Stochastic resonance can utilize the energy of noise to enhance weak frequency characteristic.This paper proposes an adaptive multi-stable stochastic resonance method assisted by the neural network(NN)and physics supe...Stochastic resonance can utilize the energy of noise to enhance weak frequency characteristic.This paper proposes an adaptive multi-stable stochastic resonance method assisted by the neural network(NN)and physics supervision(directly numerical simulation of the physical system).Different from traditional adaptive algorithm,the evaluation of the objective function(i.e.,fitness function)in iteration process of adaptive algorithm is through a trained neural network instead of the numerical simulation.It will bring a dramatically reduction in computation time.Considering predictive bias from the neural network,a secondary correction procedure is introduced to the reevaluate the top performers and then resort them in iteration process through physics supervision.Though it may increase the computing cost,the accuracy will be enhanced.Two examples are given to illustrate the proposed method.For a classical multi-stable stochastic resonance system,the results show that the proposed method not only amplifies weak signals effectively but also significantly reduces computing time.For the detection of weak signal from outer ring in bearings,by introducing a variable scale coefficient,the proposed method can also give a satisfactory result,and the characteristic frequency of the fault signal can be extracted correctly.展开更多
Morphing technology is one of the most effective methods to improve the flight efficiency of aircraft.Traditional control surfaces based morphing method is mature and widely used on current civil and military aircraft...Morphing technology is one of the most effective methods to improve the flight efficiency of aircraft.Traditional control surfaces based morphing method is mature and widely used on current civil and military aircraft,but insufficiently effective for the entire flight envelope.Recent research on morphing wing still faces the challenge that the skin material for morphing should be both deformable and stiff.In this study,a continuous morphing trailing-edge wing with a new multi-stable nano skin material fabricated using surface mechanical attrition treatment technology was proposed and designed.Computational fluid dynamics simulation was used to study the aerodynamic performance of the continuous morphing trailing-edge wing.Results show that the lift coefficient increases with the increase of deflection angle and so does the lift-drag ratio at a small angle of attack.More importantly,compared with the wing using flaps,the continuous morphing trailing-edge wing can reduce drag during the morphing process and its overall aerodynamic performance is improved at a large angle of attack range.Flow field analysis reveals that the continuous morphing method can delay flow separation in some situations.展开更多
Chaotic behavior can be observed in continuous and discrete-time systems.This behavior can appear in one-dimensional nonlinear maps;however,having at least three state variables in flows is necessary.Due to the lower ...Chaotic behavior can be observed in continuous and discrete-time systems.This behavior can appear in one-dimensional nonlinear maps;however,having at least three state variables in flows is necessary.Due to the lower mathematical complexity and computational cost of maps,lots of research has been conducted based on them.This paper aims to present a novel one-dimensional trigonometric chaotic map that is multi-stable and can act attractively.The proposed chaotic map is first analyzed using a single sinusoidal function;then,its abilities are expanded to a map with a combination of two sinusoidal functions.The stability conditions of both maps are investigated,and their different behaviors are validated through time series,state space,and cobweb diagrams.Eventually,the influence of parameter variations on the maps’outputs is examined by one-dimensional and two-dimensional bifurcation diagrams and Lyapunov exponent spectra.Besides,the diversity of outputs with varying initial conditions reveals this map’s multi-stability.The newly designed chaotic map can be employed in encryption applications.展开更多
Inspired by macroscale 3D pixel mechanical metamaterials and microscale straw-like carbon nanotube,we propose a design of multi-stable straw-like carbon nanotubes(MSCNT)via optimizing the structure of a unit to obtain...Inspired by macroscale 3D pixel mechanical metamaterials and microscale straw-like carbon nanotube,we propose a design of multi-stable straw-like carbon nanotubes(MSCNT)via optimizing the structure of a unit to obtain multiple stable states under dis-placement loading by molecular dynamics.The unit of MSCNT is mirror-symmetrically connected two truncated graphene cones with specific apex angles.By switching the LJ term in AIREBO potential,we verify that the bistability of unit is co-determined by snap-through instability and microscale adhesions.Moreover,we examine the validity of the multi-stability of the unit cells arranged in series and in parallels.Simulation results indicate that the MSCNT can achieve mechanical programmability in microscale,which triggers many potential applications in need of customizing nanos-cale mechanical behaviors.展开更多
Laser tracers are a three-dimensional coordinate measurement system that are widely used in industrial measurement.We propose a geometric error identification method based on multi-station synchronization laser tracer...Laser tracers are a three-dimensional coordinate measurement system that are widely used in industrial measurement.We propose a geometric error identification method based on multi-station synchronization laser tracers to enable the rapid and high-precision measurement of geometric errors for gantry-type computer numerical control(CNC)machine tools.This method also improves on the existing measurement efficiency issues in the single-base station measurement method and multi-base station time-sharing measurement method.We consider a three-axis gantry-type CNC machine tool,and the geometric error mathematical model is derived and established based on the combination of screw theory and a topological analysis of the machine kinematic chain.The four-station laser tracers position and measurement points are realized based on the multi-point positioning principle.A self-calibration algorithm is proposed for the coordinate calibration process of a laser tracer using the Levenberg-Marquardt nonlinear least squares method,and the geometric error is solved using Taylor’s first-order linearization iteration.The experimental results show that the geometric error calculated based on this modeling method is comparable to the results from the Etalon laser tracer.For a volume of 800 mm×1000 mm×350 mm,the maximum differences of the linear,angular,and spatial position errors were 2.0μm,2.7μrad,and 12.0μm,respectively,which verifies the accuracy of the proposed algorithm.This research proposes a modeling method for the precise measurement of errors in machine tools,and the applied nature of this study also makes it relevant both to researchers and those in the industrial sector.展开更多
