Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley a...Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.展开更多
As the bed depth increases,sintering yield increases,but the productivity decreases.To reveal the reasons for the decrease in productivity and explore targeted solutions,the bed resistance of mixtures,wet zone,and com...As the bed depth increases,sintering yield increases,but the productivity decreases.To reveal the reasons for the decrease in productivity and explore targeted solutions,the bed resistance of mixtures,wet zone,and combustion zone was analyzed in the laboratory.The results showed that the decreased porosity of mixture resulted in the increased bed resistance by 160.56%when the bed depth increased from 600 to 1000 mm.After improving porosity of 1%by adding loosening bars with optimized size and distribution,the bed resistance decreased,and the productivity increased by 5%.The increase in bed depth increased the thickness of the wet zone from 120 to 680 mm and the resistance from 1.56 to 8.83 kPa.By using a three-stage intensive mixer and pre-adding water for granulation,the moisture of mixture was reduced by 0.6%,and the sintering productivity increased by 4%.Besides,the high bed resistance is mainly caused by the increase in the thickness of the combustion zone from 31.9 to 132.7 mm,and the bed resistance increased from 0.70 to 5.62 kPa.The bed resistance of the combustion zone at 900 mm was increased by 90.51%compared to 700 mm.After optimization of the distribution of coke breeze,the thickness of combustion zone at the lower layer decreased from 132.7 to 106.84 mm and permeability improved significantly.展开更多
Real-time prediction and precise control of sinter quality are pivotal for energy saving,cost reduction,quality improvement and efficiency enhancement in the ironmaking process.To advance,the accuracy and comprehensiv...Real-time prediction and precise control of sinter quality are pivotal for energy saving,cost reduction,quality improvement and efficiency enhancement in the ironmaking process.To advance,the accuracy and comprehensiveness of sinter quality prediction,an intelligent flare monitoring system for sintering machine tails that combines hybrid neural networks integrating convolutional neural network with long short-term memory(CNN-LSTM)networks was proposed.The system utilized a high-temperature thermal imager for image acquisition at the sintering machine tail and employed a zone-triggered method to accurately capture dynamic feature images under challenging conditions of high-temperature,high dust,and occlusion.The feature images were then segmented through a triple-iteration multi-thresholding approach based on the maximum between-class variance method to minimize detail loss during the segmentation process.Leveraging the advantages of CNN and LSTM networks in capturing temporal and spatial information,a comprehensive model for sinter quality prediction was constructed,with inputs including the proportion of combustion layer,porosity rate,temperature distribution,and image features obtained from the convolutional neural network,and outputs comprising quality indicators such as underburning index,uniformity index,and FeO content of the sinter.The accuracy is notably increased,achieving a 95.8%hit rate within an error margin of±1.0.After the system is applied,the average qualified rate of FeO content increases from 87.24%to 89.99%,representing an improvement of 2.75%.The average monthly solid fuel consumption is reduced from 49.75 to 46.44 kg/t,leading to a 6.65%reduction and underscoring significant energy saving and cost reduction effects.展开更多
Ceramic dielectric materials with high dielectric strength and mechanisms of their internal factors affecting dielectric strength are significantly valuable for industrial application,especially for selection of suita...Ceramic dielectric materials with high dielectric strength and mechanisms of their internal factors affecting dielectric strength are significantly valuable for industrial application,especially for selection of suitable dielectric materials for high-power microwave transmission devices and reliable power transmission.Pure magnesium oxide(MgO),a kind of ceramic dielectric material,possesses great application potential in high-power microwave transmission devices due to its high theoretical dielectric strength,low dielectric constant,and low dielectric loss properties,but its application is limited by high sintering temperature during preparation.This work presented the preparation of a new type of multiphase ceramics based on MgO,which was MgO-1%ZrO_(2)-1%CaCO_(3-x)%MnCO_(3)(MZCM_(x),x=0,0.25,0.50,1.00,1.50,in molar),and their phase structures,morphological features,and dielectric properties were investigated.It was found that inclusion of ZrO_(2) and CaCO_(3) effectively inhibited excessive growth of MgO grains by formation of second phase,while addition of MnCO_(3) promoted the grain boundary diffusion process during the sintering process and reduced activation energy for the grain growth,resulting in a lower ceramic sintering temperature.Excellent performance,including high dielectric strength(Eb=92.3 kV/mm)and quality factor(Q×f=216642 GHz),simultaneously accompanying low dielectric loss(<0.03%),low temperature coefficient of dielectric constant(20.3×10^(–6)℃^(–1),85℃)and resonance frequency(–12.54×10^(–6)℃^(–1)),was achieved in MZCM1.00 ceramics under a relatively low sintering temperature of 1350℃.This work offers an effective solution for selecting dielectric materials for high-power microwave transmission devices.展开更多
High-performance graphite materials have important roles in aerospace and nuclear reactor technologies because of their outstanding chemical stability and high-temperature performance.Their traditional production meth...High-performance graphite materials have important roles in aerospace and nuclear reactor technologies because of their outstanding chemical stability and high-temperature performance.Their traditional production method relies on repeated impregnation-carbonization and graphitization,and is plagued by lengthy preparation cycles and high energy consumption.Phase transition-assisted self-pressurized selfsintering technology can rapidly produce high-strength graphite materials,but the fracture strain of the graphite materials produced is poor.To solve this problem,this study used a two-step sintering method to uniformly introduce micro-nano pores into natural graphite-based bulk graphite,achieving improved fracture strain of the samples without reducing their density and mechanical properties.Using natural graphite powder,micron-diamond,and nano-diamond as raw materials,and by precisely controlling the staged pressure release process,the degree of diamond phase transition expansion was effectively regulated.The strain-to-failure of the graphite samples reached 1.2%,a 35%increase compared to samples produced by fullpressure sintering.Meanwhile,their flexural strength exceeded 110 MPa,and their density was over 1.9 g/cm^(3).The process therefore produced both a high strength and a high fracture strain.The interface evolution and toughening mechanism during the two-step sintering process were investigated.It is believed that the micro-nano pores formed have two roles:as stress concentrators they induce yielding by shear and as multi-crack propagation paths they significantly lengthen the crack propagation path.The two-step sintering phase transition strategy introduces pores and provides a new approach for increasing the fracture strain of brittle materials.展开更多
