relationships between multiple prediction targets and relevant factors,while MTL effectively captured the inherent correlations between BFG generation and consumption.Finally,a real-world case study was conducted to compare the proposed model with four benchmark models.Results indicated significant reductions in average mean absolute percentage error by 33.37%,achieving 1.92%,with a computational time of 76 s.The sensitivity analysis of hyperparameters such as learning rate,batch size,and units of the long short-term memory layer highlights the importance of hyperparameter tuning. 展开更多
关键词 Byproduct gases forecasting Coupling correlation coefficient multi-task learning Inverted transformer Bi-directional long short-term memory Blast furnace gas
原文传递
Explainable AI Based Multi-Task Learning Method for Stroke Prognosis
4
作者 Nan Ding Xingyu Zeng +1 位作者 Jianping Wu Liutao Zhao 《Computers, Materials & Continua》 2025年第9期5299-5315,共17页
Predicting the health status of stroke patients at different stages of the disease is a critical clinical task.The onset and development of stroke are affected by an array of factors,encompassing genetic predispositio... Predicting the health status of stroke patients at different stages of the disease is a critical clinical task.The onset and development of stroke are affected by an array of factors,encompassing genetic predisposition,environmental exposure,unhealthy lifestyle habits,and existing medical conditions.Although existing machine learning-based methods for predicting stroke patients’health status have made significant progress,limitations remain in terms of prediction accuracy,model explainability,and system optimization.This paper proposes a multi-task learning approach based on Explainable Artificial Intelligence(XAI)for predicting the health status of stroke patients.First,we design a comprehensive multi-task learning framework that utilizes the task correlation of predicting various health status indicators in patients,enabling the parallel prediction of multiple health indicators.Second,we develop a multi-task Area Under Curve(AUC)optimization algorithm based on adaptive low-rank representation,which removes irrelevant information from the model structure to enhance the performance of multi-task AUC optimization.Additionally,the model’s explainability is analyzed through the stability analysis of SHAP values.Experimental results demonstrate that our approach outperforms comparison algorithms in key prognostic metrics F1 score and Efficiency. 展开更多
关键词 Explainable AI stroke prognosis multi-task learning AUC optimization
在线阅读 下载PDF
MAMGBR: Group-Buying Recommendation Model Based on Multi-Head Attention Mechanism and Multi-Task Learning
5
作者 Zongzhe Xu Ming Yu 《Computers, Materials & Continua》 2025年第8期2805-2826,共22页
As the group-buying model shows significant progress in attracting new users,enhancing user engagement,and increasing platform profitability,providing personalized recommendations for group-buying users has emerged as... As the group-buying model shows significant progress in attracting new users,enhancing user engagement,and increasing platform profitability,providing personalized recommendations for group-buying users has emerged as a new challenge in the field of recommendation systems.This paper introduces a group-buying recommendation model based on multi-head attention mechanisms and multi-task learning,termed the Multi-head Attention Mechanisms and Multi-task Learning Group-Buying Recommendation(MAMGBR)model,specifically designed to optimize group-buying recommendations on e-commerce platforms.The core dataset of this study comes from the Chinese maternal and infant e-commerce platform“Beibei,”encompassing approximately 430,000 successful groupbuying actions and over 120,000 users.Themodel focuses on twomain tasks:recommending items for group organizers(Task Ⅰ)and recommending participants for a given group-buying event(Task Ⅱ).In model evaluation,MAMGBR achieves an MRR@10 of 0.7696 for Task I,marking a 20.23%improvement over baseline models.Furthermore,in Task II,where complex interaction patterns prevail,MAMGBR utilizes auxiliary loss functions to effectively model the multifaceted roles of users,items,and participants,leading to a 24.08%increase in MRR@100 under a 1:99 sample ratio.Experimental results show that compared to benchmark models,such as NGCF and EATNN,MAMGBR’s integration ofmulti-head attentionmechanisms,expert networks,and gating mechanisms enables more accurate modeling of user preferences and social associations within group-buying scenarios,significantly enhancing recommendation accuracy and platform group-buying success rates. 展开更多
