期刊文献+
共找到8,264篇文章
< 1 2 250 >
每页显示 20 50 100
Geant4 simulation of multi-sphere spectrometer response function and the detection of 241Am–Be neutron spectrum 被引量:1
1
作者 Xiao-Fei Jiang Jing Cao +1 位作者 Chun-Yu Jiang Ze-Jie Yin 《Nuclear Science and Techniques》 SCIE CAS CSCD 2017年第12期204-208,共5页
This paper is aimed at detecting the neutron spectrum of^(241)Am–Be, a widely used neutron source, with the SP9 ~3He proportional counter, which is a multi-sphere spectrometer system of eight thermal neutron detector... This paper is aimed at detecting the neutron spectrum of^(241)Am–Be, a widely used neutron source, with the SP9 ~3He proportional counter, which is a multi-sphere spectrometer system of eight thermal neutron detectors embedded in eight polyethylene(PE) spheres of varying diameters. The transport processes of a neutron in the multi-sphere spectrometer are simulated using the Geant4 code. Two sets of response functions of the PE spheres are obtained for calculating the^(241)Am–Be neutron spectrum.Response Function 1 utilizes the thermal neutron scattering model G4 Neutron HPThermal Scattering for neutron energies of ≤4 eV, and Response Function 2 has no thermal treatment. Neutron spectra of an^(241)Am–Be neutron source are measured and compared to those calculated by using the response functions. The results show that response function with thermal treatment is more accurate and closer to the real spectrum. 展开更多
关键词 Response function NEUTRON energy spectrum multi-sphere GEANT4 241Am–Be G4NeutronHPThermalScattering
在线阅读 下载PDF
EAAC-S2S:East Asian Atmospheric Circulation S2S Forecasting with a Deep Learning Model Considering Multi-Sphere Coupling
2
作者 Bin MU Yuxuan CHEN +2 位作者 Shijin YUAN Bo QIN Zhenchen LIU 《Advances in Atmospheric Sciences》 2025年第7期1442-1462,共21页
Subseasonal-to-seasonal(S2S)forecasting for East Asian atmospheric circulation poses significant challenges for conventional numerical weather prediction(NWP)models.Recently,deep learning(DL)models have demonstrated s... Subseasonal-to-seasonal(S2S)forecasting for East Asian atmospheric circulation poses significant challenges for conventional numerical weather prediction(NWP)models.Recently,deep learning(DL)models have demonstrated significant potential in further enhancing S2S forecasts beyond the capabilities of NWP models.However,most current DLbased S2S forecasting models largely overlook the role of global predictors from multiple spheres,such as ocean,land,and atmosphere domains,that are crucial for effective S2S forecasting.In this study,we introduce EAAC-S2S,a tailored DL model for S2S forecasting of East Asian atmospheric circulation.EAAC-S2S employs the cross-attention mechanism to couple atmospheric circulations over East Asia with representative multi-sphere(i.e.,atmosphere,land,and ocean)variables,providing pentad-averaged circulation forecasts up to 12 pentads ahead throughout all seasons.Experimental results demonstrate,on the S2S time scale,that EAAC-S2S consistently outperforms the European Centre for MediumRange Weather Forecasts(ECMWF)Ensemble Prediction System by decreasing the root-mean-square error(RMSE)by3.8%and increasing the anomaly correlation coefficient(ACC)by 8.6%,averaged across all 17 predictands.Our system also shows good skill for examples of heatwaves and the South China Sea Subtropical High Intensity Index(SCSSHII).Moreover,quantitative interpretability analysis including multi-sphere attribution and attention visualization are conducted for the first time in a DL S2S model,where the traced predictability aligns well with prior meteorological knowledge.We hope that our results have the potential to advance research in data-driven S2S forecasting. 展开更多
关键词 East Asian atmospheric circulation subseasonal-to-seasonal forecasting multi-sphere coupling deep learning interpretability
在线阅读 下载PDF
A low-consumption multiple nuclides identification algorithm for portable gamma spectrometer
3
作者 Xi Huang Yong-Gang Yuan +3 位作者 Yu-Xuan Zhu Hua Chen Jin-Hui Qu Zhao-Yi Tan 《Nuclear Science and Techniques》 2025年第7期100-112,共13页