1.Introduction.Ni-Mn-X(X=Ga,In,Sn,or Sb)Heusler alloys have versatile properties[1-4],such as shape memory effect[1],superelastic-ity[5],magnetocaloric effect[3],elastocaloric effect[6],and even multicaloric effect[7]...1.Introduction.Ni-Mn-X(X=Ga,In,Sn,or Sb)Heusler alloys have versatile properties[1-4],such as shape memory effect[1],superelastic-ity[5],magnetocaloric effect[3],elastocaloric effect[6],and even multicaloric effect[7],that indicate their potential for use in actu-ators,sensors,micropumps,energy harvesters,and solid-state re-frigeration[8-10].Among the alloys,Ni-Mn-Sn-based alloys are environment-friendly and cost-effective[6,7,11],and hence,they have received widespread attention.展开更多
During the sintering process of iron ore,a large amount of nitrogen oxides is generated,for which there is currently no efficient and economical treatment process.Therefore,it is necessary to implement process control...During the sintering process of iron ore,a large amount of nitrogen oxides is generated,for which there is currently no efficient and economical treatment process.Therefore,it is necessary to implement process control in sintering production to keep the mass concentration of NO_(x)in sintering flue gas at a low level.Through industrial trials at sintering sites,methods such as correlation analysis,path analysis,and multiple linear regression were applied to analyze the influence of various factors on NO emissions during the sintering process.The results indicate that negative correlations exist between nitrogen monoxide(NO)emissions and negative pressure,permeability index,O_(2) concentration,CO concentration,and flue gas temperature.Conversely,positive correlations exist between NO emissions and dust concentration,water vapor volume fraction,and sintering bed speed.Among these factors,O_(2) concentration and dust concentration are identified as the most significant influencing factors on NO emissions.By analyzing the masses and modes of influence of different factors,the mechanisms of action of each factor were obtained.Specifically,O_(2) concentration,dust concentration,permeability index,CO concentration,and flue gas temperature play a direct dominant role in NO emissions during the sintering process,while water vapor volume fraction,sintering trolley speed,and negative pressure have an indirect effect.A predictive model for NO mass concentration in flue gas was established with an accuracy rate of 91.6%,showing consistent overall trends with actual values.Finally,denitrification strategies for sintering industrial production were proposed,along with prospects for preliminary denitrification of sintering flue gas using fluidized bed conditions in the duct.展开更多
Limestone was pretreated via the mechanical activation method,and burnt lime was partially substituted by the pretreated limestone for better sinter indices and lower sintering costs.With the reduction in the size dis...Limestone was pretreated via the mechanical activation method,and burnt lime was partially substituted by the pretreated limestone for better sinter indices and lower sintering costs.With the reduction in the size distribution of the pretreated limestone,the particle morphology,the activity of the calcined limestone and the fluidity of the liquid phase during sintering are all improved.When the substitution ratio of the pretreated limestone for burnt lime is kept at 50%,the granulation performance and sinter indices in sinter pot tests are both better compared with that of the base case.Much denser interleaved texture in product sinter is formed with the reduction of sinter porosity and improvement of silico-ferrite of calcium and alumina amount.When the particle size of the pretreated limestone is maintained within the optimal range of 0–2 mm,the tumble index,yield and productivity increase by 7.2%,2.6%and 11.2%,respectively,while the solid fuel rate decreases by 8.7%.In the corresponding sinter industry production,the tumble index and output of the product sinter are comparable to those of the base case,while the coke dosage is reduced by 9.0%.Reduction index and reduction degradation index(RDI_(+3.15))are both higher than 74%.The cost of raw materials in sintering process can be greatly reduced.展开更多
A pre-reduction sintering process with flue gas recirculation(PSP_(fsg)-FGR)was developed to mitigate alkalis harm to the blast furnace and reduce the flue gas emission in the whole ironmaking process.The results indi...A pre-reduction sintering process with flue gas recirculation(PSP_(fsg)-FGR)was developed to mitigate alkalis harm to the blast furnace and reduce the flue gas emission in the whole ironmaking process.The results indicated that the pre-reduction sintering process(PSP)can effectively remove 58.02%of K and 30.68%of Na from raw mixtures and improve yield and tumbler index to 74.40%and 68.69%,respectively.Moreover,PSP was conducive to reducing NO_(x) and SO_(2)emissions and simultaneously increasing CO content in flue gas.Circulating CO-containing flue gas to sintering bed effectively recycled CO and further improved K and Na removal ratio to 74.11%and 32.92%,respectively.Microstructural analysis revealed that the pre-reduced sinter mainly consisted of magnetite,wustite and a small quantity of metallic iron,and very few silicate glass phase was also formed.This process can simultaneously realize alkali metal elements removal as well as flue gas emission reduction from the integrated ironmaking process.展开更多
Steel rolling sludge,an oil-containing waste generated during steel production,was difficult to manage.Prolonged storage poses significant environmental and health hazards.Most steel enterprises in China use steel rol...Steel rolling sludge,an oil-containing waste generated during steel production,was difficult to manage.Prolonged storage poses significant environmental and health hazards.Most steel enterprises in China use steel rolling sludge directly as a raw material for sintering.However,its adhesive nature caused poor mixing with other materials,affecting the quality of the sinter.Herein,the incorporation of steel rolling sludge incineration slag into the sintering process was investigated for experimental purposes.The results indicated that adding 1%incinerated steel rolling sludge to the sintering raw material was feasible.At this proportion,both the yield and the tumbler index of the sinter have improved,primarily due to the oxidation reaction of Fe_(3)O_(4)present in the steel rolling sludge incineration slag during the sintering process,which significantly increases the sensible heat of the sinter and enhances the sintering mineralization reaction.Notably,the addition of steel rolling sludge incineration slag reduced dioxin concentrations in the sintering flue gas.Although CO,NO_(x),and SO_(2)emission concentrations slightly increased,the existing flue gas treatment system effectively controlled their emissions.展开更多
Silica-based ramming mixes are widely used as lining materials in coreless induction furnaces,which serve as the main equipment for iron and steel in foundry industry.The service life of linings made from silica-based...Silica-based ramming mixes are widely used as lining materials in coreless induction furnaces,which serve as the main equipment for iron and steel in foundry industry.The service life of linings made from silica-based ramming mixes depends on the properties of quartzite raw materials.In this paper,quartzites from three regions were selected as raw materials,with boron oxide and boron phosphate as sintering aids.By comparing and testing performance such as the phase composition,permanent linear change,bulk density,apparent porosity,and slag resistance,the effects of raw material characteristics and sintering aids on the performance of the silica-based ramming mixes were investigated.The results showed that boron oxidecontaining ramming mixes prepared from quartzite with a fast phase transition showed lower strength and greater expansion as well as lower slag penetration index.For boron phosphate as a sintering aid,ramming mixes made from quartzites with medium and slow phase transition rates had an approaching slag penetration index comparable to those containing boron oxide,although their strength was lower than the latter.According to the melting requirements of stainless steel,boron phosphate can replace boron oxide as a sintering aid for silica-based ramming mixes.Regarding practical applications for linings of coreless induction furnaces,the selection of quartzite as the raw material for silica-based ramming mixes shall be comprehensively considered from multiple aspects.展开更多