关键词 Group-buying recommendation multi-head attention mechanism multi-task learning
在线阅读 下载PDF
MolP-PC:a multi-view fusion and multi-task learning framework for drug ADMET property prediction
6
作者 Sishu Li Jing Fan +2 位作者 Haiyang He Ruifeng Zhou Jun Liao 《Chinese Journal of Natural Medicines》 2025年第11期1293-1300,共8页
The accurate prediction of drug absorption,distribution,metabolism,excretion,and toxicity(ADMET)properties represents a crucial step in early drug development for reducing failure risk.Current deep learning approaches... The accurate prediction of drug absorption,distribution,metabolism,excretion,and toxicity(ADMET)properties represents a crucial step in early drug development for reducing failure risk.Current deep learning approaches face challenges with data sparsity and information loss due to single-molecule representation limitations and isolated predictive tasks.This research proposes molecular properties prediction with parallel-view and collaborative learning(MolP-PC),a multi-view fusion and multi-task deep learning framework that integrates 1D molecular fingerprints(MFs),2D molecular graphs,and 3D geometric representations,incorporating an attention-gated fusion mechanism and multi-task adaptive learning strategy for precise ADMET property predictions.Experimental results demonstrate that MolP-PC achieves optimal performance in 27 of 54 tasks,with its multi-task learning(MTL)mechanism significantly enhancing predictive performance on small-scale datasets and surpassing single-task models in 41 of 54 tasks.Additional ablation studies and interpretability analyses confirm the significance of multi-view fusion in capturing multi-dimensional molecular information and enhancing model generalization.A case study examining the anticancer compound Oroxylin A demonstrates MolP-PC’s effective generalization in predicting key pharmacokinetic parameters such as half-life(T0.5)and clearance(CL),indicating its practical utility in drug modeling.However,the model exhibits a tendency to underestimate volume of distribution(VD),indicating potential for improvement in analyzing compounds with high tissue distribution.This study presents an efficient and interpretable approach for ADMET property prediction,establishing a novel framework for molecular optimization and risk assessment in drug development. 展开更多
关键词 Molecular ADMET prediction Multi-view fusion Attention mechanism multi-task deep learning
原文传递
Short-Term Rolling Prediction of Tropical Cyclone Intensity Based on Multi-Task Learning with Fusion of Deviation-Angle Variance and Satellite Imagery
7
作者 Wei TIAN Ping SONG +5 位作者 Yuanyuan CHEN Yonghong ZHANG Liguang WU Haikun ZHAO Kenny Thiam Choy LIM KAM SIAN Chunyi XIANG 《Advances in Atmospheric Sciences》 2025年第1期111-128,共18页
Tropical cyclones(TCs)are one of the most serious types of natural disasters,and accurate TC activity predictions are key to disaster prevention and mitigation.Recently,TC track predictions have made significant progr... Tropical cyclones(TCs)are one of the most serious types of natural disasters,and accurate TC activity predictions are key to disaster prevention and mitigation.Recently,TC track predictions have made significant progress,but the ability to predict their intensity is obviously lagging behind.At present,research on TC intensity prediction takes atmospheric reanalysis data as the research object and mines the relationship between TC-related environmental factors and intensity through deep learning.However,reanalysis data are non-real-time in nature,which does not meet the requirements for operational forecasting applications.Therefore,a TC intensity prediction model named TC-Rolling is proposed,which can simultaneously extract the degree of symmetry for strong TC convective cloud and convection intensity,and fuse the deviation-angle variance with satellite images to construct the correlation between TC convection structure and intensity.For TCs'complex dynamic processes,a convolutional neural network(CNN)is used to learn their temporal and spatial features.For real-time intensity estimation,multi-task learning acts as an implicit time-series enhancement.The model is designed with a rolling strategy that aims to moderate the long-term dependent decay problem and improve accuracy for short-term intensity predictions.Since multiple tasks are correlated,the loss function of 12 h and 24 h are corrected.After testing on a sample of TCs in the Northwest Pacific,with a 4.48 kt root-mean-square error(RMSE)of 6 h intensity prediction,5.78 kt for 12 h,and 13.94 kt for 24 h,TC records from official agencies are used to assess the validity of TC-Rolling. 展开更多