The multiple nuclides identification algorithm with low consumption and strong robustness is crucial for rapid radioactive source searching.This study investigates the design of a low-consumption multiple nuclides ide... The multiple nuclides identification algorithm with low consumption and strong robustness is crucial for rapid radioactive source searching.This study investigates the design of a low-consumption multiple nuclides identification algorithm for portable gamma spectrometers.First,the gamma spectra of 12 target nuclides(including the background case)were measured to create training datasets.The characteristic energies,obtained through energy calibration and full-energy peak addresses,are utilized as input features for a neural network.A large number of single-and multiple-nuclide training datasets are generated using random combinations and small-range drifting.Subsequently,a multi-label classification neural network based on a binary cross-entropy loss function is applied to export the existence probability of certain nuclides.The designed algorithm effectively reduces the computation time and storage space required by the neural network and has been successfully implemented in a portable gamma spectrometer with a running time of t_(r)<2 s.Results show that,in both validation and actual tests,the identification accuracy of the designed algorithm reaches 94.8%,for gamma spectra with a dose rate of d≈0.5μSv∕h and a measurement time t_(m)=60 s.This improves the ability to perform rapid on-site nuclide identification at important sites. 展开更多
关键词 Multiple nuclides identification Low consumption Portable gamma spectrometer Multi-label classification
在线阅读 下载PDF
Characterization of a prototype of the fast scintillator‑based neutron total cross‑section spectrometer on the Back‑n at CSNS
4
作者 Peng Luan Da‑Jun Zhao +11 位作者 Han Yi Wei Jiang Yi‑Wei Yang Pin‑Jing Cheng Jie‑Ming Xue Ji‑Rong Zhao Bao‑Qian Li Jing Liu Xiao‑Dong Wang Bo Zheng Wen Luo Song Feng 《Nuclear Science and Techniques》 2025年第10期159-168,共10页
The neutron total cross-section spectrometer(NTOX)applied on the Back-n beamline at the China Spallation Neutron Source(CSNS)is based on a multicell fission chamber and utilizes ^(235,238)U for neutron detection.To re... The neutron total cross-section spectrometer(NTOX)applied on the Back-n beamline at the China Spallation Neutron Source(CSNS)is based on a multicell fission chamber and utilizes ^(235,238)U for neutron detection.To reduce the experimental uncertainty in the resonance energy region of ^(235,238)U and improve the neutron detection efficiency,a fast scintillator-based neutron total cross-section(FAST)spectrometer was designed.A prototype based on a large-area square ^(6)Li-enriched Cs_(2)LiLaBr_(6)(CLLB)scintillator was constructed and beam-tested.The size of the CLLB scintillator was 50.8 mm×50.8 mm×6 mm,and its side was coupled to an array of 1×8 S14160 MPPC to avoid the irradiation from the high-intensity neutrons and rays.The beam test was performed using a broad-energy pulsed neutron and the time-of-flight(TOF)technique on the Back-n beamline.The results demonstrate that the prototype exhibits good neutron/ γ discrimination capability under strong flash irradiation.The prototype was applied to measure the neutron total cross-section of ^(nat)Pb and the result was compared with that obtained using the NTOX.The two results were consistent in the energy region of 0.3 eV to 1 keV,and the prototype showed a higher detection efficiency and did not exhibit fission resonance effect.This type of spectrometer can be used as a complement to the NTOX in the low-energy range and provides a technical reference and framework for developing the FAST spectrometer on the Back-n beamline. 展开更多
关键词 Neutron total cross-section FAST spectrometer Back-n white neutron beamline
在线阅读 下载PDF
Intrinsic detection efficiency and true coincidence summing correction for a low‑background γ spectrometer with a well‑type HPGe detector
5
作者 Ming‑Hao Zhu You‑Bao Wang +14 位作者 Qiang Wang Yu‑Qiang Zhang Jin‑Long Ma Zhi‑Wei Qin Jun Su Fu‑Qiang Cao Zhi‑Cheng Zhang Yu‑Wen Chen Jiang‑Lin Hou Chang‑Xin Guo Sheng‑Quan Yan Yun‑Ju Li Yang‑Ping Shen Bing Guo Wei‑Ping Liu 《Nuclear Science and Techniques》 2025年第10期115-122,共8页
A low-background γ spectrometer named the Gamma spectrometer for Nuclear Activation Studies(GNAS)was developed to detect scarce γ radioactivity,with a special focus on conducting activation experiments in nuclear as... A low-background γ spectrometer named the Gamma spectrometer for Nuclear Activation Studies(GNAS)was developed to detect scarce γ radioactivity,with a special focus on conducting activation experiments in nuclear astrophysics.It consisted of a well-type HPGe detector surrounded by optimized multi-layer shielding,which reduced the laboratory background counting rate by 99.5%and enabled a sensitivity edge as low as 0.044 Bq for the 477.6 KeV γ line of ^(7)Be.The near 4π geometry of the HPGe detector introduces a severe true coincidence summing(TCS)effect along with its high detection efficiency.To determine