BiCuSeO thermoelectric ceramics were fabricated using self-propagating high-temperature synthesis(SHS)combined with spark plasma sintering(SPS),and their phase compositions,microstructure,electrical properties,and the...BiCuSeO thermoelectric ceramics were fabricated using self-propagating high-temperature synthesis(SHS)combined with spark plasma sintering(SPS),and their phase compositions,microstructure,electrical properties,and thermal properties were systematically characterized and analyzed.The experimental results demonstrate that applying high-pressure condition during the sintering process will effectively restrict grain growth,reduce porosity,and lead to an increase in electrical conductivity.Simultaneously,high pressure sintering conditions reduce grain size and introduce additional grain boundaries and defects,which strengthens phonon scattering,thereby further decreasing both lattice thermal conductivity and total thermal conductivity.As a result,the high-pressure conditions significantly improve the thermoelectric figure of merit(ZT)of BiCuSeO.In brief,the samples sintered at 600℃under 200 MPa achieve a maximum ZT value of 0.64 at approximately 792 K.展开更多
Iron phosphate based glass-ceramics with deliberately added Ce as an active nuclide simulant were prepared by microwave sintering.The sintering characteristics,including phases and structural evolution,and chemical du...Iron phosphate based glass-ceramics with deliberately added Ce as an active nuclide simulant were prepared by microwave sintering.The sintering characteristics,including phases and structural evolution,and chemical durability were investigated.XRD showed that NaZr_(2)(PO_(4))_(3) and FePO_(4) became the main crystalline phases of glass-ceramics with increasing sintering temperature.SEM revealed the glass-ceramics compactness increased first and then decreased as sintering temperature increased.Raman spectrum showed that,as sintering temperature increased,the network structure of glass-ceramics changed from mainly containing orthophosphate and pyrophosphate to a single orthophosphate.After immersion for 28 days,LR_(Na),LR_(Zr) and LR_(Ce) of the glass-ceramics prepared at 1000℃ were as low as 3.64×10^(-5),0.25×10^(-9) and 5.70×10^(-9)g/m^(2)/d respectively.The results indicate that iron phosphate based glass-ceramics can be prepared by rapid microwave sintering of glass powders and there is a potential of employing such microwave sintering technique in processing of glass-ceramics nuclear waste form.展开更多
Controlling the adhesion of potentially corrosive substances from flue gas on grate bar is crucial for extending the operational lifespan of the equipment.The adhesive behaviour and mechanism of ultrafine particulate ...Controlling the adhesion of potentially corrosive substances from flue gas on grate bar is crucial for extending the operational lifespan of the equipment.The adhesive behaviour and mechanism of ultrafine particulate matters(UPM)throughout the sintering process were elucidated,and measures to control adhesion on grate bars were developed.Research findings indicated that a small quantity of UPM were found on grate bar during the initial sintering stages(ignition stage and middle stageⅠandⅡ).The main compositions of UPM were FexOy-rich,CaO-rich,and aluminium silicate-rich particles.In contrast,corrosive substances like alkali metal compounds were almost absent.These UPM adhered onto grate bar primarily through inertial impaction.When moving to the final sintering stages(middle stageⅢand temperature rising stage),many UPM rich in corrosive substances like NaCl and KCl adhered to the grate bar.These UPM adhered to grate bar through thermal diffusion and vortex deposition.Solid waste water washing technology can greatly decrease the quantity of UPM(rich in NaCl and KCl)on the grate bar due to vortex deposition and thermal diffusion,and it represents a potentially promising way to control adhesion and corrosion on grate bars.展开更多
Carbide dispersion reinforcing has been demonstrated to be an effective way of strengthening metal matrix composites.However,plagued by the nerve-wracking fact that the carbide particles tend to aggregate at the grain...Carbide dispersion reinforcing has been demonstrated to be an effective way of strengthening metal matrix composites.However,plagued by the nerve-wracking fact that the carbide particles tend to aggregate at the grain boundary of the metal matrix,grow up,and form an incoherent interface with it,their improvement in mechanical strength tends to be limited.In this study,spark plasma sintering(SPS)was used to prepare the bulk alloy Ni20Cr and its composites with different carbides including TiC,SiC,and Ti_(3)SiC_(2).Plasma leads to discharge and elevates temperature at the interface to melt the Ni20Cr alloy particles locally.When cooled down,the alloy is heterogeneously solidified on the surface of the carbide and builds up a coherent interface with it.Owing to the decomposition of Ti_(3)SiC_(2) during sintering,it completely transformed into nanosized TiC particles,which are engulfed by the outer melted layer of Ni20Cr and well dispersed within the alloy grains.In comparison to the Ni20Cr alloy,the composite with merely 4 wt%Ti_(3)SiC_(2) gains over three times enhancement in yield strength to 879 MPa,while keeping a moderate high elongation of 17.8%.Finite element analysis demonstrated that the combination of SPS and precursor MAX phase of Ti_(3)SiC_(2),which results in the in-situ precipitation of coherent ultrafine TiC particles in alloy grains,plays the key role in getting a good balance between mechanical strength and ductility for the Ni20Cr matrix composites.展开更多
Nickel-based alloys applied in marine environments often face multiple challenges of stress,corrosion and wear.In this work,heterostructured NiCrTi alloy was prepared by spark plasma sintering coarse Ni20Cr and ultraf...Nickel-based alloys applied in marine environments often face multiple challenges of stress,corrosion and wear.In this work,heterostructured NiCrTi alloy was prepared by spark plasma sintering coarse Ni20Cr and ultrafine Ti powders.Apart that some are dissolved into the nickel alloy,Ti powders react in situ with Ni20Cr during sintering to form hard intermetallic Ni_(3)Ti.It builds up a typical heterostructure that endows NiCrTi alloy with well-balanced mechanical strength and plasticity,e.g.high yield strength of 1321 MPa,compressive strength of 2470 MPa,and compressive strain of 20%.On tribocorrosion,the hard shell enriched with Ti transforms to connected protrusion and form in situ surface texture.Oxides or wear debris are trapped at the textured surface and compacted to form a stable tribofilm.Thus negative synergy between corrosion and wear is observed for NiCrTi and high tribocorrosion resistance is achieved.At a potential of+0.3 V,the tribocorrosion rate of NiCrTi is reduced by an order of magnitude to 1.87×10^(-5)mm^(3)/(Nm)in comparison to the alloy Ni20Cr.展开更多