关键词 tropical cyclone INTENSITY structure rolling prediction multi-task
在线阅读 下载PDF
A Multi-Task Learning Framework for Joint Sub-Nyquist Wideband Spectrum Sensing and Modulation Recognition
8
作者 Dong Xin Stefanos Bakirtzis +1 位作者 Zhang Jiliang Zhang Jie 《China Communications》 2025年第1期128-138,共11页
The utilization of millimeter-wave frequencies and cognitive radio(CR)are promising ways to increase the spectral efficiency of wireless communication systems.However,conventional CR spectrum sensing techniques entail... The utilization of millimeter-wave frequencies and cognitive radio(CR)are promising ways to increase the spectral efficiency of wireless communication systems.However,conventional CR spectrum sensing techniques entail sampling the received signal at a Nyquist rate,and they are not viable for wideband signals due to their high cost.This paper expounds on how sub-Nyquist sampling in conjunction with deep learning can be leveraged to remove this limitation.To this end,we propose a multi-task learning(MTL)framework using convolutional neural networks for the joint inference of the underlying narrowband signal number,their modulation scheme,and their location in a wideband spectrum.We demonstrate the effectiveness of the proposed framework for real-world millimeter-wave wideband signals collected by physical devices,exhibiting a 91.7% accuracy in the joint inference task when considering up to two narrowband signals over a wideband spectrum.Ultimately,the proposed data-driven approach enables on-the-fly wideband spectrum sensing,combining accuracy,and computational efficiency,which are indispensable for CR and opportunistic networking. 展开更多
关键词 automated modulation classification cognitive radio convolutional neural networks deep learning spectrum sensing sub-Nyquist sampling
在线阅读 下载PDF
Fu-Rec:Multi-Task Learning Recommendation Model Fusing Neighbor-Discrimination and Self-Discrimination
9
作者 ZHENG Sirui HUANG Bo +4 位作者 LIU Jin ZENG Guohui YIN Ling LI Zhi SUN Tie 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2024年第2期134-144,共11页
In recent years,self-supervised learning has achieved great success in areas such as computer vision and natural language processing because it can mine supervised signals from unlabeled data and reduce the reliance o... In recent years,self-supervised learning has achieved great success in areas such as computer vision and natural language processing because it can mine supervised signals from unlabeled data and reduce the reliance on manual labels.However,the currently generated self-supervised signals are either neighbor discrimination or self-discrimination,and there is no model to integrate neighbor discrimination and self-discrimination.Based on this,this paper proposes Fu-Rec that integrates neighbor-discrimination contrastive learning and self-discrimination contrastive learning,which consists of three modules:(1)neighbor-discrimination contrastive learning,(2)selfdiscrimination contrastive learning,and(3)recommendation module.The neighbor-discrimination contrastive learning and selfdiscrimination contrastive learning tasks are used as auxiliary tasks to assist the recommendation task.The Fu-Rec model effectively utilizes the respective advantages of neighbor-discrimination and self-discrimination to consider the information of the user’s neighbors as well as the user and the item itself for the recommendation,which results in better performance of the recommendation module.Experimental results on several public datasets demonstrate the effectiveness of the Fu-Rec proposed in this paper. 展开更多
关键词 self-supervised learning recommendation system contrastive learning multi-task learning
原文传递
Multi-task learning for seismic elastic parameter inversion with the lateral constraint of angle-gather difference
10
作者 Pu Wang Yi-An Cui +4 位作者 Lin Zhou Jing-Ye Li Xin-Peng Pan Ya Sun Jian-Xin Liu 《Petroleum Science》 CSCD 2024年第6期4001-4009,共9页