the intrinsic detection efficiency and correct for the TCS effect,a Monte Carlo simulation method was developed with the Geant4 toolkit.The detector model was optimized by matching the simulated full energy peak(FEP)statistics with those of a ^(137)Cs monoenergetic source and calibrated ^(55,57,58)Co sources produced by low-energy proton beam bombardment of natural iron.The intrinsic detection efficiency curve was obtained,and an algorithm for the correction of the TCS effect was programmed using decay data from the ENSDF library and Nuclear Wallet Cards.The GNAS fulfills the requirements of the ongoing activation measurement of proton-and alpha-induced reactions in nuclear astrophysics on the ground and at the Jinping Underground Nuclear Astrophysics(JUNA)facility. 展开更多
关键词 Low-backgroundγspectrometer GNAS Well-type HPGe detector True coincidence summing Activation measurement at JUNA
在线阅读 下载PDF
Correction:Data analysis framework for silicon strip detector in compact spectrometer for heavy-ion experiments
6
作者 Xiao-Bao Wei Yu-Hao Qin +15 位作者 Sheng Xiao Da-Wei Si Dong Guo Zhi Qin Fen-Hai Guan Xin-Yue Diao Bo-Yuan Zhang Bai-Ting Tian Jun-Huai Xu Tian-Ren Zhuo Yi-Bo Hao Zeng-Xiang Wang Shi-Tao Wang Chun-Wang Ma Yi-Jie Wang Zhi-Gang Xiao 《Nuclear Science and Techniques》 2025年第11期367-367,共1页
In section‘Track decoding’of this article,one of the paragraphs was inadvertently missed out after the text'…shows the flow diagram of the Tr2-1121 track mode.'The missed paragraph is provided below.
关键词 tr track mode flow diagram data analysis heavy ion experiments silicon strip detector compact spectrometer track decoding
在线阅读 下载PDF
A novel method for simultaneous measurement of^(222)Rn and^(220)Rn progeny concentrations measured by an alpha spectrometer
7
作者 Zhong-Kai Fan Jia-Le Sun +5 位作者 Hao-Xuan Li Xiang-Ming Cai Hui Yang Shou-Kang Qiu Yan-Liang Tan Jian Shan 《Nuclear Science and Techniques》 2025年第1期127-139,共13页
The accumulation of^(222)Rn and^(220)Rn progeny in poorly ventilated environments poses the risk of natural radiation exposure to the public.A previous study indicated that satisfactory results in determining the^(222... The accumulation of^(222)Rn and^(220)Rn progeny in poorly ventilated environments poses the risk of natural radiation exposure to the public.A previous study indicated that satisfactory results in determining the^(222)Rn and^(220)Rn progeny concentrations by measuring the total alpha counts at five time intervals within 560 min should be expected only in the case of high progeny concentrations in air.To complete the measurement within a relatively short period and adapt it for simultaneous measurements at comparatively lower^(222)Rn and^(220)Rn progeny concentrations,a novel mathematical model was proposed based on the radioactive decay law.This model employs a nonlinear fitting method to distinguish nuclides with overlapping spectra by utilizing the alpha particle counts of non-overlapping spectra within consecutive measurement cycles to obtain the concentrations of^(222)Rn and^(220)Rn progeny in air.Several verification experiments were conducted using an alpha spectrometer.The experimental results demonstrate that the concentrations of^(222)Rn and^(220)Rn progeny calculated by the new method align more closely with the actual circumstances than those calculated by the total count method,and their relative uncertainties are all within±16%.Furthermore,the measurement time was reduced to 90 min,representing an acceleration of 84%.The improved capability of the new method in distinguishing alpha particles with similar energies emitted from ^(218)Po and^(212)Bi,both approximately 6 MeV,contributed to realizing more accurate results.The proposed method has the potential advantage of measuring relatively low concentrations of^(222)Rn and^(220)Rn progeny in air more quickly via air filtration. 展开更多
关键词 ^(222)Rn ^(220)Rn Progeny concentration Nonlinear fitting method Alpha spectrometer
在线阅读 下载PDF
Phase error analysis and optimization for chirp transform spectrometer
8
作者 RU Penglei LIU Mengwei +1 位作者 HU Baifan WANG Wen 《Journal of Systems Engineering and Electronics》 2025年第3期597-608,共12页
