期刊文献+
共找到43,253篇文章
< 1 2 250 >
每页显示 20 50 100
Monitoring coal fires in Datong coalfield using multi-source remote sensing data 被引量:16
1
作者 汪云甲 田丰 +2 位作者 黄翌 王坚 魏长婧 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第10期3421-3428,共8页
Numerous coal fires burn underneath the Datong coalfield because of indiscriminate mining.Landsat TM/ETM,unmanned aerial vehicle(UAV),and infrared thermal imager were employed to monitor underground coal fires in th... Numerous coal fires burn underneath the Datong coalfield because of indiscriminate mining.Landsat TM/ETM,unmanned aerial vehicle(UAV),and infrared thermal imager were employed to monitor underground coal fires in the Majiliang mining area.The thermal field distributions of this area in 2000,2002,2006,2007,and 2009 were obtained using Landsat TM/ETM.The changes in the distribution were then analyzed to approximate the locations of the coal fires.Through UAV imagery employed at a very high resolution(0.2 m),the texture information,linear features,and brightness of the ground fissures in the coal fire area were determined.All these data were combined to build a knowledge model of determining fissures and were used to support underground coal fire detection.An infrared thermal imager was used to map the thermal field distribution of areas where coal fire is serious.Results were analyzed to identify the hot spot trend and the depth of the burning point. 展开更多
关键词 LANDSAT unmanned aerial vehicle infrared thermal imager coal fire Datong coalfield remote sensing
在线阅读 下载PDF
The Identification and Geological Significance of Fault Buried in the Gasikule Salt Lake in China based on the Multi-source Remote Sensing Data 被引量:2
2
作者 WANG Junhu ZHAO Yingjun +1 位作者 WU Ding LU Donghua 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第3期996-1007,共12页
The salinity of the salt lake is an important factor to evaluate whether it contains some mineral resources or not,the fault buried in the salt lake could control the abundance of the salinity.Therefore,it is of great... The salinity of the salt lake is an important factor to evaluate whether it contains some mineral resources or not,the fault buried in the salt lake could control the abundance of the salinity.Therefore,it is of great geological importance to identify the fault buried in the salt lake.Taking the Gasikule Salt Lake in China for example,the paper established a new method to identify the fault buried in the salt lake based on the multi-source remote sensing data including Landsat TM,SPOT-5 and ASTER data.It includes the acquisition and selection of the multi-source remote sensing data,data preprocessing,lake waterfront extraction,spectrum extraction of brine with different salinity,salinity index construction,salinity separation,analysis of the abnormal salinity and identification of the fault buried in salt lake,temperature inversion of brine and the fault verification.As a result,the study identified an important fault buried in the east of the Gasikule Salt Lake that controls the highest salinity abnormal.Because the level of the salinity is positively correlated to the mineral abundance,the result provides the important reference to identify the water body rich in mineral resources in the salt lake. 展开更多
关键词 multi-source remote sensing data Gasikule Salt Lake Mangya depression China
在线阅读 下载PDF
Red Tide Information Extraction Based on Multi-source Remote Sensing Data in Haizhou Bay
3
作者 LU Xia JIAO Ming-lian 《Meteorological and Environmental Research》 CAS 2011年第8期78-81,共4页
[Objective] The aim was to extract red tide information in Haizhou Bay on the basis of multi-source remote sensing data.[Method] Red tide in Haizhou Bay was studied based on multi-source remote sensing data,such as IR... [Objective] The aim was to extract red tide information in Haizhou Bay on the basis of multi-source remote sensing data.[Method] Red tide in Haizhou Bay was studied based on multi-source remote sensing data,such as IRS-P6 data on October 8,2005,Landsat 5-TM data on May 20,2006,MODIS 1B data on October 6,2006 and HY-1B second-grade data on April 22,2009,which were firstly preprocessed through geometric correction,atmospheric correction,image resizing and so on.At the same time,the synchronous environment monitoring data of red tide water were acquired.Then,band ratio method,chlorophyll-a concentration method and secondary filtering method were adopted to extract red tide information.[Result] On October 8,2005,the area of red tide was about 20.0 km2 in Haizhou Bay.There was no red tide in Haizhou bay on May 20,2006.On October 6,2006,large areas of red tide occurred in Haizhou bay,with area of 436.5 km2.On April 22,2009,red tide scattered in Haizhou bay,and its area was about 10.8 km2.[Conclusion] The research would provide technical ideas for the environmental monitoring department of Lianyungang to implement red tide forecast and warning effectively. 展开更多
关键词 Haizhou Bay Red tide monitoring region multi-source remote sensing data Secondary filtering method Band ratio method Chlorophyll-a concentration method China
在线阅读 下载PDF
Multi-source Remote Sensing Image Registration Based on Contourlet Transform and Multiple Feature Fusion 被引量:6
4
作者 Huan Liu Gen-Fu Xiao +1 位作者 Yun-Lan Tan Chun-Juan Ouyang 《International Journal of Automation and computing》 EI CSCD 2019年第5期575-588,共14页
