The safety factor is a crucial quantitative index for evaluating slope stability.However,the traditional calculation methods suffer from unreasonable assumptions,complex soil composition,and inadequate consideration o...The safety factor is a crucial quantitative index for evaluating slope stability.However,the traditional calculation methods suffer from unreasonable assumptions,complex soil composition,and inadequate consideration of the influencing factors,leading to large errors in their calculations.Therefore,a stacking ensemble learning model(stacking-SSAOP)based on multi-layer regression algorithm fusion and optimized by the sparrow search algorithm is proposed for predicting the slope safety factor.In this method,the density,cohesion,friction angle,slope angle,slope height,and pore pressure ratio are selected as characteristic parameters from the 210 sets of established slope sample data.Random Forest,Extra Trees,AdaBoost,Bagging,and Support Vector regression are used as the base model(inner loop)to construct the first-level regression algorithm layer,and XGBoost is used as the meta-model(outer loop)to construct the second-level regression algorithm layer and complete the construction of the stacked learning model for improving the model prediction accuracy.The sparrow search algorithm is used to optimize the hyperparameters of the above six regression models and correct the over-and underfitting problems of the single regression model to further improve the prediction accuracy.The mean square error(MSE)of the predicted and true values and the fitting of the data are compared and analyzed.The MSE of the stacking-SSAOP model was found to be smaller than that of the single regression model(MSE=0.03917).Therefore,the former has a higher prediction accuracy and better data fitting.This study innovatively applies the sparrow search algorithm to predict the slope safety factor,showcasing its advantages over traditional methods.Additionally,our proposed stacking-SSAOP model integrates multiple regression algorithms to enhance prediction accuracy.This model not only refines the prediction accuracy of the slope safety factor but also offers a fresh approach to handling the intricate soil composition and other influencing factors,making it a precise and reliable method for slope stability evaluation.This research holds importance for the modernization and digitalization of slope safety assessments.展开更多
Multi-target regression is concerned with the simultaneous prediction of multiple continuous target variables based on the same set of input variables.It has received relatively small attention from the Machine Learni...Multi-target regression is concerned with the simultaneous prediction of multiple continuous target variables based on the same set of input variables.It has received relatively small attention from the Machine Learning community.However,multi-target regression exists in many real-world applications.In this paper we conduct extensive experiments to investigate the performance of three representative multi-target regression learning algorithms(i.e.Multi-Target Stacking(MTS),Random Linear Target Combination(RLTC),and Multi-Objective Random Forest(MORF)),comparing the baseline single-target learning.Our experimental results show that all three multi-target regression learning algorithms do improve the performance of the single-target learning.Among them,MTS performs the best,followed by RLTC,followed by MORF.However,the single-target learning sometimes still performs very well,even the best.This analysis sheds the light on multi-target regression learning and indicates that the single-target learning is a competitive baseline for multi-target regression learning on multi-target domains.展开更多
Urban grid power forecasting is one of the important tasks of power system operators, which helps to analyze the development trend of the city. As the demand for electricity in various industries is affected by many f...Urban grid power forecasting is one of the important tasks of power system operators, which helps to analyze the development trend of the city. As the demand for electricity in various industries is affected by many factors, the data of relevant influencing factors are scarce, resulting in great deviations in the accuracy of prediction results. In order to improve the prediction results, this paper proposes a model based on Multi-Target Tree Regression to predict the monthly electricity consumption of different industrial structures. Due to few data characteristics of actual electricity consumption in Shanghai from 2013 to the first half of 2017. Thus, we collect data on GDP growth, weather conditions, and tourism season distribution in various industries in Shanghai, model and train the electricity consumption data of different industries in different months. The multi-target tree regression model was tested with actual values to verify the reliability of the model and predict the monthly electricity consumption of each industry in the second half of 2017. The experimental results show that the model can accurately predict the monthly electricity consumption of various industries.展开更多
Determining the optimal ceramic content of the ceramics-in-polymer composite electrolytes and the appropriate stack pressure can effectively improve the interfacial contact of solid-state batteries(SSBs).Based on the ...Determining the optimal ceramic content of the ceramics-in-polymer composite electrolytes and the appropriate stack pressure can effectively improve the interfacial contact of solid-state batteries(SSBs).Based on the contact mechanics model and constructed by the conjugate gradient method,continuous convolution,and fast Fourier transform,this paper analyzes and compares the interfacial contact responses involving the polymers commonly used in SSBs,which provides the original training data for machine learning.A support vector regression model is established to predict the relationship between the content of ceramics and the interfacial resistance.The Bayesian optimization and K-fold cross-validation are introduced to find the optimal combination of hyperparameters,which accelerates the training process and improves the model’s accuracy.We found the relationship between the content of ceramics,the stack pressure,and the interfacial resistance.The results can be taken as a reference for the design of the low-resistance composite electrolytes for solid-state batteries.展开更多