In the field of deep space exploration,the rapid development of terahertz spectrometer has put forward higher requirements to the back-end chirp transform spectrometer(CTS)system.In order to simultaneously meet the me... In the field of deep space exploration,the rapid development of terahertz spectrometer has put forward higher requirements to the back-end chirp transform spectrometer(CTS)system.In order to simultaneously meet the measurement requirements of wide bandwidth and high accuracy spectral lines,we built a CTS system with an analysis bandwidth of 1 GHz and a frequency resolution of 100 kHz around the surface acoustic wave(SAW)chirp filter with a bandwidth of 1 GHz.In this paper,the relationship between the CTS nonlinear phase error shift model and the basic measurement parameters is studied,and the effect of CTS phase mismatch on the pulse compression waveform is analyzed by simulation.And the expander error optimization method is proposed for the problem that the large nonlinear error of the expander leads to the unbalanced response of the CTS system and the serious distortion of the compressed pulse waveform under large bandwidth.It is verified through simulation and experiment that the method is effective for reducing the root mean square error(RMSE)of the phase of the expander from 18.75°to 6.65°,reducing the in-band standard deviation of the CTS frequency resolution index from 8.43 kHz to 4.72 kHz,solving the problem of serious distortion of the compressed pulse waveform,and improving the uneven CTS response under large bandwidth. 展开更多
关键词 chirp transform spectrometer(CTS) microwave heterodyne spectroscopy phase error compensation surface acoustic wave(SAW) wide bandwidth
在线阅读 下载PDF
Development of spectrum unfolding code for multi-sphere neutron spectrometer using genetic algorithms 被引量:4
9
作者 王鑫 张辉 +4 位作者 武祯 曾志 李君利 邱睿 李春艳 《Nuclear Science and Techniques》 SCIE CAS CSCD 2014年第A01期36-41,共6页
关键词 中子谱仪 遗传算法 谱展开 开发 代码 中子能谱仪 蒙特卡罗模拟 搜索空间
在线阅读 下载PDF
Simulation and calibration of the response function of multi-sphere neutron spectrometer
10
作者 JIANG Xiaofei CHEN Chao +4 位作者 CAO Jing CAO Hongrui LI Shiping SONG Xianying YIN Zejie 《Nuclear Science and Techniques》 SCIE CAS CSCD 2013年第6期105-108,共4页
In order to realize the on-line real-time measurement of neutron spectrum of ITER fusion,this paper presents a multi-sphere spectrometer system which consists of eight thermal neutron detectors,namely SP9 3He proporti... In order to realize the on-line real-time measurement of neutron spectrum of ITER fusion,this paper presents a multi-sphere spectrometer system which consists of eight thermal neutron detectors,namely SP9 3He proportional counter,embedded in eight different diameter polyethylene spheres.The response function of eight polyethylene spheres of multi-sphere neutron spectrometer was calculated after the simulation of the neutron transport processes in multi-sphere spectrometer by adopting software Geant4.The peak of the response function is in the low energy region for smaller diameter polyethylene sphere.As the polyethylene sphere diameter increased,the peak of the response function moves to the high energy region.The experimental calibration adopts 241Am-Be neutron source.The relative error between normalized data of experiment 4πsolid angle counts and normalized data of simulated detection efficiency of 4in to 8in polyethylene sphere is from 1.152%to 12.222%.The experimental results verify the response function of the simulation.All these results provide a theoretical and experimental basis for solving the on-line real-time neutron spectrum of ITER fusion. 展开更多
关键词 响应函数 中子谱仪 仿真 在线实时测量 正比计数管 数据归一化 校准 GEANT4
在线阅读 下载PDF
Optimized online filter stack spectrometer for ultrashort X-ray pulses 被引量:2
11
作者 Jia-Xing Wen Ge Ma +17 位作者 Ming-Hai Yu Yu-Chi Wu Yong-Hong Yan Shao-Yi Wang Huai-Zhong Gao Lu-Shan Wang Yu-Gang Zhou Qiang Li Yue Yang Fang Tan Xiao-Hui Zhang Jie Zhang Wen-Bo Mo Jing-Qin Su Wei-Min Zhou Yu-Qiu Gu Ming Zeng Zong-Qing Zhao 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第5期85-98,共14页
Currently,with the advent of high-repetition-rate laser-plasma experiments,the demand for online diagnosis for the X-ray spectrum is increasing because the laser-plasma-generated X-ray spectrum is very important for c... Currently,with the advent of high-repetition-rate laser-plasma experiments,the demand for online diagnosis for the X-ray spectrum is increasing because the laser-plasma-generated X-ray spectrum is very important for characterizing electron dynamics and applications.In this study,scintillators and silicon PIN(P-type–intrinsic-N-type semiconductor)diodes were used to construct a wideband online filter stack spectrometer.The X-ray sensor and filter arrangement was optimized using a genetic algorithm to minimize the condition number of the response matrix.Consequently,the unfolding error was significantly reduced based on numerical experiments.The detector responses were quantitatively calibrated