Ceramic materials with intricate structures can be efficiently fabricated using stereolithography(SLA)based 3D printing technology,offering advantages over traditional methods.Sintering temperature has primary effect ...Ceramic materials with intricate structures can be efficiently fabricated using stereolithography(SLA)based 3D printing technology,offering advantages over traditional methods.Sintering temperature has primary effect on properties of ceramics.This study investigated the crucial sintering temperature for 3D printed ceramics to ensure the desired properties.The results indicate that all samples exhibit a consistent layered structure across the experimental sintering temperatures.When the sintering temperature is increased from 1,250℃ to 1,350℃,the grain's morphology changes from spherical to plate-like.Surface morphology analysis reveals a decrease in surface roughness at sintering temperatures above 1,350℃.Mechanical tests show improved flexural strength and stiffness as the sintering temperature rises.Friction and wear experiments demonstrate that as the sintering temperature increases from 1,450℃ to 1,550℃,the wear pattern on ceramic surfaces transitions from deep pits to shallow grooves.The increase in sintering temperature effectively enhances the wear resistance of 3D printed alumina ceramics.This improvement plays a significant role in expanding the application field of these ceramics,prolonging the lifespan of parts,reducing production costs,enhancing performance,and promoting environmental protection.In this study,ceramics achieve the highest strength and best wear resistance when sintered at 1,600℃,resulting in the best overall performance.展开更多
Cu nanoparticles exhibit excellent properties as high-temperature-resistant,conductive,heat-dissipating,and connecting materials.However,their susceptibility to oxidation poses a major challenge to the production of h...Cu nanoparticles exhibit excellent properties as high-temperature-resistant,conductive,heat-dissipating,and connecting materials.However,their susceptibility to oxidation poses a major challenge to the production of high-quality sintered bodies in the air,severely limiting their widespread adoption in power electronics packaging.This study presents a novel approach to the synthesis of Cu nanoparticles capped with oleylamine ligands.By employing a simple solvent-cleaning process,effective control of the density of oleylamine ligands on particle surfaces was achieved,resulting in high-performance Cu nanoparticles with both oxidation resistance and air-sintering susceptibility.Moreover,through our research,the solvent-cleaning mechanism was clarified,a model for the oleylamine ligand decomposition was developed,the air-sintering behavior of Cu nanoparticles was analyzed,and the impacts of both the sintered bodies and interfaces on the sintering performance were explained.Additionally,Cu nanoparticles subjected to 5 cleaning rounds followed by sintering at 280℃and 5 MPa in air were confirmed to be able to produce the highest shear strength(49.2±3.51 MPa)and lowest resistivity(6.15±0.32μΩ·cm).Based on these results,flexible capacitive pressure sensors with Cu sintered electrodes were fabricated and demonstrated a stable pressure-capacitance response over the temperature range of 25-250℃.These findings underscore the impressive robustness and durability of sintered structures and the potential for high-temperature applications of oleylamine-capped Cu nanoparticles.Our study provides reliable application demonstrations for the low-cost manufacture of high-performance power electronics packaging structures that can operate in high-current-density,high-heat-flow-density,high-temperature,and high-stress environments.展开更多
Four types of submicron Ag-coated Cu particles with different Ag contents were prepared as sintering paste fillers,and the Ag contents of the particles were measured to be 10,20,30,and 40 wt.%.Four types of particles(...Four types of submicron Ag-coated Cu particles with different Ag contents were prepared as sintering paste fillers,and the Ag contents of the particles were measured to be 10,20,30,and 40 wt.%.Four types of particles(in order of increasing Ag content:A10,A20,A30,and A40)were surface-modified with stearic acid,to suppress the Ag shell dewetting and improve sinterability.The surface-modified particles were mixed with a polyol-based solvent to fabricate a resin-free paste.Subsequently,the pastes were screen-printed onto a slide glass and sintered at 250°C in a nitrogen atmosphere for 1-10 min to form an electrode.The electrical resistivity of the sintered film as a function of sintering time was measured using a four-point probe.All the four surface-modified Cu@Ag particles with different Ag contents exhibited decreased electrical resistivity.Particularly,the largest difference in values after and before the surface modification was observed for A40 with the highest Ag content;the electrical resistivities of the initial and surface-modified particles were 1.51×10^(-4) and 6.67×10^(-5)Ω·cm,respectively,after sintering for 10 min.The findings of this study confirmed that the surface modification using stearic acid effectively suppressed the dewetting of the Ag shell and improved the sinterability of the submicron Cu@Ag particles.展开更多
Light-weight Mg-based alloys have gained attention owing to their various applications in engineering and biomedicalfields.Recent advancements in modern powder metallurgy techniques,such as spark plasma technique(SPS),...Light-weight Mg-based alloys have gained attention owing to their various applications in engineering and biomedicalfields.Recent advancements in modern powder metallurgy techniques,such as spark plasma technique(SPS),have enabled achieving near-net-shape products with tailored properties and decreased in-process oxidation.However,improving their mechanical and physical properties require further enhancement.In this study,a novel Mg-0.7Ca alloy was produced using SPS process.The effects of process parameters such as sintering time and additive type on the microstructural evolutions,phase arrangements,and mechanical and physical properties of the consolidated materials were investigated through various characterization techniques.Full-dense samples were produced from 60-minute ball-milled powder mixtures through spark plasma sintering at 420℃ for 7,10,and 13 min under 38 MPa of externally applied pressure.The obtained samples were then characterized using Field Emission Scanning Electron Microscopy(FESEM),Electron Backscatter Diffraction(EBSD),X-ray Energy Dispersive Spectroscopy(EDS),and X-ray Diffraction(XRD)analysis methods,as well as mechanical tests including compression strength and micro-hardness measurements.The results indicated that while improved densification behavior is observed in paraffin-contained samples,relatively better compression properties are achieved in starch-contained alloys.It is also found that the phase arrangement of the starch-contained samples includes higher fractions of the secondary phases such as oxides and residual carbons,which can positively affect the mechanical strength,despite decreased hardness.The microstructural characterizations showed an intensified thermomechanical response of the materials in both groups via increased sintering time.However,the competition between the influencing parameters causes scattered strengthening behavior and texture in the consolidated samples.Detailed discussions about the densification behavior,texture,and obtained characteristics were also included.展开更多
基金supported by the General Program of the National Natural Science Foundation of China(No.52274326)the China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202109)the Seventh Batch of Ten Thousand Talents Plan of China(No.ZX20220553).
文摘Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.
基金supported by the Basic Science Center Project for the National Natural Science Foundation of China(No.72088101)the S&T Program of Hebei(No.23564101D).