Pre-stack seismic inversion is an effective way to investigate the characteristics of hydrocarbon-bearing reservoirs.Multi-parameter application is the key to identifying reservoir lithology and fluid in pre-stack inv... Pre-stack seismic inversion is an effective way to investigate the characteristics of hydrocarbon-bearing reservoirs.Multi-parameter application is the key to identifying reservoir lithology and fluid in pre-stack inversion.However,multi-parameter inversion may bring coupling effects on the parameters and destabilize the inversion.In addition,the lateral recognition accuracy of geological structures receives great attention.To address these challenges,a multi-task learning network considering the angle-gather difference is proposed in this work.The deep learning network is usually assumed as a black box and it is unclear what it can learn.However,the introduction of angle-gather difference can force the deep learning network to focus on the lateral differences,thus improving the lateral accuracy of the prediction profile.The proposed deep learning network includes input and output blocks.First,angle gathers and the angle-gather difference are fed into two separate input blocks with Res Net architecture and Unet architecture,respectively.Then,three elastic parameters,including P-and S-wave velocities and density,are simultaneously predicted based on the idea of multi-task learning by using three separate output blocks with the same convolutional network layers.Experimental and field data tests demonstrate the effectiveness of the proposed method in improving the prediction accuracy of seismic elastic parameters. 展开更多
关键词 Seismic inversion multi-task learning network Angle gathers Lateral accuracy Elastic parameter
原文传递
Nuclear mass based on the multi-task learning neural network method 被引量:11
11
作者 Xing-Chen Ming Hong-Fei Zhang +3 位作者 Rui-Rui Xu Xiao-Dong Sun Yuan Tian Zhi-Gang Ge 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第4期96-103,共8页
The global nuclear mass based on the macroscopic-microscopic model was studied by applying a newly designed multi-task learning artificial neural network(MTL-ANN). First, the reported nuclear binding energies of 2095 ... The global nuclear mass based on the macroscopic-microscopic model was studied by applying a newly designed multi-task learning artificial neural network(MTL-ANN). First, the reported nuclear binding energies of 2095 nuclei(Z ≥ 8, N ≥ 8) released in the latest Atomic Mass Evaluation AME2020 and the deviations between the fitting result of the liquid drop model(LDM)and data from AME2020 for each nucleus were obtained.To compensate for the deviations and investigate the possible ignored physics in the LDM, the MTL-ANN method was introduced in the model. Compared to the single-task learning(STL) method, this new network has a powerful ability to simultaneously learn multi-nuclear properties,such as the binding energies and single neutron and proton separation energies. Moreover, it is highly effective in reducing the risk of overfitting and achieving better predictions. Consequently, good predictions can be obtained using this nuclear mass model for both the training and validation datasets and for the testing dataset. In detail, the global root mean square(RMS) of the binding energy is effectively reduced from approximately 2.4 MeV of LDM to the current 0.2 MeV, and the RMS of Sn, Spcan also reach approximately 0.2 MeV. Moreover, compared to STL, for the training and validation sets, 3-9% improvement can be achieved with the binding energy, and 20-30% improvement for S_(n), S_(p);for the testing sets, the reduction in deviations can even reach 30-40%, which significantly illustrates the advantage of the current MTL. 展开更多
关键词 Macroscopic–microscopic model Binding energy Neural network multi-task learning
在线阅读 下载PDF
Vision-based multi-level synthetical evaluation of seismic damage for RC structural components: a multi-task learning approach 被引量:3
12
作者 Xu Yang Qiao Weidong +2 位作者 Zhao Jin Zhang Qiangqiang Li Hui 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第1期69-85,共17页
Recent studies for computer vision and deep learning-based,post-earthquake inspections on RC structures mainly perform well for specific tasks,while the trained models must be fine-tuned and re-trained when facing new... Recent studies for computer vision and deep learning-based,post-earthquake inspections on RC structures mainly perform well for specific tasks,while the trained models must be fine-tuned and re-trained when facing new tasks and datasets,which is inevitably time-consuming.This study proposes a multi-task learning approach that simultaneously accomplishes the semantic segmentation of seven-type structural components,three-type seismic damage,and four-type deterioration states.The