by irradiating the scintillator and PIN diode with various nuclides and comparing the measuredγ-ray peaks.A prototype 15-channel spectrometer was developed by integrating an X-ray detector with front-and back-end electronics.The prototype spectrometer could record X-ray pulse signals at a repetition rate of 1 kHz.Furthermore,an optimized spectrometer was employed to record the real-time spectra of laser-driven bremsstrahlung sources.This optimized spectrometer offers a compact solution for spectrum diagnostics of ultrashort X-ray pulses,exhibiting improved accuracy in terms of spectrum measurements and repetition rates,and could be widely used in next-generation high-repetition-rate high-power laser facilities. 展开更多
关键词 Filter stack spectrometer Laser plasma diagnostics X-ray diagnostics Scintillator PIN diode
在线阅读 下载PDF
Mid-infrared Optical Frequency Comb-based Fourier Transform Spectrometer for Broadband Molecular Spectroscopy 被引量:1
12
作者 Feihu Cheng Weixiong Zhao +5 位作者 Bo Fang Nana Yang Shuangshuang Li Weijun Zhang Lunhua Deng Weidong Chen 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2024年第4期471-480,I0093,共11页
Optical frequency combbased Fourier transform spectroscopy has the features of broad spectral bandwidth,high sensitivity,andmultiplexed trace gas detection,which has valuable application potential in the fields of pre... Optical frequency combbased Fourier transform spectroscopy has the features of broad spectral bandwidth,high sensitivity,andmultiplexed trace gas detection,which has valuable application potential in the fields of precision spectroscopy and trace gas detection.Here,we report the development of a mid-infrared Fourier transform spectrometer based on an optical frequency comb combined with a Herriott-type multipass cell.Using this instrument,the broadband absorption spectra of several important molecules,including methane,acetylene,water molecules and nitrous oxide,are measured by near real-time data acquisition in the 2800-3500 cm^(-1)spectral region.The achieved minimum detectable absorption of the instrument is 4.4×10^(-8)cm^(-1)·Hz^(-1/2)per spectral element.Broadband spectra of H_(2)0 are fited using the Voigt profile multispectral fitting technique and the consistency of the concentration inversion is 1%.Our system also enables precise spectroscopic measurements,and it allows the determination of the spectral line positions and upper state constants of N_(2)O in the(0002)-(1000)band,with results in good agreement with those reported by Toth[Appl.Opt.30,5289(1991)]. 展开更多
关键词 Mid-infrared optical frequency comb Multi-pass cell Fourier transform infrared spectrometer
在线阅读 下载PDF
Design and implementation of the monochromator shielding for the cold neutron spectrometers XINGZHI and BOYA
13
作者 汪晋辰 刘娟娟 +6 位作者 徐大业 Florian Grünauer 郝丽杰 刘蕴韬 张红霞 程鹏 鲍威 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期96-102,共7页
An innovative monochromator shielding is designed and implemented for the cold neutron spectrometers XINGZHI and BOYA operated by Renmin University of China at China Advanced Research Reactor.Via Monte Carlo simulatio... An innovative monochromator shielding is designed and implemented for the cold neutron spectrometers XINGZHI and BOYA operated by Renmin University of China at China Advanced Research Reactor.Via Monte Carlo simulations and careful mechanical designs,a shielding configuration has been successfully developed to satisfy safety requirements of below 3μSv/h dose rate at its exterior,meanwhile fulfilling space,floor load and nonmagnetic requirements.Composite materials are utilized to form the sandwich-type shielding walls:the inner layer of boron carbide rubber,the middle layer of steel-encased lead and the outer layer of borated polyethylene.Special-shaped liftable shielding blocks are incorporated to facilitate a continuous adjustment of the neutron energy while preventing radiation leakage.Our work has demonstrated that by utilizing composite shielding materials,along with the sandwich structure and liftable shielding blocks,a compact and lightweight shielding solution can be achieved.This enables the realization of advanced neutron scattering instruments that provide expanded space of measurement,larger energy and momentum coverage,and higher flux on the sample.This shielding represents the first of its kind in neutron scattering instruments in China.Following its successful operation,it has been subsequently employed by other neutron instruments across the country. 展开更多
关键词 neutron scattering cold neutron spectrometer monochromator shielding sandwich shielding structure