文摘As the bed depth increases,sintering yield increases,but the productivity decreases.To reveal the reasons for the decrease in productivity and explore targeted solutions,the bed resistance of mixtures,wet zone,and combustion zone was analyzed in the laboratory.The results showed that the decreased porosity of mixture resulted in the increased bed resistance by 160.56%when the bed depth increased from 600 to 1000 mm.After improving porosity of 1%by adding loosening bars with optimized size and distribution,the bed resistance decreased,and the productivity increased by 5%.The increase in bed depth increased the thickness of the wet zone from 120 to 680 mm and the resistance from 1.56 to 8.83 kPa.By using a three-stage intensive mixer and pre-adding water for granulation,the moisture of mixture was reduced by 0.6%,and the sintering productivity increased by 4%.Besides,the high bed resistance is mainly caused by the increase in the thickness of the combustion zone from 31.9 to 132.7 mm,and the bed resistance increased from 0.70 to 5.62 kPa.The bed resistance of the combustion zone at 900 mm was increased by 90.51%compared to 700 mm.After optimization of the distribution of coke breeze,the thickness of combustion zone at the lower layer decreased from 132.7 to 106.84 mm and permeability improved significantly.
基金founded by the Open Project Program of Anhui Province Key Laboratory of Metallurgical Engineering and Resources Recycling(Anhui University of Technology)(No.SKF21-06)Research Fund for Young Teachers of Anhui University of Technology in 2020(No.QZ202001).
文摘Real-time prediction and precise control of sinter quality are pivotal for energy saving,cost reduction,quality improvement and efficiency enhancement in the ironmaking process.To advance,the accuracy and comprehensiveness of sinter quality prediction,an intelligent flare monitoring system for sintering machine tails that combines hybrid neural networks integrating convolutional neural network with long short-term memory(CNN-LSTM)networks was proposed.The system utilized a high-temperature thermal imager for image acquisition at the sintering machine tail and employed a zone-triggered method to accurately capture dynamic feature images under challenging conditions of high-temperature,high dust,and occlusion.The feature images were then segmented through a triple-iteration multi-thresholding approach based on the maximum between-class variance method to minimize detail loss during the segmentation process.Leveraging the advantages of CNN and LSTM networks in capturing temporal and spatial information,a comprehensive model for sinter quality prediction was constructed,with inputs including the proportion of combustion layer,porosity rate,temperature distribution,and image features obtained from the convolutional neural network,and outputs comprising quality indicators such as underburning index,uniformity index,and FeO content of the sinter.The accuracy is notably increased,achieving a 95.8%hit rate within an error margin of±1.0.After the system is applied,the average qualified rate of FeO content increases from 87.24%to 89.99%,representing an improvement of 2.75%.The average monthly solid fuel consumption is reduced from 49.75 to 46.44 kg/t,leading to a 6.65%reduction and underscoring significant energy saving and cost reduction effects.
基金Student Training Program for Innovation and Entrepreneurship of Hangzhou Institute for Advanced Study,UCAS(CXCY20230305)Chinese Academy of Sciences Key Project(ZDRW-CN-2021-3-1-18)。
文摘Ceramic dielectric materials with high dielectric strength and mechanisms of their internal factors affecting dielectric strength are significantly valuable for industrial application,especially for selection of suitable dielectric materials for high-power microwave transmission devices and reliable power transmission.Pure magnesium oxide(MgO),a kind of ceramic dielectric material,possesses great application potential in high-power microwave transmission devices due to its high theoretical dielectric strength,low dielectric constant,and low dielectric loss properties,but its application is limited by high sintering temperature during preparation.This work presented the preparation of a new type of multiphase ceramics based on MgO,which was MgO-1%ZrO_(2)-1%CaCO_(3-x)%MnCO_(3)(MZCM_(x),x=0,0.25,0.50,1.00,1.50,in molar),and their phase structures,morphological features,and dielectric properties were investigated.It was found that inclusion of ZrO_(2) and CaCO_(3) effectively inhibited excessive growth of MgO grains by formation of second phase,while addition of MnCO_(3) promoted the grain boundary diffusion process during the sintering process and reduced activation energy for the grain growth,resulting in a lower ceramic sintering temperature.Excellent performance,including high dielectric strength(Eb=92.3 kV/mm)and quality factor(Q×f=216642 GHz),simultaneously accompanying low dielectric loss(<0.03%),low temperature coefficient of dielectric constant(20.3×10^(–6)℃^(–1),85℃)and resonance frequency(–12.54×10^(–6)℃^(–1)),was achieved in MZCM1.00 ceramics under a relatively low sintering temperature of 1350℃.This work offers an effective solution for selecting dielectric materials for high-power microwave transmission devices.
基金Natural Science Foundation of Shanghai(24ZR1400800)he Natural Science Foundation of China(U23A20685,52073058,91963204)+1 种基金the National Key R&D Program of China(2021YFB3701400)Shanghai Sailing Program(23YF1400200)。
文摘High-performance graphite materials have important roles in aerospace and nuclear reactor technologies because of their outstanding chemical stability and high-temperature performance.Their traditional production method relies on repeated impregnation-carbonization and graphitization,and is plagued by lengthy preparation cycles and high energy consumption.Phase transition-assisted self-pressurized selfsintering technology can rapidly produce high-strength graphite materials,but the fracture strain of the graphite materials produced is poor.To solve this problem,this study used a two-step sintering method to uniformly introduce micro-nano pores into natural graphite-based bulk graphite,achieving improved fracture strain of the samples without reducing their density and mechanical properties.Using natural graphite powder,micron-diamond,and nano-diamond as raw materials,and by precisely controlling the staged pressure release process,the degree of diamond phase transition expansion was effectively regulated.The strain-to-failure of the graphite samples reached 1.2%,a 35%increase compared to samples produced by fullpressure sintering.Meanwhile,their flexural strength exceeded 110 MPa,and their density was over 1.9 g/cm^(3).The process therefore produced both a high strength and a high fracture strain.The interface evolution and toughening mechanism during the two-step sintering process were investigated.It is believed that the micro-nano pores formed have two roles:as stress concentrators they induce yielding by shear and as multi-crack propagation paths they significantly lengthen the crack propagation path.The two-step sintering phase transition strategy introduces pores and provides a new approach for increasing the fracture strain of brittle materials.
基金supported by the National Key R&D Pro-gram of China(No.2022YFB3805701)National Natural Science Foundation of China(NSFC)(No.52371182,51701052,52192592,52192593)+1 种基金Young Elite Scientists Sponsorship Program by CAST(No.2019QNRC001)the Heilongjiang Touyan Innovation Team Program.
文摘1.Introduction.Ni-Mn-X(X=Ga,In,Sn,or Sb)Heusler alloys have versatile properties[1-4],such as shape memory effect[1],superelastic-ity[5],magnetocaloric effect[3],elastocaloric effect[6],and even multicaloric effect[7],that indicate their potential for use in actu-ators,sensors,micropumps,energy harvesters,and solid-state re-frigeration[8-10].Among the alloys,Ni-Mn-Sn-based alloys are environment-friendly and cost-effective[6,7,11],and hence,they have received widespread attention.