Importance measures can be used to identify the vulnerable components in an aviation system at the early design stage.However,due to lack of knowledge or less available information on the component or system,the epist...Importance measures can be used to identify the vulnerable components in an aviation system at the early design stage.However,due to lack of knowledge or less available information on the component or system,the epistemic uncertainties may be one of the challenging issues in importance evaluation.In addition,the properties of the aircraft system,which are the fundamentals of the component importance measure,including the hierarchy,dependency,randomness,and uncertainty,should be taken into consideration.To solve these problems,this paper proposes the component Uncertainty Integrated Importance Measure(component UIIM)which considers multiple epistemic uncertainties in the complex multi-state systems.The degradation process for the components is described by a Markov model,and the system reliability model is developed using the Markov hierarchal evidential network.The concept of integrated importance measure is then extended into component UIIM to evaluate the component criticality rather than the component state change criticality,from the perspective of system performance.A case study on displacement compensation hydraulic system is presented to show the effectiveness of the proposed uncertainty importance measure.The results show that the component UIIM can be an effective method for evaluating the component criticality from system performance perspective at the system early design.展开更多
Background:Patients with type 2 diabetes are at high risk for developing multiple chronic complications.However,there is a lack of studies of the cumulative number of diabetic complications in China.Methods:A retrospe...Background:Patients with type 2 diabetes are at high risk for developing multiple chronic complications.However,there is a lack of studies of the cumulative number of diabetic complications in China.Methods:A retrospective cohort study was performed from 2009 to 2021.Type 2 diabetes patients who were first diagnosed after the age of 35 years between January 1,2009,and December 31,2017,were included.Five states were defined according to the number of chronic complications:no(S0),one(S1),two(S2),three(S3),and four or more complications(S4).A multi-state Markov model was constructed to estimate transition probability,transition intensity,mean sojourn time,and the possible factors for each state.Results:The study included 32653 type 2 diabetes patients(mean age,59.59 years;15929(48.8%)male),and mean follow-up time of 7.75 years.In all,4375 transitions were observed.The 12-year transition probability of from state S0 to S1 was the lowest at 16.4%,while that from S2 to S3 was the highest,at 45.6%.Higher fasting blood glucose,lower high-density lipoprotein cholesterol,higher total cholesterol,and an unhealthy diet were associated with higher risk of progression from S0 to S1.Being female,less than 60 years old,weekly physical activity,and vegetarian diet decreased this risk.Being female and less than 60 years old reduced the likelihood of transition from S1 to S2,whereas lower high-density lipoprotein cholesterol increased this likelihood.Conclusions:Following the occurrence of two complications in type 2 diabetes patients,the risk for accumulating a third complication within a short time is significantly increased.It is important to take advantage of the stable window period when patients have fewer than two complications,strengthen the monitoring of blood glucose and blood lipids,and encourage patients to maintain good living habits to prevent further deterioration.展开更多
Visual inertial odometry(VIO)problems have been extensively investigated in recent years.Existing VIO methods usually consider the localization or navigation issues of robots or autonomous vehicles in relatively small...Visual inertial odometry(VIO)problems have been extensively investigated in recent years.Existing VIO methods usually consider the localization or navigation issues of robots or autonomous vehicles in relatively small areas.This paper considers the problem of vision-aided inertial navigation(VIN)for aircrafts equipped with a strapdown inertial navigation system(SINS)and a downward-viewing camera.This is different from the traditional VIO problems in a larger working area with more precise inertial sensors.The goal is to utilize visual information to aid SINS to improve the navigation performance.In the multistate constraint Kalman filter(MSCKF)framework,we introduce an anchor frame to construct necessary models and derive corresponding Jacobians to implement a VIN filter to directly update the position in the Earth-centered Earth-fixed(ECEF)frame and the velocity and attitude in the local level frame by feature measurements.Due to its filtering-based property,the proposed method is naturally low computational demanding and is suitable for applications with high real-time requirements.Simulation and real-world data experiments demonstrate that the proposed method can considerably improve the navigation performance relative to the SINS.展开更多
In the traditional reliability evaluation based on the Bayesian method,the failure probability of nodes is usually expressed by the average failure rate within a period of time.Aiming at the shortcomings of traditiona...In the traditional reliability evaluation based on the Bayesian method,the failure probability of nodes is usually expressed by the average failure rate within a period of time.Aiming at the shortcomings of traditional Bayesian network reliability evaluation methods,this paper proposes a Bayesian network reliability evaluation method considering dynamics and fuzziness.The fuzzy theory and the dynamic of component failure probability are introduced to construct the dynamic fuzzy set function.Based on the solving characteristics of the dynamic fuzzy set and Bayesian network,the fuzzy dynamic probability and fuzzy dynamic importance degree of the fault state of leaf nodes are solved.Finally,through the dynamic fuzzy reliability analysis of CNC machine tool hydraulic system balance circuit,the application of this method in system reliability evaluation is verified,which provides support for fault diagnosis of CNC machine tools.展开更多
Importance measures in reliability systems are used to identify weak components in contributing to a proper function of the system. Traditional importance measures mainly concerned the changing value of the system rel...Importance measures in reliability systems are used to identify weak components in contributing to a proper function of the system. Traditional importance measures mainly concerned the changing value of the system reliability caused by the change of the reliability of the component, and seldom considered the joint effect of the probability distribution, improvement rate of the object component. This paper studies the rate of the system reliability upgrading with an improvement of the component reliability for the multi-state consecutive k-out-of-n system. To verify the multi-state consecutive k-out-of-n system reliability upgrading by improving one component based on its improvement rate, an increasing potential importance (IPI) and its physical meaning are described at first. Secondly, the relationship between the IPI and Birnbaum importance measures are discussed. And the IPI for some different improvement actions of the component is further discussed. Thirdly, the characteristics of the IPI are analyzed. Finally, an application to an oil pipeline system is given.展开更多