原文传递
A seven-crystal spectrometer for high-energy resolution X-ray spectroscopy at Shanghai Synchrotron Radiation Facility
14
作者 Bing-Bao Mei Liang-Xin Wang +6 位作者 Song-Qi Gu Xiao-Zhi Su Shuo Zhang Yao Wei Jing-Yuan Ma Zheng Jiang Fei Song 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第9期82-91,共10页
A Johann-type X-ray spectrometer was successfully developed at the hard X-ray branch(in-vacuum undulator with a 24-mm periodic length)of the energy material beamline(E-line)at the Shanghai Synchrotron Radiation Facili... A Johann-type X-ray spectrometer was successfully developed at the hard X-ray branch(in-vacuum undulator with a 24-mm periodic length)of the energy material beamline(E-line)at the Shanghai Synchrotron Radiation Facility(SSRF).This spectrometer was utilized to implement X-ray emission spectroscopy(XES),high-energy resolution fluorescence-detected X-ray absorption spectroscopy(HERFD-XAS),and resonant inelastic X-ray scattering.Seven spherically bent crystals were positioned on the respective vertical 500-mm-diameter Rowland circles,adopting an area detector to increase the solid angle to 1.75%of 4πsr,facilitating the study of low-concentrate systems under complex reaction conditions.Operated under the atmosphere pressure,the spectrometer covers the energy region from 3.5 to 18 keV,with the Bragg angle ranging from 73°to 86°during vertical scanning.It offers a promised energy resolution of sub-eV(XES)and super-eV(HERFD-XAS).Generally,these comprehensive core-level spectroscopy methods based on hard X-rays at the E-line with an extremely high photon flux can meet the crucial requirements of a green energy strategy.Moreover,they provide substantial support for scientific advances in fundamental research. 展开更多
关键词 X-ray emission spectroscopy High-energy-resolution X-ray spectrometer Johann geometry Energy materials SSRF
在线阅读 下载PDF
Artificial neural network-based method for discriminating Compton scattering events in high-purity germaniumγ-ray spectrometer
15
作者 Chun-Di Fan Guo-Qiang Zeng +5 位作者 Hao-Wen Deng Lei Yan Jian Yang Chuan-Hao Hu Song Qing Yang Hou 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期64-84,共21页
To detect radioactive substances with low activity levels,an anticoincidence detector and a high-purity germanium(HPGe)detector are typically used simultaneously to suppress Compton scattering background,thereby resul... To detect radioactive substances with low activity levels,an anticoincidence detector and a high-purity germanium(HPGe)detector are typically used simultaneously to suppress Compton scattering background,thereby resulting in an extremely low detection limit and improving the measurement accuracy.However,the complex and expensive hardware required does not facilitate the application or promotion of this method.Thus,a method is proposed in this study to discriminate the digital waveform of pulse signals output using an HPGe detector,whereby Compton scattering background is suppressed and a low minimum detectable activity(MDA)is achieved without using an expensive and complex anticoincidence detector and device.The electric-field-strength and energy-deposition distributions of the detector are simulated to determine the relationship between pulse shape and energy-deposition location,as well as the characteristics of energy-deposition distributions for fulland partial-energy deposition events.This relationship is used to develop a pulse-shape-discrimination algorithm based on an artificial neural network for pulse-feature identification.To accurately determine the relationship between the deposited energy of gamma(γ)rays in the detector and the deposition location,we extract four shape parameters from the pulse signals output by the detector.Machine learning is used to input the four shape parameters into the detector.Subsequently,the pulse signals are identified and classified to discriminate between partial-and full-energy deposition events.Some partial-energy deposition events are removed to suppress Compton scattering.The proposed method effectively decreases the MDA of an HPGeγ-energy dispersive spectrometer.Test results show that the Compton suppression factors for energy spectra obtained from measurements on ^(152)Eu,^(137)Cs,and ^(60)Co radioactive sources are 1.13(344 keV),1.11(662 keV),and 1.08(1332 keV),respectively,and that the corresponding MDAs are 1.4%,5.3%,and 21.6%lower,respectively. 展开更多
关键词 High-purity germaniumγ-ray spectrometer Pulse-shape discrimination Compton scattering Artificial neural network Minimum detectable activity