proposed method contains a CNN-based encoder-decoder backbone subnetwork with skip-connection modules and a multi-head,task-specific recognition subnetwork.The backbone subnetwork is designed to extract multi-level features of post-earthquake RC structures.The multi-head,task-specific recognition subnetwork consists of three individual self-attention pipelines,each of which utilizes extracted multi-level features from the backbone network as a mutual guidance for the individual segmentation task.A synthetical loss function is designed with real-time adaptive coefficients to balance multi-task losses and focus on the most unstably fluctuating one.Ablation experiments and comparative studies are further conducted to demonstrate their effectiveness and necessity.The results show that the proposed method can simultaneously recognize different structural components,seismic damage,and deterioration states,and that the overall performance of the three-task learning models gains general improvement when compared to all single-task and dual-task models. 展开更多
关键词 post-earthquake evaluation multi-task learning computer vision structural component segmentation seismic damage recognition deterioration state assessment
在线阅读 下载PDF
The Entity Relationship Extraction Method Using Improved RoBERTa and Multi-Task Learning 被引量:2
13
作者 Chaoyu Fan 《Computers, Materials & Continua》 SCIE EI 2023年第11期1719-1738,共20页
There is a growing amount of data uploaded to the internet every day and it is important to understand the volume of those data to find a better scheme to process them.However,the volume of internet data is beyond the... There is a growing amount of data uploaded to the internet every day and it is important to understand the volume of those data to find a better scheme to process them.However,the volume of internet data is beyond the processing capabilities of the current internet infrastructure.Therefore,engineering works using technology to organize and analyze information and extract useful information are interesting in both industry and academia.The goal of this paper is to explore the entity relationship based on deep learning,introduce semantic knowledge by using the prepared language model,develop an advanced entity relationship information extraction method by combining Robustly Optimized BERT Approach(RoBERTa)and multi-task learning,and combine the intelligent characters in the field of linguistic,called Robustly Optimized BERT Approach+Multi-Task Learning(RoBERTa+MTL).To improve the effectiveness of model interaction,multi-task teaching is used to implement the observation information of auxiliary tasks.Experimental results show that our method has achieved an accuracy of 88.95 entity relationship extraction,and a further it has achieved 86.35%of accuracy after being combined with multi-task learning. 展开更多
关键词 Entity relationship extraction multi-task learning RoBERTa
在线阅读 下载PDF
Convective Storm VIL and Lightning Nowcasting Using Satellite and Weather Radar Measurements Based on Multi-Task Learning Models 被引量:1
14
作者 Yang LI Yubao LIU +3 位作者 Rongfu SUN Fengxia GUO Xiaofeng XU Haixiang XU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第5期887-899,共13页
Convective storms and lightning are among the most important weather phenomena that are challenging to forecast.In this study,a novel multi-task learning(MTL)encoder-decoder U-net neural network was developed to forec... Convective storms and lightning are among the most important weather phenomena that are challenging to forecast.In this study,a novel multi-task learning(MTL)encoder-decoder U-net neural network was developed to forecast convective storms and lightning with lead times for up to 90 min,using GOES-16 geostationary satellite infrared brightness temperatures(IRBTs),lightning flashes from Geostationary Lightning Mapper(GLM),and vertically integrated liquid(VIL)from Next Generation Weather Radar(NEXRAD).To cope with the heavily skewed distribution of lightning data,a spatiotemporal exponent-weighted loss function and log-transformed lightning normalization approach were developed.The effects of MTL,single-task learning(STL),and IRBTs as auxiliary input features on convection and lightning nowcasting were investigated.The results showed that normalizing the heavily skew-distributed lightning data along with a log-transformation dramatically outperforms the min-max normalization method for nowcasting an intense lightning event.The MTL model significantly outperformed the STL model for both lightning nowcasting and VIL nowcasting,particularly for intense lightning events.The MTL also helped delay the lightning forecast performance decay with the lead times.Furthermore,incorporating satellite IRBTs as auxiliary input features substantially improved lightning nowcasting,but produced little difference in VIL forecasting.Finally,the MTL model performed better for forecasting both lightning and the VIL of organized convective storms than for isolated cells. 展开更多