Classical network reliability problems assume both net- works and components have only binary states, fully working or fully failed states. But many actual networks are multi-state, such as communication networks and ...Classical network reliability problems assume both net- works and components have only binary states, fully working or fully failed states. But many actual networks are multi-state, such as communication networks and transportation networks. The nodes and arcs in the networks may be in intermediate states which are not fully working either fully failed. A simulation ap- proach for computing the two-terminal reliability of a multi-state network is described. Two-terminal reliability is defined as the probability that d units of demand can be supplied from the source to sink nodes under the time threshold T. The capacities of arcs may be in a stochastic state following any discrete or continuous distribution. The transmission time of each arc is also not a fixed number but stochastic according to its current capacity and de- mand. To solve this problem, a capacitated stochastic coloured Petri net is proposed for modelling the system behaviour. Places and transitions respectively stand for the nodes and arcs of a net- work. Capacitated transition and self-modified token colour with route information are defined to describe the multi-state network. By the simulation, the two-terminal reliability and node importance can be estimated and the optimal route whose reliability is highest can also be given. Finally, two examples of different kinds of multi- state networks are given.展开更多
In order to conduct effective reliability analysis of retracting actuator with multi-state(success state,safety failure state and action failure state), we redefine type-3 operator in goal oriented(GO) method to descr...In order to conduct effective reliability analysis of retracting actuator with multi-state(success state,safety failure state and action failure state), we redefine type-3 operator in goal oriented(GO) method to describe three states of main charge of retracting actuator and improve type-15 operator in GO method to describe the logic relations of multi-state output. The quantitative and qualitative reliability analyses of retracting actuator are made based on GO method in this paper. The system state probability of retracting actuator is obtained through quantitative analysis, and its weakness is found through qualitative analysis. The analysis results show that GO method is effective to improve the reliability of retracting actuator, and this method is also feasible for reliability analysis of other complicated initiating explosive systems.展开更多
To verify the effectiveness of the integrated importance measure (IIM) for multi-state coherent systems of k level, the definition and physical meaning of IIM are demonstrated. Then, the improvement potential and Δ...To verify the effectiveness of the integrated importance measure (IIM) for multi-state coherent systems of k level, the definition and physical meaning of IIM are demonstrated. Then, the improvement potential and Δ-importance measures are generalized to multi-state coherent systems based on the system performance level, and the relationships between IIM and traditional importance measures are discussed. The characteristics of IIM are demonstrated in both series and parallel systems. Also, an application to an oil transportation system is given. The comparison results show that: (i) IIM has some useful properties that are not possessed by traditional importance measures; (ii) IIM is effective in evaluating the component role in multi-state systems when the component reliability and the failure rate are simultaneously considered.展开更多
Voltage sags in power system may lead to serious problems such as the off-grid of distributed generation and electrical equipment failures.As a novel type of power electronic equipment,a flexible multi-state switch(FM...Voltage sags in power system may lead to serious problems such as the off-grid of distributed generation and electrical equipment failures.As a novel type of power electronic equipment,a flexible multi-state switch(FMSS)is capable to support the voltage during the grid faults.In this paper,a voltage control strategy to support the voltage in a distribution network is proposed by introducing three-port FMSS.The positive-negative-sequence compensation(PNSC)scheme is adopted to control the active and reactive current.This control scheme eliminates active power oscillations at the port of voltage sags and reduces coupling oscillations of other ports.Based on the characteristics of the voltage support under PNSC scheme,two voltage support strategies are proposed.A proportional-integral controller is introduced to provide the reactive power references,which eliminates the errors when estimating the grid voltage and impedance.A current limiting scheme is adopted to keep the port current in a safe range by adjusting the active and reactive power references.The voltage support strategies in two different voltage sags are simulated,and results show the feasibility and effectiveness of the proposed control strategies.展开更多
The optimal transmission lines assignment with maximal reliabilities (OTLAMR) in the multi-source multi-sink multi-state computer network (MMMCN) was investigated. The OTLAMR problem contains two sub-problems: the MMM...The optimal transmission lines assignment with maximal reliabilities (OTLAMR) in the multi-source multi-sink multi-state computer network (MMMCN) was investigated. The OTLAMR problem contains two sub-problems: the MMMCN reliabilities evaluation and multi-objective transmission lines assignment optimization. First, a reliability evaluation with a transmission line assignment (RETLA) algorithm is proposed to calculate the MMMCN reliabilities under the cost constraint for a certain transmission lines configuration. Second, the non-dominated sorting genetic algorithm II (NSGA-II) is adopted to find the non-dominated set of the transmission lines assignments based on the reliabilities obtained from the RETLA algorithm. By combining the RETLA and the NSGA-II algorithms together, the RETLA-NSGA II algorithm is proposed to solve the OTLAMR problem. The experiments result show that the RETLA-NSGA II algorithm can provide efficient solutions in a reasonable time, from which the decision makers can choose the best solution based on their preferences and experiences.展开更多
Importance analysis quantifies the critical degree of individual component. Compared with the traditional binary state system,importance analysis of the multi-state system is more aligned with the practice. Because th...Importance analysis quantifies the critical degree of individual component. Compared with the traditional binary state system,importance analysis of the multi-state system is more aligned with the practice. Because the multi-valued decision diagram( MDD) can reflect the relationship between the components and the system state bilaterally, it was introduced into the reliability calculation of the multi-state system( MSS). The building method,simplified criteria,and path search and probability algorithm of MSS structure function MDD were given,and the reliability of the system was calculated. The computing methods of importance based on MDD and direct partial logic derivatives( DPLD) were presented. The diesel engine fuel supply system was taken as an example to illustrate the proposed method. The results show that not only the probability of the system in each state can be easily obtained,but also the influence degree of each component and its state on the system reliability can be obtained,which is conducive to the condition monitoring and structure optimization of the system.展开更多
In order to meet the polishing requirement of faucets and other products,a novel multi-station rotary polishing robot is designed,which is a PPPR + RR type of degree of freedom( DOF) distribution structure,and is simi...In order to meet the polishing requirement of faucets and other products,a novel multi-station rotary polishing robot is designed,which is a PPPR + RR type of degree of freedom( DOF) distribution structure,and is similar to dual-arm robot. Forward and inverse kinematic analysis is carried out by robot modeling. In order to make this robot structure more compact,first of all,X,Y and Z three moving degrees of freedom( DOF) limit stroke polishing need is calculated by using an artificial fish swarm algorithm,which analyzes dexterous workspace of this robot. Then,on the basis of the above analysis,the three DOF stroke is optimized. Simulation and polishing experimental results verify that this polishing robot with optimized stroke parameters can meet the polishing needs of faucets and other bathroom pieces.展开更多