基金supported by the National Natural Science Foundation of China(No.51974131)Hebei Outstanding Youth Fund Project(No.E2020209082),Tangshan Key R&D Program project(No.22150232J)Sixth Division Wujiaqu City Science and Technology Plan Project(2410).
文摘During the sintering process of iron ore,a large amount of nitrogen oxides is generated,for which there is currently no efficient and economical treatment process.Therefore,it is necessary to implement process control in sintering production to keep the mass concentration of NO_(x)in sintering flue gas at a low level.Through industrial trials at sintering sites,methods such as correlation analysis,path analysis,and multiple linear regression were applied to analyze the influence of various factors on NO emissions during the sintering process.The results indicate that negative correlations exist between nitrogen monoxide(NO)emissions and negative pressure,permeability index,O_(2) concentration,CO concentration,and flue gas temperature.Conversely,positive correlations exist between NO emissions and dust concentration,water vapor volume fraction,and sintering bed speed.Among these factors,O_(2) concentration and dust concentration are identified as the most significant influencing factors on NO emissions.By analyzing the masses and modes of influence of different factors,the mechanisms of action of each factor were obtained.Specifically,O_(2) concentration,dust concentration,permeability index,CO concentration,and flue gas temperature play a direct dominant role in NO emissions during the sintering process,while water vapor volume fraction,sintering trolley speed,and negative pressure have an indirect effect.A predictive model for NO mass concentration in flue gas was established with an accuracy rate of 91.6%,showing consistent overall trends with actual values.Finally,denitrification strategies for sintering industrial production were proposed,along with prospects for preliminary denitrification of sintering flue gas using fluidized bed conditions in the duct.
基金supported by Natural Science Foundation of Chongqing(No.CSTB2023NSCQ-BHX0166)Postdoctoral Science Foundation of China(No.2024T171095)Fundamental Research Funds for the Central Universities(No.2024CDJXY003).
文摘Limestone was pretreated via the mechanical activation method,and burnt lime was partially substituted by the pretreated limestone for better sinter indices and lower sintering costs.With the reduction in the size distribution of the pretreated limestone,the particle morphology,the activity of the calcined limestone and the fluidity of the liquid phase during sintering are all improved.When the substitution ratio of the pretreated limestone for burnt lime is kept at 50%,the granulation performance and sinter indices in sinter pot tests are both better compared with that of the base case.Much denser interleaved texture in product sinter is formed with the reduction of sinter porosity and improvement of silico-ferrite of calcium and alumina amount.When the particle size of the pretreated limestone is maintained within the optimal range of 0–2 mm,the tumble index,yield and productivity increase by 7.2%,2.6%and 11.2%,respectively,while the solid fuel rate decreases by 8.7%.In the corresponding sinter industry production,the tumble index and output of the product sinter are comparable to those of the base case,while the coke dosage is reduced by 9.0%.Reduction index and reduction degradation index(RDI_(+3.15))are both higher than 74%.The cost of raw materials in sintering process can be greatly reduced.
基金Project(52274290)supported by the National Natural Science Foundation of ChinaProject(72088101)supported by the Basic Science Center Project for National Natural Science Foundation of China。
文摘A pre-reduction sintering process with flue gas recirculation(PSP_(fsg)-FGR)was developed to mitigate alkalis harm to the blast furnace and reduce the flue gas emission in the whole ironmaking process.The results indicated that the pre-reduction sintering process(PSP)can effectively remove 58.02%of K and 30.68%of Na from raw mixtures and improve yield and tumbler index to 74.40%and 68.69%,respectively.Moreover,PSP was conducive to reducing NO_(x) and SO_(2)emissions and simultaneously increasing CO content in flue gas.Circulating CO-containing flue gas to sintering bed effectively recycled CO and further improved K and Na removal ratio to 74.11%and 32.92%,respectively.Microstructural analysis revealed that the pre-reduced sinter mainly consisted of magnetite,wustite and a small quantity of metallic iron,and very few silicate glass phase was also formed.This process can simultaneously realize alkali metal elements removal as well as flue gas emission reduction from the integrated ironmaking process.
基金supported by the National Natural Science Foundation of China(52204331)Natural Science Foundation of Anhui Province Youth Project(2208085QE145)the Open Project Program of Key Laboratory of Metallurgical Emission Reduction&Resources Recycling(Anhui University of Technology),Ministry of Education(JKF20-03).
文摘Steel rolling sludge,an oil-containing waste generated during steel production,was difficult to manage.Prolonged storage poses significant environmental and health hazards.Most steel enterprises in China use steel rolling sludge directly as a raw material for sintering.However,its adhesive nature caused poor mixing with other materials,affecting the quality of the sinter.Herein,the incorporation of steel rolling sludge incineration slag into the sintering process was investigated for experimental purposes.The results indicated that adding 1%incinerated steel rolling sludge to the sintering raw material was feasible.At this proportion,both the yield and the tumbler index of the sinter have improved,primarily due to the oxidation reaction of Fe_(3)O_(4)present in the steel rolling sludge incineration slag during the sintering process,which significantly increases the sensible heat of the sinter and enhances the sintering mineralization reaction.Notably,the addition of steel rolling sludge incineration slag reduced dioxin concentrations in the sintering flue gas.Although CO,NO_(x),and SO_(2)emission concentrations slightly increased,the existing flue gas treatment system effectively controlled their emissions.
基金grateful to Hubei Province Science and Technology Innovation Talent Plan,and Science and Technology Service Talent Special Project(2023DJC124)for the support on this work.
文摘Silica-based ramming mixes are widely used as lining materials in coreless induction furnaces,which serve as the main equipment for iron and steel in foundry industry.The service life of linings made from silica-based ramming mixes depends on the properties of quartzite raw materials.In this paper,quartzites from three regions were selected as raw materials,with boron oxide and boron phosphate as sintering aids.By comparing and testing performance such as the phase composition,permanent linear change,bulk density,apparent porosity,and slag resistance,the effects of raw material characteristics and sintering aids on the performance of the silica-based ramming mixes were investigated.The results showed that boron oxidecontaining ramming mixes prepared from quartzite with a fast phase transition showed lower strength and greater expansion as well as lower slag penetration index.For boron phosphate as a sintering aid,ramming mixes made from quartzites with medium and slow phase transition rates had an approaching slag penetration index comparable to those containing boron oxide,although their strength was lower than the latter.According to the melting requirements of stainless steel,boron phosphate can replace boron oxide as a sintering aid for silica-based ramming mixes.Regarding practical applications for linings of coreless induction furnaces,the selection of quartzite as the raw material for silica-based ramming mixes shall be comprehensively considered from multiple aspects.