关键词 convection/lightning nowcasting multi-task learning geostationary satellite weather radar U-net model
在线阅读 下载PDF
Trace-Norm Regularized Multi-Task Learning for Sea State Bias Estimation 被引量:1
15
作者 ZHONG Guoqiang QU Jianzhang +5 位作者 WANG Haizhen LIU Benxiu JIAO Wencong FAN Zhenlin MIAO Hongli HEDJAM Rachid 《Journal of Ocean University of China》 SCIE CAS CSCD 2020年第6期1292-1298,共7页
Sea state bias(SSB)is an important component of errors for the radar altimeter measurements of sea surface height(SSH).However,existing SSB estimation methods are almost all based on single-task learning(STL),where on... Sea state bias(SSB)is an important component of errors for the radar altimeter measurements of sea surface height(SSH).However,existing SSB estimation methods are almost all based on single-task learning(STL),where one model is built on the data from only one radar altimeter.In this paper,taking account of the data from multiple radar altimeters available,we introduced a multi-task learning method,called trace-norm regularized multi-task learning(TNR-MTL),for SSB estimation.Corresponding to each individual task,TNR-MLT involves only three parameters.Hence,it is easy to implement.More importantly,the convergence of TNR-MLT is theoretically guaranteed.Compared with the commonly used STL models,TNR-MTL can effectively utilize the shared information between data from multiple altimeters.During the training of TNR-MTL,we used the JASON-2 and JASON-3 cycle data to solve two correlated SSB estimation tasks.Then the optimal model was selected to estimate SSB on the JASON-2 and the HY-270-71 cycle intersection data.For the JSAON-2 cycle intersection data,the corrected variance(M)has been reduced by 0.60 cm^2 compared to the geophysical data records(GDR);while for the HY-2 cycle intersection data,M has been reduced by 1.30 cm^2 compared to GDR.Therefore,TNR-MTL is proved to be effective for the SSB estimation tasks. 展开更多
关键词 sea state bias(SSB) radar altimeter geophysical data records(GDR) trace-norm multi-task learning
在线阅读 下载PDF
MMLUP: Multi-Source & Multi-Task Learning for User Profiles in Social Network 被引量:1
16
作者 Dongjie Zhu Yuhua Wang +5 位作者 Chuiju You Jinming Qiu Ning Cao Chenjing Gong Guohua Yang Helen Min Zhou 《Computers, Materials & Continua》 SCIE EI 2019年第9期1105-1115,共11页
With the rapid development of the mobile Internet,users generate massive data in different forms in social network every day,and different characteristics of users are reflected by these social media data.How to integ... With the rapid development of the mobile Internet,users generate massive data in different forms in social network every day,and different characteristics of users are reflected by these social media data.How to integrate multiple heterogeneous information and establish user profiles from multiple perspectives plays an important role in providing personalized services,marketing,and recommendation systems.In this paper,we propose Multi-source&Multi-task Learning for User Profiles in Social Network which integrates multiple social data sources and contains a multi-task learning framework to simultaneously predict various attributes of a user.Firstly,we design their own feature extraction models for multiple heterogeneous data sources.Secondly,we design a shared layer to fuse multiple heterogeneous data sources as general shared representation for multi-task learning.Thirdly,we design each task’s own unique presentation layer for discriminant output of specific-task.Finally,we design a weighted loss function to improve the learning efficiency and prediction accuracy of each task.Our experimental results on more than 5000 Sina Weibo users demonstrate that our approach outperforms state-of-the-art baselines for inferring gender,age and region of social media users. 展开更多
关键词 User profiles MULTI-SOURCE multi-task learning social network
在线阅读 下载PDF
Serial structure multi-task learning method for predicting reservoir parameters 被引量:1
17
作者 Xu Bin-Sen Li Ning +4 位作者 Xiao Li-Zhi Wu Hong-Liang Feng-Zhou Wang Bing Wang Ke-Wen 《Applied Geophysics》 SCIE CSCD 2022年第4期513-527,604,共16页