At the vascular injury sites,the ultra-large (UL) multimeric von willebrand Factor (VWF) is released in response to physiological and pathophysiological stimuli,and mediates platelet adhesion,aggregation,and cross-lin...At the vascular injury sites,the ultra-large (UL) multimeric von willebrand Factor (VWF) is released in response to physiological and pathophysiological stimuli,and mediates platelet adhesion,aggregation,and cross-linking to maintain hemostasis.This UL-VWF is specifically cleaved by ADAMTS13(A Disintegrin And Metalloprotease with a ThromboSpondintype-1 motif,member 13)to prevent microvascular thrombosis.Each VWF monomer consists of five types of repeat domains in the order of D1-D2-D’-D3-A1-A2-A3-D4-C1-C2-C3-C4-C5-C6-CK,in which the A2 domain contains the ADAMTS13cleavage site(Tyr1605-Met1606),exposure of which requires mechanical or chemical stimuli.Under flows,fluid shear stress regulates VWF degradation and size distribution through opening the A2 domain and exposing its cleavage site for ADAMTS13.VWF A2 domain contains a C-terminal vicinal disulfide bond,a calcium binding sites,and a flexibleα4-less-loop.These unique structure features together make A2 more sensitive to mechanical signal than other VWF A subdomains,i.e.A1 and A3 domains.It is believed that A2 is first bound with and then cleaved by ADAMTS13,together with force-induced conformation transformation.To reveal molecular basis of this two-step model of VWF hydrolyzation by ADAMTS13,we here examined stretch-induced unfolding processes of VWF A2 domain in more detail by Steered molecular dynamics(SMD)simulations,with the use of crystal structure of VWF A2(PDB ID 3GXB),and observed that there were multiple quasi-stable conformations of stretched A2 until itsβ4-strand and a3-helix were pulled away the central hydrophobic core and the cleavage sites were fully accessible to solvent.Our MD simulation data showed that,in unfolding,at first,the cleavage site residue Tyr1605 was exposed partially and binding sites for Spacer domain of ADAMTS13 were exposed to a high level whenα6-helix was separated from A2 body;then,withβ6-strand and a5-helix been pulled away,the binding sites for Cysrich domain of ADAMTS13 was exposed completely while the exposure degree of Tyr1605 was not improved;further,separation ofβ5-strand andα4-less-loop made Tyr1605 and Met1606 and the respective binding sites for ADAMTS13 Spacer domain,Cys-rich domain,and Disintegrin-like domain be fully exposed to reach the optimal catalytic state;lastly,withβ4-strand separation,the cleavage sites and binding sites all were overstretched,leading to mismatch of ADAMTS13 and A2 conformation especially in the binding sites.This conformational mismatch may cause reduction of ADAMTS13 hydrolysis efficiency.Furthermore,the data of SMD simulations under constant forces demonstrated that,the stretched A2 conformation had different quasi-stable states,which all had the better mechanical stability within simulation time of 100 ns;and the conformational transformation from one state to another must overcome their respective potential barriers.The hydrolysis efficiency should depend on each state of the stretched A2 conformation,because of the exclusive matched-degree of A2 and ADMATS13.This computer prediction on the mechanical stability and multi-states of stretched A2 provides a novel insight into the mechano-chemical regulation on cleavage of A2 by ADAMTS13.It would be helpful for design of related drug targeting the binding sites on A2 and exosites on ADAMTS13 for the treatment of patients with acquired TTP.展开更多
Survival data with amulti-state structure are frequently observed in follow-up studies.An analytic approach based on a multi-state model(MSM)should be used in longitudinal health studies in which a patient experiences...Survival data with amulti-state structure are frequently observed in follow-up studies.An analytic approach based on a multi-state model(MSM)should be used in longitudinal health studies in which a patient experiences a sequence of clinical progression events.One main objective in the MSM framework is variable selection,where attempts are made to identify the risk factors associated with the transition hazard rates or probabilities of disease progression.The usual variable selection methods,including stepwise and penalized methods,do not provide information about the importance of variables.In this context,we present a two-step algorithm to evaluate the importance of variables formulti-state data.Three differentmachine learning approaches(randomforest,gradient boosting,and neural network)as themost widely usedmethods are considered to estimate the variable importance in order to identify the factors affecting disease progression and rank these factors according to their importance.The performance of our proposed methods is validated by simulation and applied to the COVID-19 data set.The results revealed that the proposed two-stage method has promising performance for estimating variable importance.展开更多
We present a class of two-dimensional memristive maps with a cosine memristor. The memristive maps do not have any fixed points, so they belong to the category of nonlinear maps with hidden attractors. The rich dynami...We present a class of two-dimensional memristive maps with a cosine memristor. The memristive maps do not have any fixed points, so they belong to the category of nonlinear maps with hidden attractors. The rich dynamical behaviors of these maps are studied and investigated using different numerical tools, including phase portrait, basins of attraction,bifurcation diagram, and Lyapunov exponents. The two-parameter bifurcation analysis of the memristive map is carried out to reveal the bifurcation mechanism of its dynamical behaviors. Based on our extensive simulation studies, the proposed memristive maps can produce hidden periodic, chaotic, and hyper-chaotic attractors, exhibiting extremely hidden multistability, namely the coexistence of infinite hidden attractors, which was rarely observed in memristive maps. Potentially,this work can be used for some real applications in secure communication, such as data and image encryptions.展开更多
文摘Stochastic resonance can utilize the energy of noise to enhance weak frequency characteristic.This paper proposes an adaptive multi-stable stochastic resonance method assisted by the neural network(NN)and physics supervision(directly numerical simulation of the physical system).Different from traditional adaptive algorithm,the evaluation of the objective function(i.e.,fitness function)in iteration process of adaptive algorithm is through a trained neural network instead of the numerical simulation.It will bring a dramatically reduction in computation time.Considering predictive bias from the neural network,a secondary correction procedure is introduced to the reevaluate the top performers and then resort them in iteration process through physics supervision.Though it may increase the computing cost,the accuracy will be enhanced.Two examples are given to illustrate the proposed method.For a classical multi-stable stochastic resonance system,the results show that the proposed method not only amplifies weak signals effectively but also significantly reduces computing time.For the detection of weak signal from outer ring in bearings,by introducing a variable scale coefficient,the proposed method can also give a satisfactory result,and the characteristic frequency of the fault signal can be extracted correctly.