基金Funded by the National Natural Science Foundation of China(Nos.52322207 and 52202289)the National Key Research and Development Plan of China(No.2021YFB3701400)+2 种基金the Independent Innovation Projects of the Hubei Longzhong Laboratory(No.2022ZZ-11)Funded by the National Natural Science Foundation of China(Nos.52322207 and 52202289)the National Key Research and Development Plan of China(No.2021YFB3701400)the Independent Innovation Projects of the Hubei Longzhong Laboratory(No.2022ZZ-11)。
文摘BiCuSeO thermoelectric ceramics were fabricated using self-propagating high-temperature synthesis(SHS)combined with spark plasma sintering(SPS),and their phase compositions,microstructure,electrical properties,and thermal properties were systematically characterized and analyzed.The experimental results demonstrate that applying high-pressure condition during the sintering process will effectively restrict grain growth,reduce porosity,and lead to an increase in electrical conductivity.Simultaneously,high pressure sintering conditions reduce grain size and introduce additional grain boundaries and defects,which strengthens phonon scattering,thereby further decreasing both lattice thermal conductivity and total thermal conductivity.As a result,the high-pressure conditions significantly improve the thermoelectric figure of merit(ZT)of BiCuSeO.In brief,the samples sintered at 600℃under 200 MPa achieve a maximum ZT value of 0.64 at approximately 792 K.
基金Funded by the Key Research and Development Projects of Anhui Province(No.2022a05020026)the Key Technologies R&D Program of CNBM(Nos.2021HX0809,2021HX1011)the Anhui Science and Technology Major Project(No.2021e03020009)。
文摘Iron phosphate based glass-ceramics with deliberately added Ce as an active nuclide simulant were prepared by microwave sintering.The sintering characteristics,including phases and structural evolution,and chemical durability were investigated.XRD showed that NaZr_(2)(PO_(4))_(3) and FePO_(4) became the main crystalline phases of glass-ceramics with increasing sintering temperature.SEM revealed the glass-ceramics compactness increased first and then decreased as sintering temperature increased.Raman spectrum showed that,as sintering temperature increased,the network structure of glass-ceramics changed from mainly containing orthophosphate and pyrophosphate to a single orthophosphate.After immersion for 28 days,LR_(Na),LR_(Zr) and LR_(Ce) of the glass-ceramics prepared at 1000℃ were as low as 3.64×10^(-5),0.25×10^(-9) and 5.70×10^(-9)g/m^(2)/d respectively.The results indicate that iron phosphate based glass-ceramics can be prepared by rapid microwave sintering of glass powders and there is a potential of employing such microwave sintering technique in processing of glass-ceramics nuclear waste form.
基金supported by the National Natural Science Foundation of China(No.52274344)the Provincial Natural Science Foundation of Hunan(Nos.2022JJ30723 and 2023JJ20068)the Science and Technology Innovation Program of Hunan Province(2023RC3042).
文摘Controlling the adhesion of potentially corrosive substances from flue gas on grate bar is crucial for extending the operational lifespan of the equipment.The adhesive behaviour and mechanism of ultrafine particulate matters(UPM)throughout the sintering process were elucidated,and measures to control adhesion on grate bars were developed.Research findings indicated that a small quantity of UPM were found on grate bar during the initial sintering stages(ignition stage and middle stageⅠandⅡ).The main compositions of UPM were FexOy-rich,CaO-rich,and aluminium silicate-rich particles.In contrast,corrosive substances like alkali metal compounds were almost absent.These UPM adhered onto grate bar primarily through inertial impaction.When moving to the final sintering stages(middle stageⅢand temperature rising stage),many UPM rich in corrosive substances like NaCl and KCl adhered to the grate bar.These UPM adhered to grate bar through thermal diffusion and vortex deposition.Solid waste water washing technology can greatly decrease the quantity of UPM(rich in NaCl and KCl)on the grate bar due to vortex deposition and thermal diffusion,and it represents a potentially promising way to control adhesion and corrosion on grate bars.
基金financially supported by the Liaoning Revitalization Talents Program(No.XLYC2203133)the Fundamental Research Funds for the Central Universities(No.N2302018)+1 种基金the Ningbo Yuyao City Science and Technology Plan Project(No.2023J03010010)the Fourth Batch of Ningxia Youth Talents Supporting Program(No.TJGC2019028).
文摘Carbide dispersion reinforcing has been demonstrated to be an effective way of strengthening metal matrix composites.However,plagued by the nerve-wracking fact that the carbide particles tend to aggregate at the grain boundary of the metal matrix,grow up,and form an incoherent interface with it,their improvement in mechanical strength tends to be limited.In this study,spark plasma sintering(SPS)was used to prepare the bulk alloy Ni20Cr and its composites with different carbides including TiC,SiC,and Ti_(3)SiC_(2).Plasma leads to discharge and elevates temperature at the interface to melt the Ni20Cr alloy particles locally.When cooled down,the alloy is heterogeneously solidified on the surface of the carbide and builds up a coherent interface with it.Owing to the decomposition of Ti_(3)SiC_(2) during sintering,it completely transformed into nanosized TiC particles,which are engulfed by the outer melted layer of Ni20Cr and well dispersed within the alloy grains.In comparison to the Ni20Cr alloy,the composite with merely 4 wt%Ti_(3)SiC_(2) gains over three times enhancement in yield strength to 879 MPa,while keeping a moderate high elongation of 17.8%.Finite element analysis demonstrated that the combination of SPS and precursor MAX phase of Ti_(3)SiC_(2),which results in the in-situ precipitation of coherent ultrafine TiC particles in alloy grains,plays the key role in getting a good balance between mechanical strength and ductility for the Ni20Cr matrix composites.
基金financially supported by the Liaoning Revitalization Talents Program(No.XLYC2203133)the Fundamental Research Funds for the Central Universities(No.N2302018)the Ningbo Yuyao City Science and Technology Plan Project(No.2023J03010010).
文摘Nickel-based alloys applied in marine environments often face multiple challenges of stress,corrosion and wear.In this work,heterostructured NiCrTi alloy was prepared by spark plasma sintering coarse Ni20Cr and ultrafine Ti powders.Apart that some are dissolved into the nickel alloy,Ti powders react in situ with Ni20Cr during sintering to form hard intermetallic Ni_(3)Ti.It builds up a typical heterostructure that endows NiCrTi alloy with well-balanced mechanical strength and plasticity,e.g.high yield strength of 1321 MPa,compressive strength of 2470 MPa,and compressive strain of 20%.On tribocorrosion,the hard shell enriched with Ti transforms to connected protrusion and form in situ surface texture.Oxides or wear debris are trapped at the textured surface and compacted to form a stable tribofilm.Thus negative synergy between corrosion and wear is observed for NiCrTi and high tribocorrosion resistance is achieved.At a potential of+0.3 V,the tribocorrosion rate of NiCrTi is reduced by an order of magnitude to 1.87×10^(-5)mm^(3)/(Nm)in comparison to the alloy Ni20Cr.