在线阅读 下载PDF
Innovative Inverse-Design Approach for On-Chip Computational Spectrometers:Enhanced Performance and Reliability
16
作者 Ang Li Yifan Wu +5 位作者 Gongyuan Zhang Chang Wang Jijun He Yaqi Shi Zongyin Yang Shilong Pan 《Engineering》 CSCD 2024年第12期81-88,共8页
Computational spectrometers utilizing disordered structures have emerged as promising solutions for meeting the imperative demand for integrated spectrometers,offering high performance and improved resilience to fabri... Computational spectrometers utilizing disordered structures have emerged as promising solutions for meeting the imperative demand for integrated spectrometers,offering high performance and improved resilience to fabrication variations and temperature fluctuations.However,the current computational spectrometers are impractical because they rely on a brute-force random design approach for disordered structures.This leads to an uncontrollable,non-reproducible,and suboptimal spectrometer performance.In this study,we revolutionize the existing paradigm by introducing a novel inverse design approach for computational spectrometers.By harnessing the power of inverse design,which has traditionally been applied to optimize single devices with simple performance,we successfully adapted it to optimize a complex system comprising multiple correlated components with intricate spectral responses.This approach can be applied to a wide range of structures.We validated this by realizing a spectrometer utilizing a new type of disordered structure based on interferometric effects that exhibits negligible loss and high sensitivity.For a given structure,our approach yielded a remarkable 12-times improvement in the spectral resolution and a four-fold reduction in the cross-correlation between the filters.The resulting spectrometer demonstrated reliable and reproducible performance with the precise determination of structural parameters. 展开更多
关键词 Silicon photonics Integrated spectrometers Inverse design
在线阅读 下载PDF
Design and simulation of a liquid-microjet time-of-flight mass spectrometer with a femtosecond laser ionization source
17
作者 Jinyou Long Jie Wei +2 位作者 Yaping Wang Song Zhang Bing Zhang 《Chinese Journal of Chemical Physics》 CSCD 2024年第6期797-806,I0042,共11页
A liquid-microjet(LJ)linear time-of-flight(TOF)mass spectrometer,coupled with a femtosecond laser ionization source,has been designed for direct measurements of mass spectra of liquid aqueous solutions.Two main featur... A liquid-microjet(LJ)linear time-of-flight(TOF)mass spectrometer,coupled with a femtosecond laser ionization source,has been designed for direct measurements of mass spectra of liquid aqueous solutions.Two main features of our designed spectrometer involve the coupling of a liquid microjet nozzle to a conventional ion optics and the application of femtosecond pulses for mass spectral ionization.The detailed design,construction,and simulation of this new spectrometer are presented.More importantly,we combined the experimental tests with the simulated electric fields and ion trajectories to investigate the performance of the designed spectrometer,especially the kind of disturbances of the nozzle electric field on the conventional ion optics.In our current design,the optimal E/R(E:extractor,R:repeller)electrode voltage ratio was found to be∼0.71 when the voltages on the R,E and G(ground)electrodes were set to be 1500,1060 and 0 V,respectively,whilst the voltage on the N nozzle electrode was required to be around 1250 V.The capability of the designed spectrometer has been demonstrated by recording the simulated mass spectra of the water,benzene and cytidine with their mass/charge ratios of 18,76 and 243,respectively.This work shall be helpful for the development of new all-liquid-phase mass spectral technology to be employed in the diagnosis of diseases by the mass analysis of human body fluids. 展开更多
关键词 Liquid microjet TIME-OF-FLIGHT Mass spectrometer Aqueous solution
在线阅读 下载PDF
An empirical method for joint inversion of wave and wind parameters based on SAR and wave spectrometer data
18
作者 Yong Wan Xiaona Zhang +2 位作者 Shuyan Lang Ennan Ma Yongshou Dai 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第5期133-144,共12页