基金This work is supported by the Major Program of National Natural Science Foundation of China(No.:NSFC51590892)the Shenzhen Municipal Science and Technology Innovation Commission of China(No.:JCYJ20160229165310679).
文摘Morphing technology is one of the most effective methods to improve the flight efficiency of aircraft.Traditional control surfaces based morphing method is mature and widely used on current civil and military aircraft,but insufficiently effective for the entire flight envelope.Recent research on morphing wing still faces the challenge that the skin material for morphing should be both deformable and stiff.In this study,a continuous morphing trailing-edge wing with a new multi-stable nano skin material fabricated using surface mechanical attrition treatment technology was proposed and designed.Computational fluid dynamics simulation was used to study the aerodynamic performance of the continuous morphing trailing-edge wing.Results show that the lift coefficient increases with the increase of deflection angle and so does the lift-drag ratio at a small angle of attack.More importantly,compared with the wing using flaps,the continuous morphing trailing-edge wing can reduce drag during the morphing process and its overall aerodynamic performance is improved at a large angle of attack range.Flow field analysis reveals that the continuous morphing method can delay flow separation in some situations.
基金funded by the Centre for Nonlinear Systems,Chennai Institute of Technology,India[grant number CIT/CNS/2023/RP/008].
文摘Chaotic behavior can be observed in continuous and discrete-time systems.This behavior can appear in one-dimensional nonlinear maps;however,having at least three state variables in flows is necessary.Due to the lower mathematical complexity and computational cost of maps,lots of research has been conducted based on them.This paper aims to present a novel one-dimensional trigonometric chaotic map that is multi-stable and can act attractively.The proposed chaotic map is first analyzed using a single sinusoidal function;then,its abilities are expanded to a map with a combination of two sinusoidal functions.The stability conditions of both maps are investigated,and their different behaviors are validated through time series,state space,and cobweb diagrams.Eventually,the influence of parameter variations on the maps’outputs is examined by one-dimensional and two-dimensional bifurcation diagrams and Lyapunov exponent spectra.Besides,the diversity of outputs with varying initial conditions reveals this map’s multi-stability.The newly designed chaotic map can be employed in encryption applications.
基金the National Natural Science Foundation of China(Nos.12225201 and 12102021)the China Postdoctoral Science Foundation(No.2020M680287)are gratefully acknowledged.
文摘Inspired by macroscale 3D pixel mechanical metamaterials and microscale straw-like carbon nanotube,we propose a design of multi-stable straw-like carbon nanotubes(MSCNT)via optimizing the structure of a unit to obtain multiple stable states under dis-placement loading by molecular dynamics.The unit of MSCNT is mirror-symmetrically connected two truncated graphene cones with specific apex angles.By switching the LJ term in AIREBO potential,we verify that the bistability of unit is co-determined by snap-through instability and microscale adhesions.Moreover,we examine the validity of the multi-stability of the unit cells arranged in series and in parallels.Simulation results indicate that the MSCNT can achieve mechanical programmability in microscale,which triggers many potential applications in need of customizing nanos-cale mechanical behaviors.
基金Supported by Natural Science Foundation of Shaanxi Province of China(Grant No.2021JM010)Suzhou Municipal Natural Science Foundation of China(Grant Nos.SYG202018,SYG202134).
文摘Laser tracers are a three-dimensional coordinate measurement system that are widely used in industrial measurement.We propose a geometric error identification method based on multi-station synchronization laser tracers to enable the rapid and high-precision measurement of geometric errors for gantry-type computer numerical control(CNC)machine tools.This method also improves on the existing measurement efficiency issues in the single-base station measurement method and multi-base station time-sharing measurement method.We consider a three-axis gantry-type CNC machine tool,and the geometric error mathematical model is derived and established based on the combination of screw theory and a topological analysis of the machine kinematic chain.The four-station laser tracers position and measurement points are realized based on the multi-point positioning principle.A self-calibration algorithm is proposed for the coordinate calibration process of a laser tracer using the Levenberg-Marquardt nonlinear least squares method,and the geometric error is solved using Taylor’s first-order linearization iteration.The experimental results show that the geometric error calculated based on this modeling method is comparable to the results from the Etalon laser tracer.For a volume of 800 mm×1000 mm×350 mm,the maximum differences of the linear,angular,and spatial position errors were 2.0μm,2.7μrad,and 12.0μm,respectively,which verifies the accuracy of the proposed algorithm.This research proposes a modeling method for the precise measurement of errors in machine tools,and the applied nature of this study also makes it relevant both to researchers and those in the industrial sector.
基金the National Natural Science Foundation of China(Nos.52375036,U2233212,52272409,62303030)Beijing Municipal Natural Science Foundation-Fengtai Rail Transit Frontier Research Joint Foundation,China(No.L221008)+1 种基金the fellowship of China Postdoctoral Science Foundation(No.2022M710305)the program of China Scholarship Council(Nos.202106020106,202306020133).