基金supported by the Basic Research Special Plan of Yunnan Provincial Department of Science and Technology-General Project(Grant No.202101AT070094)。
文摘The safety factor is a crucial quantitative index for evaluating slope stability.However,the traditional calculation methods suffer from unreasonable assumptions,complex soil composition,and inadequate consideration of the influencing factors,leading to large errors in their calculations.Therefore,a stacking ensemble learning model(stacking-SSAOP)based on multi-layer regression algorithm fusion and optimized by the sparrow search algorithm is proposed for predicting the slope safety factor.In this method,the density,cohesion,friction angle,slope angle,slope height,and pore pressure ratio are selected as characteristic parameters from the 210 sets of established slope sample data.Random Forest,Extra Trees,AdaBoost,Bagging,and Support Vector regression are used as the base model(inner loop)to construct the first-level regression algorithm layer,and XGBoost is used as the meta-model(outer loop)to construct the second-level regression algorithm layer and complete the construction of the stacked learning model for improving the model prediction accuracy.The sparrow search algorithm is used to optimize the hyperparameters of the above six regression models and correct the over-and underfitting problems of the single regression model to further improve the prediction accuracy.The mean square error(MSE)of the predicted and true values and the fitting of the data are compared and analyzed.The MSE of the stacking-SSAOP model was found to be smaller than that of the single regression model(MSE=0.03917).Therefore,the former has a higher prediction accuracy and better data fitting.This study innovatively applies the sparrow search algorithm to predict the slope safety factor,showcasing its advantages over traditional methods.Additionally,our proposed stacking-SSAOP model integrates multiple regression algorithms to enhance prediction accuracy.This model not only refines the prediction accuracy of the slope safety factor but also offers a fresh approach to handling the intricate soil composition and other influencing factors,making it a precise and reliable method for slope stability evaluation.This research holds importance for the modernization and digitalization of slope safety assessments.
基金This research has been supported by the US National Science Foundation under grant IIS-1115417the National Natural Science Foundation of China under grant 61728205,61472267and Foundation of Key Laboratory in Science and Technology Development Project of Suzhou under grant SZS201609。
文摘Multi-target regression is concerned with the simultaneous prediction of multiple continuous target variables based on the same set of input variables.It has received relatively small attention from the Machine Learning community.However,multi-target regression exists in many real-world applications.In this paper we conduct extensive experiments to investigate the performance of three representative multi-target regression learning algorithms(i.e.Multi-Target Stacking(MTS),Random Linear Target Combination(RLTC),and Multi-Objective Random Forest(MORF)),comparing the baseline single-target learning.Our experimental results show that all three multi-target regression learning algorithms do improve the performance of the single-target learning.Among them,MTS performs the best,followed by RLTC,followed by MORF.However,the single-target learning sometimes still performs very well,even the best.This analysis sheds the light on multi-target regression learning and indicates that the single-target learning is a competitive baseline for multi-target regression learning on multi-target domains.
文摘Urban grid power forecasting is one of the important tasks of power system operators, which helps to analyze the development trend of the city. As the demand for electricity in various industries is affected by many factors, the data of relevant influencing factors are scarce, resulting in great deviations in the accuracy of prediction results. In order to improve the prediction results, this paper proposes a model based on Multi-Target Tree Regression to predict the monthly electricity consumption of different industrial structures. Due to few data characteristics of actual electricity consumption in Shanghai from 2013 to the first half of 2017. Thus, we collect data on GDP growth, weather conditions, and tourism season distribution in various industries in Shanghai, model and train the electricity consumption data of different industries in different months. The multi-target tree regression model was tested with actual values to verify the reliability of the model and predict the monthly electricity consumption of each industry in the second half of 2017. The experimental results show that the model can accurately predict the monthly electricity consumption of various industries.
基金the National Natural Science Foundation of China(12102085)the Postdoctoral Science Foundation of China(2023M730504)the Sichuan Province Regional Innovation and Cooperation Project(2024YFHZ0210).
文摘Determining the optimal ceramic content of the ceramics-in-polymer composite electrolytes and the appropriate stack pressure can effectively improve the interfacial contact of solid-state batteries(SSBs).Based on the contact mechanics model and constructed by the conjugate gradient method,continuous convolution,and fast Fourier transform,this paper analyzes and compares the interfacial contact responses involving the polymers commonly used in SSBs,which provides the original training data for machine learning.A support vector regression model is established to predict the relationship between the content of ceramics and the interfacial resistance.The Bayesian optimization and K-fold cross-validation are introduced to find the optimal combination of hyperparameters,which accelerates the training process and improves the model’s accuracy.We found the relationship between the content of ceramics,the stack pressure,and the interfacial resistance.The results can be taken as a reference for the design of the low-resistance composite electrolytes for solid-state batteries.