基金supported by the Xinjiang Tianchi Talent Introduction Plan (51052300585)the Fundamental Research Funds for Autonomous Region Universities (XJEDU2022P002)+1 种基金the Natural science foundation project of Xinjiang Uygur Autonomous Region (2023D01C192,2023D01C33)the Tianshan Innovation Team Program of Xinjiang Uygur Autonomous Region (2023D14001)。
文摘Ceramic materials with intricate structures can be efficiently fabricated using stereolithography(SLA)based 3D printing technology,offering advantages over traditional methods.Sintering temperature has primary effect on properties of ceramics.This study investigated the crucial sintering temperature for 3D printed ceramics to ensure the desired properties.The results indicate that all samples exhibit a consistent layered structure across the experimental sintering temperatures.When the sintering temperature is increased from 1,250℃ to 1,350℃,the grain's morphology changes from spherical to plate-like.Surface morphology analysis reveals a decrease in surface roughness at sintering temperatures above 1,350℃.Mechanical tests show improved flexural strength and stiffness as the sintering temperature rises.Friction and wear experiments demonstrate that as the sintering temperature increases from 1,450℃ to 1,550℃,the wear pattern on ceramic surfaces transitions from deep pits to shallow grooves.The increase in sintering temperature effectively enhances the wear resistance of 3D printed alumina ceramics.This improvement plays a significant role in expanding the application field of these ceramics,prolonging the lifespan of parts,reducing production costs,enhancing performance,and promoting environmental protection.In this study,ceramics achieve the highest strength and best wear resistance when sintered at 1,600℃,resulting in the best overall performance.
基金supported by the Natural Science Foundation of Fujian Province(No.2022J01044)the Digital Twin and Intelligent Transportation Maintenance Engineering Research Centre of Genting Applied Technology R&D Platform at Xiamen City University.
文摘Cu nanoparticles exhibit excellent properties as high-temperature-resistant,conductive,heat-dissipating,and connecting materials.However,their susceptibility to oxidation poses a major challenge to the production of high-quality sintered bodies in the air,severely limiting their widespread adoption in power electronics packaging.This study presents a novel approach to the synthesis of Cu nanoparticles capped with oleylamine ligands.By employing a simple solvent-cleaning process,effective control of the density of oleylamine ligands on particle surfaces was achieved,resulting in high-performance Cu nanoparticles with both oxidation resistance and air-sintering susceptibility.Moreover,through our research,the solvent-cleaning mechanism was clarified,a model for the oleylamine ligand decomposition was developed,the air-sintering behavior of Cu nanoparticles was analyzed,and the impacts of both the sintered bodies and interfaces on the sintering performance were explained.Additionally,Cu nanoparticles subjected to 5 cleaning rounds followed by sintering at 280℃and 5 MPa in air were confirmed to be able to produce the highest shear strength(49.2±3.51 MPa)and lowest resistivity(6.15±0.32μΩ·cm).Based on these results,flexible capacitive pressure sensors with Cu sintered electrodes were fabricated and demonstrated a stable pressure-capacitance response over the temperature range of 25-250℃.These findings underscore the impressive robustness and durability of sintered structures and the potential for high-temperature applications of oleylamine-capped Cu nanoparticles.Our study provides reliable application demonstrations for the low-cost manufacture of high-performance power electronics packaging structures that can operate in high-current-density,high-heat-flow-density,high-temperature,and high-stress environments.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2021R1A2C1007400)supported,partly,by the National R&D Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(Nos.NRF-2020M3H4A3106383,NRF2020M3H4A3081764)+1 种基金supported,partly,by ETRI(No.21YB1610)supported by a Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government(MOTIE)(No.P0008458,HRD Program for Industrial Innovation)。
文摘Four types of submicron Ag-coated Cu particles with different Ag contents were prepared as sintering paste fillers,and the Ag contents of the particles were measured to be 10,20,30,and 40 wt.%.Four types of particles(in order of increasing Ag content:A10,A20,A30,and A40)were surface-modified with stearic acid,to suppress the Ag shell dewetting and improve sinterability.The surface-modified particles were mixed with a polyol-based solvent to fabricate a resin-free paste.Subsequently,the pastes were screen-printed onto a slide glass and sintered at 250°C in a nitrogen atmosphere for 1-10 min to form an electrode.The electrical resistivity of the sintered film as a function of sintering time was measured using a four-point probe.All the four surface-modified Cu@Ag particles with different Ag contents exhibited decreased electrical resistivity.Particularly,the largest difference in values after and before the surface modification was observed for A40 with the highest Ag content;the electrical resistivities of the initial and surface-modified particles were 1.51×10^(-4) and 6.67×10^(-5)Ω·cm,respectively,after sintering for 10 min.The findings of this study confirmed that the surface modification using stearic acid effectively suppressed the dewetting of the Ag shell and improved the sinterability of the submicron Cu@Ag particles.
文摘Light-weight Mg-based alloys have gained attention owing to their various applications in engineering and biomedicalfields.Recent advancements in modern powder metallurgy techniques,such as spark plasma technique(SPS),have enabled achieving near-net-shape products with tailored properties and decreased in-process oxidation.However,improving their mechanical and physical properties require further enhancement.In this study,a novel Mg-0.7Ca alloy was produced using SPS process.The effects of process parameters such as sintering time and additive type on the microstructural evolutions,phase arrangements,and mechanical and physical properties of the consolidated materials were investigated through various characterization techniques.Full-dense samples were produced from 60-minute ball-milled powder mixtures through spark plasma sintering at 420℃ for 7,10,and 13 min under 38 MPa of externally applied pressure.The obtained samples were then characterized using Field Emission Scanning Electron Microscopy(FESEM),Electron Backscatter Diffraction(EBSD),X-ray Energy Dispersive Spectroscopy(EDS),and X-ray Diffraction(XRD)analysis methods,as well as mechanical tests including compression strength and micro-hardness measurements.The results indicated that while improved densification behavior is observed in paraffin-contained samples,relatively better compression properties are achieved in starch-contained alloys.It is also found that the phase arrangement of the starch-contained samples includes higher fractions of the secondary phases such as oxides and residual carbons,which can positively affect the mechanical strength,despite decreased hardness.The microstructural characterizations showed an intensified thermomechanical response of the materials in both groups via increased sintering time.However,the competition between the influencing parameters causes scattered strengthening behavior and texture in the consolidated samples.Detailed discussions about the densification behavior,texture,and obtained characteristics were also included.