文摘Importance measures can be used to identify the vulnerable components in an aviation system at the early design stage.However,due to lack of knowledge or less available information on the component or system,the epistemic uncertainties may be one of the challenging issues in importance evaluation.In addition,the properties of the aircraft system,which are the fundamentals of the component importance measure,including the hierarchy,dependency,randomness,and uncertainty,should be taken into consideration.To solve these problems,this paper proposes the component Uncertainty Integrated Importance Measure(component UIIM)which considers multiple epistemic uncertainties in the complex multi-state systems.The degradation process for the components is described by a Markov model,and the system reliability model is developed using the Markov hierarchal evidential network.The concept of integrated importance measure is then extended into component UIIM to evaluate the component criticality rather than the component state change criticality,from the perspective of system performance.A case study on displacement compensation hydraulic system is presented to show the effectiveness of the proposed uncertainty importance measure.The results show that the component UIIM can be an effective method for evaluating the component criticality from system performance perspective at the system early design.
基金supported by the National Natural Science Foundation of China(grant No.72074011)the Real World Study Project of Hainan Boao Lecheng Pilot Zone(Real World Study Base of NMPA)(HNLC2022RWS012)+1 种基金the fundamental research funds for central public welfare research institutes(2023CZ-11)National Natural Science Foundation of China(No.82003536).
文摘Background:Patients with type 2 diabetes are at high risk for developing multiple chronic complications.However,there is a lack of studies of the cumulative number of diabetic complications in China.Methods:A retrospective cohort study was performed from 2009 to 2021.Type 2 diabetes patients who were first diagnosed after the age of 35 years between January 1,2009,and December 31,2017,were included.Five states were defined according to the number of chronic complications:no(S0),one(S1),two(S2),three(S3),and four or more complications(S4).A multi-state Markov model was constructed to estimate transition probability,transition intensity,mean sojourn time,and the possible factors for each state.Results:The study included 32653 type 2 diabetes patients(mean age,59.59 years;15929(48.8%)male),and mean follow-up time of 7.75 years.In all,4375 transitions were observed.The 12-year transition probability of from state S0 to S1 was the lowest at 16.4%,while that from S2 to S3 was the highest,at 45.6%.Higher fasting blood glucose,lower high-density lipoprotein cholesterol,higher total cholesterol,and an unhealthy diet were associated with higher risk of progression from S0 to S1.Being female,less than 60 years old,weekly physical activity,and vegetarian diet decreased this risk.Being female and less than 60 years old reduced the likelihood of transition from S1 to S2,whereas lower high-density lipoprotein cholesterol increased this likelihood.Conclusions:Following the occurrence of two complications in type 2 diabetes patients,the risk for accumulating a third complication within a short time is significantly increased.It is important to take advantage of the stable window period when patients have fewer than two complications,strengthen the monitoring of blood glucose and blood lipids,and encourage patients to maintain good living habits to prevent further deterioration.
基金supported by the National Natural Science Foundation of China(61773306).
文摘Visual inertial odometry(VIO)problems have been extensively investigated in recent years.Existing VIO methods usually consider the localization or navigation issues of robots or autonomous vehicles in relatively small areas.This paper considers the problem of vision-aided inertial navigation(VIN)for aircrafts equipped with a strapdown inertial navigation system(SINS)and a downward-viewing camera.This is different from the traditional VIO problems in a larger working area with more precise inertial sensors.The goal is to utilize visual information to aid SINS to improve the navigation performance.In the multistate constraint Kalman filter(MSCKF)framework,we introduce an anchor frame to construct necessary models and derive corresponding Jacobians to implement a VIN filter to directly update the position in the Earth-centered Earth-fixed(ECEF)frame and the velocity and attitude in the local level frame by feature measurements.Due to its filtering-based property,the proposed method is naturally low computational demanding and is suitable for applications with high real-time requirements.Simulation and real-world data experiments demonstrate that the proposed method can considerably improve the navigation performance relative to the SINS.
基金This research was supported by the Sichuan Science and Technology Depart-ment under Contract Nos.2019YJ0396 and 2018JY0516the National Natural Science Foundation of China under the Contract No.51705041.
文摘In the traditional reliability evaluation based on the Bayesian method,the failure probability of nodes is usually expressed by the average failure rate within a period of time.Aiming at the shortcomings of traditional Bayesian network reliability evaluation methods,this paper proposes a Bayesian network reliability evaluation method considering dynamics and fuzziness.The fuzzy theory and the dynamic of component failure probability are introduced to construct the dynamic fuzzy set function.Based on the solving characteristics of the dynamic fuzzy set and Bayesian network,the fuzzy dynamic probability and fuzzy dynamic importance degree of the fault state of leaf nodes are solved.Finally,through the dynamic fuzzy reliability analysis of CNC machine tool hydraulic system balance circuit,the application of this method in system reliability evaluation is verified,which provides support for fault diagnosis of CNC machine tools.
基金supported by the National Natural Science Foundation of China (71271170 71101116)+1 种基金the National High Technology Research and Development Program of China (863 Progrom) (2012AA040914)the Basic Research Foundation of Northwestern Polytechnical University (JC20120228)
文摘Importance measures in reliability systems are used to identify weak components in contributing to a proper function of the system. Traditional importance measures mainly concerned the changing value of the system reliability caused by the change of the reliability of the component, and seldom considered the joint effect of the probability distribution, improvement rate of the object component. This paper studies the rate of the system reliability upgrading with an improvement of the component reliability for the multi-state consecutive k-out-of-n system. To verify the multi-state consecutive k-out-of-n system reliability upgrading by improving one component based on its improvement rate, an increasing potential importance (IPI) and its physical meaning are described at first. Secondly, the relationship between the IPI and Birnbaum importance measures are discussed. And the IPI for some different improvement actions of the component is further discussed. Thirdly, the characteristics of the IPI are analyzed. Finally, an application to an oil pipeline system is given.