Buiding data-driven models using machine learning methods has gradually become a common approach for studying reservoir parameters.Among these methods,deep learning methods are highly effective.From the perspective of... Buiding data-driven models using machine learning methods has gradually become a common approach for studying reservoir parameters.Among these methods,deep learning methods are highly effective.From the perspective of multi-task learning,this paper uses six types of logging data—acoustic logging(AC),gamma ray(GR),compensated neutron porosity(CNL),density(DEN),deep and shallow lateral resistivity(LLD)and shallow lateral resistivity(LLS)—that are inputs and three reservoir parameters that are outputs to build a porosity saturation permeability network(PSP-Net)that can predict porosity,saturation,and permeability values simultaneously.These logging data are obtained from 108 training wells in a medium₋low permeability oilfield block in the western district of China.PSP-Net method adopts a serial structure to realize transfer learning of reservoir-parameter characteristics.Compared with other existing methods at the stage of academic exploration to simulating industrial applications,the proposed method overcomes the disadvantages inherent in single-task learning reservoir-parameter prediction models,including easily overfitting and heavy model-training workload.Additionally,the proposed method demonstrates good anti-overfitting and generalization capabilities,integrating professional knowledge and experience.In 37 test wells,compared with the existing method,the proposed method exhibited an average error reduction of 10.44%,27.79%,and 28.83%from porosity,saturation,permeability calculation.The prediction and actual permeabilities are within one order of magnitude.The training on PSP-Net are simpler and more convenient than other single-task learning methods discussed in this paper.Furthermore,the findings of this paper can help in the re-examination of old oilfield wells and the completion of logging data. 展开更多
关键词 Deep learning multi-task learning Reservoir-parameter prediction
在线阅读 下载PDF
Multi-Task Learning Model with Data Augmentation for Arabic Aspect-Based Sentiment Analysis
18
作者 Arwa Saif Fadel Osama Ahmed Abulnaja Mostafa Elsayed Saleh 《Computers, Materials & Continua》 SCIE EI 2023年第5期4419-4444,共26页
Aspect-based sentiment analysis(ABSA)is a fine-grained process.Its fundamental subtasks are aspect termextraction(ATE)and aspect polarity classification(APC),and these subtasks are dependent and closely related.Howeve... Aspect-based sentiment analysis(ABSA)is a fine-grained process.Its fundamental subtasks are aspect termextraction(ATE)and aspect polarity classification(APC),and these subtasks are dependent and closely related.However,most existing works on Arabic ABSA content separately address them,assume that aspect terms are preidentified,or use a pipeline model.Pipeline solutions design different models for each task,and the output from the ATE model is used as the input to the APC model,which may result in error propagation among different steps because APC is affected by ATE error.These methods are impractical for real-world scenarios where the ATE task is the base task for APC,and its result impacts the accuracy of APC.Thus,in this study,we focused on a multi-task learning model for Arabic ATE and APC in which the model is jointly trained on two subtasks simultaneously in a singlemodel.This paper integrates themulti-task model,namely Local Cotext Foucse-Aspect Term Extraction and Polarity classification(LCF-ATEPC)and Arabic Bidirectional Encoder Representation from Transformers(AraBERT)as a shred layer for Arabic contextual text representation.The LCF-ATEPC model is based on a multi-head selfattention and local context focus mechanism(LCF)to capture the interactive information between an aspect and its context.Moreover,data augmentation techniques are proposed based on state-of-the-art augmentation techniques(word embedding substitution with constraints and contextual embedding(AraBERT))to increase the diversity of the training dataset.This paper examined the effect of data augmentation on the multi-task model for Arabic ABSA.Extensive experiments were conducted on the original and combined datasets(merging the original and augmented datasets).Experimental results demonstrate that the proposed Multi-task model outperformed existing APC techniques.Superior results were obtained by AraBERT and LCF-ATEPC with fusion layer(AR-LCF-ATEPC-Fusion)and the proposed data augmentation word embedding-based method(FastText)on the combined dataset. 展开更多