Synthetic aperture radar(SAR)and wave spectrometers,crucial in microwave remote sensing,play an essential role in monitoring sea surface wind and wave conditions.However,they face inherent limitations in observing sea... Synthetic aperture radar(SAR)and wave spectrometers,crucial in microwave remote sensing,play an essential role in monitoring sea surface wind and wave conditions.However,they face inherent limitations in observing sea surface phenomena.SAR systems,for instance,are hindered by an azimuth cut-off phenomenon in sea surface wind field observation.Wave spectrometers,while unaffected by the azimuth cutoff phenomenon,struggle with low azimuth resolution,impacting the capture of detailed wave and wind field data.This study utilizes SAR and surface wave investigation and monitoring(SWIM)data to initially extract key feature parameters,which are then prioritized using the extreme gradient boosting(XGBoost)algorithm.The research further addresses feature collinearity through a combined analysis of feature importance and correlation,leading to the development of an inversion model for wave and wind parameters based on XGBoost.A comparative analysis of this model with ERA5 reanalysis and buoy data for of significant wave height,mean wave period,wind direction,and wind speed reveals root mean square errors of 0.212 m,0.525 s,27.446°,and 1.092 m/s,compared to 0.314 m,0.888 s,27.698°,and 1.315 m/s from buoy data,respectively.These results demonstrate the model’s effective retrieval of wave and wind parameters.Finally,the model,incorporating altimeter and scatterometer data,is evaluated against SAR/SWIM single and dual payload inversion methods across different wind speeds.This comparison highlights the model’s superior inversion accuracy over other methods. 展开更多
关键词 synthetic aperture radar(SAR) wave spectrometer extreme gradient boosting(XGBoost) joint inversion method wave and wind parameters
在线阅读 下载PDF
Experimental observation of fine secular frequency resonance oscillation with a rectilinear ion trap mass spectrometer
19
作者 Lixin Shan Zuojian Zhang +4 位作者 Zhiyang Wei Yongze Gao Zhiyuan Luo Shiyu Cheng Jinian Shu 《Chinese Journal of Chemical Physics》 CSCD 2024年第6期792-796,I0042,共6页
The mass resolution of the ordinary ion trap mass spectrometer derived from the quadrupole mass spectrometer usually ranges from hundreds to thousands.In this study,the fine secular frequency resonance oscillation was... The mass resolution of the ordinary ion trap mass spectrometer derived from the quadrupole mass spectrometer usually ranges from hundreds to thousands.In this study,the fine secular frequency resonance oscillation was observed with a rectilinear ion trap mass spectrometer.The FWHM of the responding resonance secular frequency of benzene was 0.012 kHz.The corresponding mass resolution was 8600 m/Δm for benzene(m/z=78).The mass spectrometer with secular frequency scanning has a linear response to benzene in the concentration range from 200 ppbv to 10000 ppbv.This study shows a new feature of the secular frequency scanning for ion trap mass spectrometers. 展开更多
关键词 Fine secular frequency Resonance oscillation Mass resolution Rectilinear ion trap mass spectrometer
在线阅读 下载PDF
Separation of Ions from Volatile Organic Compounds Using High-Field Asymmetric Waveform Ion Mobility Spectrometry-Mass Spectrometer 被引量:2
20
作者 李华 王晓浩 +2 位作者 唐飞 杨吉 丁力 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2010年第2期125-132,I0001,共9页
A combination of high-field asymmetric waveform ion mobility spectrometry (FAIMS) with mass spectrometer (MS) was analyzed. FAIMS separates ions from the volatile organic compounds in the gas-phase as an ion-filte... A combination of high-field asymmetric waveform ion mobility spectrometry (FAIMS) with mass spectrometer (MS) was analyzed. FAIMS separates ions from the volatile organic compounds in the gas-phase as an ion-filter for MS. The sample ions were created at ambient pressure by ion source, which was equipped with a 10.6 eV UV discharge lamp (A=116.5 nm). The drift tube of FAIMS is composed of two parallel planar electrodes and the dimension is 10 mm×8 mm×0.5 mm. FAIMS was investigated when driven by the high-filed rectangular asymmetric waveform with the peak-to-peak voltage of 1.36 kV at the frequency of 1 MHz and the duty cycle of 30%. The acetone, the butanone, and their mixture were adopted to characterize the FAIMS-MS. The mass spectra obtained from MS illustrate that there are ion-molecular reactions between the ions and the sample neutral molecular. And the proton transfer behavior in the mixture of the acetone and the butanone is also observed. With the compensation voltage tuned from -30 V to 10 V with a step size of 0.1 V, the ion pre-separation before MS is realized. 展开更多
关键词 High-field asymmetric waveform ion mobility spectrometry Mass spectrometer Ion-filter Ion-molecular reaction Proton transfer
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部