基金supported by the National Natural Science Foundation of China (70971132)
文摘Classical network reliability problems assume both net- works and components have only binary states, fully working or fully failed states. But many actual networks are multi-state, such as communication networks and transportation networks. The nodes and arcs in the networks may be in intermediate states which are not fully working either fully failed. A simulation ap- proach for computing the two-terminal reliability of a multi-state network is described. Two-terminal reliability is defined as the probability that d units of demand can be supplied from the source to sink nodes under the time threshold T. The capacities of arcs may be in a stochastic state following any discrete or continuous distribution. The transmission time of each arc is also not a fixed number but stochastic according to its current capacity and de- mand. To solve this problem, a capacitated stochastic coloured Petri net is proposed for modelling the system behaviour. Places and transitions respectively stand for the nodes and arcs of a net- work. Capacitated transition and self-modified token colour with route information are defined to describe the multi-state network. By the simulation, the two-terminal reliability and node importance can be estimated and the optimal route whose reliability is highest can also be given. Finally, two examples of different kinds of multi- state networks are given.
基金the Advanced Research Fund for National Defense Science and Technology Key Laboratory(No.9104C3705021003)
文摘In order to conduct effective reliability analysis of retracting actuator with multi-state(success state,safety failure state and action failure state), we redefine type-3 operator in goal oriented(GO) method to describe three states of main charge of retracting actuator and improve type-15 operator in GO method to describe the logic relations of multi-state output. The quantitative and qualitative reliability analyses of retracting actuator are made based on GO method in this paper. The system state probability of retracting actuator is obtained through quantitative analysis, and its weakness is found through qualitative analysis. The analysis results show that GO method is effective to improve the reliability of retracting actuator, and this method is also feasible for reliability analysis of other complicated initiating explosive systems.
基金supported by the National Natural Science Foundation of China (7110111671271170)+2 种基金the National Basic Research Program of China (973 Progrom) (2010CB328000)the National High Technology Research and Development Program of China (863 Progrom) (2012AA040914)the Basic Research Foundation of Northwestern Polytechnical University (JC20120228)
文摘To verify the effectiveness of the integrated importance measure (IIM) for multi-state coherent systems of k level, the definition and physical meaning of IIM are demonstrated. Then, the improvement potential and Δ-importance measures are generalized to multi-state coherent systems based on the system performance level, and the relationships between IIM and traditional importance measures are discussed. The characteristics of IIM are demonstrated in both series and parallel systems. Also, an application to an oil transportation system is given. The comparison results show that: (i) IIM has some useful properties that are not possessed by traditional importance measures; (ii) IIM is effective in evaluating the component role in multi-state systems when the component reliability and the failure rate are simultaneously considered.
基金This work was supported by the National Key R&D Program of China(No.2017YFB0903100)Science and Technology Projects of State Grid Corporation of China(No.521104170043).
文摘Voltage sags in power system may lead to serious problems such as the off-grid of distributed generation and electrical equipment failures.As a novel type of power electronic equipment,a flexible multi-state switch(FMSS)is capable to support the voltage during the grid faults.In this paper,a voltage control strategy to support the voltage in a distribution network is proposed by introducing three-port FMSS.The positive-negative-sequence compensation(PNSC)scheme is adopted to control the active and reactive current.This control scheme eliminates active power oscillations at the port of voltage sags and reduces coupling oscillations of other ports.Based on the characteristics of the voltage support under PNSC scheme,two voltage support strategies are proposed.A proportional-integral controller is introduced to provide the reactive power references,which eliminates the errors when estimating the grid voltage and impedance.A current limiting scheme is adopted to keep the port current in a safe range by adjusting the active and reactive power references.The voltage support strategies in two different voltage sags are simulated,and results show the feasibility and effectiveness of the proposed control strategies.
基金Projects(61004074,61134001,21076179)supported by the National Natural Science Foundation of ChinaProject(2009BAG12A08)supported by the National Key Technology Support Program of China+1 种基金Project(2010QNA5001)supported by the Fundamental Research Funds for the Central Universities of ChinaProjects(2012AA06A404,2006AA04Z184)supported by the National High Technology Research and Development Program of China
文摘The optimal transmission lines assignment with maximal reliabilities (OTLAMR) in the multi-source multi-sink multi-state computer network (MMMCN) was investigated. The OTLAMR problem contains two sub-problems: the MMMCN reliabilities evaluation and multi-objective transmission lines assignment optimization. First, a reliability evaluation with a transmission line assignment (RETLA) algorithm is proposed to calculate the MMMCN reliabilities under the cost constraint for a certain transmission lines configuration. Second, the non-dominated sorting genetic algorithm II (NSGA-II) is adopted to find the non-dominated set of the transmission lines assignments based on the reliabilities obtained from the RETLA algorithm. By combining the RETLA and the NSGA-II algorithms together, the RETLA-NSGA II algorithm is proposed to solve the OTLAMR problem. The experiments result show that the RETLA-NSGA II algorithm can provide efficient solutions in a reasonable time, from which the decision makers can choose the best solution based on their preferences and experiences.
基金National Natural Science Foundation of China(No.61164009)the Science and Technology Research Project,Department of Education of Jiangxi Province,China(No.GJJ14420)Natural Science Foundation of Jiangxi Province,China(No.20132BAB206026)
文摘Importance analysis quantifies the critical degree of individual component. Compared with the traditional binary state system,importance analysis of the multi-state system is more aligned with the practice. Because the multi-valued decision diagram( MDD) can reflect the relationship between the components and the system state bilaterally, it was introduced into the reliability calculation of the multi-state system( MSS). The building method,simplified criteria,and path search and probability algorithm of MSS structure function MDD were given,and the reliability of the system was calculated. The computing methods of importance based on MDD and direct partial logic derivatives( DPLD) were presented. The diesel engine fuel supply system was taken as an example to illustrate the proposed method. The results show that not only the probability of the system in each state can be easily obtained,but also the influence degree of each component and its state on the system reliability can be obtained,which is conducive to the condition monitoring and structure optimization of the system.