关键词 Arabic aspect extraction arabic sentiment classification AraBERT multi-task learning data augmentation
在线阅读 下载PDF
A General Linguistic Steganalysis Framework Using Multi-Task Learning
19
作者 Lingyun Xiang Rong Wang +2 位作者 Yuhang Liu Yangfan Liu Lina Tan 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期2383-2399,共17页
Prevailing linguistic steganalysis approaches focus on learning sensitive features to distinguish a particular category of steganographic texts from non-steganographic texts,by performing binary classification.While i... Prevailing linguistic steganalysis approaches focus on learning sensitive features to distinguish a particular category of steganographic texts from non-steganographic texts,by performing binary classification.While it remains an unsolved problem and poses a significant threat to the security of cyberspace when various categories of non-steganographic or steganographic texts coexist.In this paper,we propose a general linguistic steganalysis framework named LS-MTL,which introduces the idea of multi-task learning to deal with the classification of various categories of steganographic and non-steganographic texts.LS-MTL captures sensitive linguistic features from multiple related linguistic steganalysis tasks and can concurrently handle diverse tasks with a constructed model.In the proposed framework,convolutional neural networks(CNNs)are utilized as private base models to extract sensitive features for each steganalysis task.Besides,a shared CNN is built to capture potential interaction information and share linguistic features among all tasks.Finally,LS-MTL incorporates the private and shared sensitive features to identify the detected text as steganographic or non-steganographic.Experimental results demonstrate that the proposed framework LS-MTL outperforms the baseline in the multi-category linguistic steganalysis task,while average Acc,Pre,and Rec are increased by 0.5%,1.4%,and 0.4%,respectively.More ablation experimental results show that LS-MTL with the shared module has robust generalization capability and achieves good detection performance even in the case of spare data. 展开更多
关键词 Linguistic steganalysis multi-task learning convolutional neural network(CNN) feature extraction detection performance
在线阅读 下载PDF
Multi-task Learning of Semantic Segmentation and Height Estimation for Multi-modal Remote Sensing Images 被引量:3
20
作者 Mengyu WANG Zhiyuan YAN +2 位作者 Yingchao FENG Wenhui DIAO Xian SUN 《Journal of Geodesy and Geoinformation Science》 CSCD 2023年第4期27-39,共13页
Deep learning based methods have been successfully applied to semantic segmentation of optical remote sensing images.However,as more and more remote sensing data is available,it is a new challenge to comprehensively u... Deep learning based methods have been successfully applied to semantic segmentation of optical remote sensing images.However,as more and more remote sensing data is available,it is a new challenge to comprehensively utilize multi-modal remote sensing data to break through the performance bottleneck of single-modal interpretation.In addition,semantic segmentation and height estimation in remote sensing data are two tasks with strong correlation,but existing methods usually study individual tasks separately,which leads to high computational resource overhead.To this end,we propose a Multi-Task learning framework for Multi-Modal remote sensing images(MM_MT).Specifically,we design a Cross-Modal Feature Fusion(CMFF)method,which aggregates complementary information of different modalities to improve the accuracy of semantic segmentation and height estimation.Besides,a dual-stream multi-task learning method is introduced for Joint Semantic Segmentation and Height Estimation(JSSHE),extracting common features in a shared network to save time and resources,and then learning task-specific features in two task branches.Experimental results on the public multi-modal remote sensing image dataset Potsdam show that compared to training two tasks independently,multi-task learning saves 20%of training time and achieves competitive performance with mIoU of 83.02%for semantic segmentation and accuracy of 95.26%for height estimation. 展开更多
关键词 MULTI-MODAL multi-task semantic segmentation height estimation convolutional neural network
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部