基金Supported by the Key Research and Development Project of Yangzhou--Industry Preview and Key Projects(No.YZ2015011)
文摘In order to meet the polishing requirement of faucets and other products,a novel multi-station rotary polishing robot is designed,which is a PPPR + RR type of degree of freedom( DOF) distribution structure,and is similar to dual-arm robot. Forward and inverse kinematic analysis is carried out by robot modeling. In order to make this robot structure more compact,first of all,X,Y and Z three moving degrees of freedom( DOF) limit stroke polishing need is calculated by using an artificial fish swarm algorithm,which analyzes dexterous workspace of this robot. Then,on the basis of the above analysis,the three DOF stroke is optimized. Simulation and polishing experimental results verify that this polishing robot with optimized stroke parameters can meet the polishing needs of faucets and other bathroom pieces.
基金supported by National Natural Science Foundation of China Grants 11672109 ( to Y. F.) and 11432006 ( to J. W.)
文摘At the vascular injury sites,the ultra-large (UL) multimeric von willebrand Factor (VWF) is released in response to physiological and pathophysiological stimuli,and mediates platelet adhesion,aggregation,and cross-linking to maintain hemostasis.This UL-VWF is specifically cleaved by ADAMTS13(A Disintegrin And Metalloprotease with a ThromboSpondintype-1 motif,member 13)to prevent microvascular thrombosis.Each VWF monomer consists of five types of repeat domains in the order of D1-D2-D’-D3-A1-A2-A3-D4-C1-C2-C3-C4-C5-C6-CK,in which the A2 domain contains the ADAMTS13cleavage site(Tyr1605-Met1606),exposure of which requires mechanical or chemical stimuli.Under flows,fluid shear stress regulates VWF degradation and size distribution through opening the A2 domain and exposing its cleavage site for ADAMTS13.VWF A2 domain contains a C-terminal vicinal disulfide bond,a calcium binding sites,and a flexibleα4-less-loop.These unique structure features together make A2 more sensitive to mechanical signal than other VWF A subdomains,i.e.A1 and A3 domains.It is believed that A2 is first bound with and then cleaved by ADAMTS13,together with force-induced conformation transformation.To reveal molecular basis of this two-step model of VWF hydrolyzation by ADAMTS13,we here examined stretch-induced unfolding processes of VWF A2 domain in more detail by Steered molecular dynamics(SMD)simulations,with the use of crystal structure of VWF A2(PDB ID 3GXB),and observed that there were multiple quasi-stable conformations of stretched A2 until itsβ4-strand and a3-helix were pulled away the central hydrophobic core and the cleavage sites were fully accessible to solvent.Our MD simulation data showed that,in unfolding,at first,the cleavage site residue Tyr1605 was exposed partially and binding sites for Spacer domain of ADAMTS13 were exposed to a high level whenα6-helix was separated from A2 body;then,withβ6-strand and a5-helix been pulled away,the binding sites for Cysrich domain of ADAMTS13 was exposed completely while the exposure degree of Tyr1605 was not improved;further,separation ofβ5-strand andα4-less-loop made Tyr1605 and Met1606 and the respective binding sites for ADAMTS13 Spacer domain,Cys-rich domain,and Disintegrin-like domain be fully exposed to reach the optimal catalytic state;lastly,withβ4-strand separation,the cleavage sites and binding sites all were overstretched,leading to mismatch of ADAMTS13 and A2 conformation especially in the binding sites.This conformational mismatch may cause reduction of ADAMTS13 hydrolysis efficiency.Furthermore,the data of SMD simulations under constant forces demonstrated that,the stretched A2 conformation had different quasi-stable states,which all had the better mechanical stability within simulation time of 100 ns;and the conformational transformation from one state to another must overcome their respective potential barriers.The hydrolysis efficiency should depend on each state of the stretched A2 conformation,because of the exclusive matched-degree of A2 and ADMATS13.This computer prediction on the mechanical stability and multi-states of stretched A2 provides a novel insight into the mechano-chemical regulation on cleavage of A2 by ADAMTS13.It would be helpful for design of related drug targeting the binding sites on A2 and exosites on ADAMTS13 for the treatment of patients with acquired TTP.
文摘Survival data with amulti-state structure are frequently observed in follow-up studies.An analytic approach based on a multi-state model(MSM)should be used in longitudinal health studies in which a patient experiences a sequence of clinical progression events.One main objective in the MSM framework is variable selection,where attempts are made to identify the risk factors associated with the transition hazard rates or probabilities of disease progression.The usual variable selection methods,including stepwise and penalized methods,do not provide information about the importance of variables.In this context,we present a two-step algorithm to evaluate the importance of variables formulti-state data.Three differentmachine learning approaches(randomforest,gradient boosting,and neural network)as themost widely usedmethods are considered to estimate the variable importance in order to identify the factors affecting disease progression and rank these factors according to their importance.The performance of our proposed methods is validated by simulation and applied to the COVID-19 data set.The results revealed that the proposed two-stage method has promising performance for estimating variable importance.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11972173 and 12172340)。
文摘We present a class of two-dimensional memristive maps with a cosine memristor. The memristive maps do not have any fixed points, so they belong to the category of nonlinear maps with hidden attractors. The rich dynamical behaviors of these maps are studied and investigated using different numerical tools, including phase portrait, basins of attraction,bifurcation diagram, and Lyapunov exponents. The two-parameter bifurcation analysis of the memristive map is carried out to reveal the bifurcation mechanism of its dynamical behaviors. Based on our extensive simulation studies, the proposed memristive maps can produce hidden periodic, chaotic, and hyper-chaotic attractors, exhibiting extremely hidden multistability, namely the coexistence of infinite hidden attractors, which was rarely observed in memristive maps. Potentially,this work can be used for some real applications in secure communication, such as data and image encryptions.