Image registration is an indispensable component in multi-source remote sensing image processing. In this paper, we put forward a remote sensing image registration method by including an improved multi-scale and multi... Image registration is an indispensable component in multi-source remote sensing image processing. In this paper, we put forward a remote sensing image registration method by including an improved multi-scale and multi-direction Harris algorithm and a novel compound feature. Multi-scale circle Gaussian combined invariant moments and multi-direction gray level co-occurrence matrix are extracted as features for image matching. The proposed algorithm is evaluated on numerous multi-source remote sensor images with noise and illumination changes. Extensive experimental studies prove that our proposed method is capable of receiving stable and even distribution of key points as well as obtaining robust and accurate correspondence matches. It is a promising scheme in multi-source remote sensing image registration. 展开更多
关键词 Feature fusion multi-scale circle Gaussian combined invariant MOMENT multi-direction GRAY level CO-OCCURRENCE matrix multi-source remote sensing image registration CONTOURLET transform
原文传递
Investigating changes in lake systems in the south-central Tibetan Plateau with multi-source remote sensing 被引量:7
5
作者 WU Yanhong ZHANG Xin +2 位作者 ZHENG Hongxing LI Junsheng WANG Zhiying 《Journal of Geographical Sciences》 SCIE CSCD 2017年第3期337-347,共11页
Lakes in the Tibetan Plateau are considered sensitive responders to global warming Variations in physical features of lake systems such as surface area and water level are very helpful in understanding regional respon... Lakes in the Tibetan Plateau are considered sensitive responders to global warming Variations in physical features of lake systems such as surface area and water level are very helpful in understanding regional responses to global warming in recent decades. In this study multi-source remote sensing data were used to retrieve the surface area and water level time series of five inland lakes in the south-central part of the Tibetan Plateau over the past dec- ades. Changes in water level and surface area of the lakes were investigated. The results showed that the water level of three lakes (Puma Yumco, Taro Co, Zhari Namco) increased, with expanding surface area, while the water levels of the other two lakes (Paiku Co, Mapam Yumco) fell, with shrinking area. The water levels of the lakes experienced remarkable changes in 2000-2012 as compared with 1976-1999. Spatially, lakes located at the southern fringe of the Tibetan Plateau showed consistency in water level changes, which was different from lakes in the central Tibetan Plateau. 展开更多
关键词 water level surface area lake system remote sensing Tibetan Plateau
原文传递
Comparative Study on Coastal Depth Inversion Based on Multi-source Remote Sensing Data 被引量:2
6
作者 LU Tianqi CHEN Shengbo +3 位作者 TU Yuan YU Yan CAO Yijing JIANG Deyang 《Chinese Geographical Science》 SCIE CSCD 2019年第2期192-201,共10页
Coastal depth is an important research focus of coastal waters and is also a key factor in coastal environment. Dongluo Island in South China Sea was taken as a typical study area. The band ratio model was established... Coastal depth is an important research focus of coastal waters and is also a key factor in coastal environment. Dongluo Island in South China Sea was taken as a typical study area. The band ratio model was established by using measured points and three multispectral images of Landsat-8, SPOT-6(Systeme Probatoire d'Observation de la Terre, No.6) and WorldView-2. The band ratio model with the highest accuracy is selected for the depth inversion respectively. The results show that the accuracy of SPOT-6 image is the highest in the inversion of coastal depth. Meanwhile, analyzing the error of inversion from different depth ranges, the accuracy of the inversion is lower in the range of 0–5 m because of the influence of human activities. The inversion accuracy of 5–10 m is the highest, and the inversion error increases with the increase of water depth in the range of 5–20 m for the three kinds of satellite images. There is no linear relationship between the accuracy of remote sensing water depth inversion and spatial resolution of remote sensing data, and it is affected by performance and parameters of sensor. It is necessary to strengthen the research of remote sensor in order to further improve the accuracy of inversion. 展开更多
关键词 COASTAL WATERS remote sensing QUANTITATIVE INVERSION satellite accuracy comparison
在线阅读 下载PDF
Multi-Scale PIIFD for Registration of Multi-Source Remote Sensing Images 被引量:3
7
作者 Chenzhong Gao Wei Li 《Journal of Beijing Institute of Technology》 EI CAS 2021年第2期113-124,共12页
This paper aims at providing multi-source remote sensing images registered in geometric space for image fusion.Focusing on the characteristics and differences of multi-source remote sensing images,a feature-based regi... This paper aims at providing multi-source remote sensing images registered in geometric space for image fusion.Focusing on the characteristics and differences of multi-source remote sensing images,a feature-based registration algorithm is implemented.The key technologies include image scale-space for implementing multi-scale properties,Harris corner detection for keypoints extraction,and partial intensity invariant feature descriptor(PIIFD)for keypoints description.Eventually,a multi-scale Harris-PIIFD image registration algorithm framework is proposed.The experimental results of fifteen sets of representative real data show that the algorithm has excellent,stable performance in multi-source remote sensing image registration,and can achieve accurate spatial alignment,which has strong practical application value and certain generalization ability. 展开更多
关键词 image registration multi-source remote sensing SCALE-SPACE Harris corner partial intensity invariant feature descriptor(PIIFD)
在线阅读 下载PDF
Accuracy Analysis on the Automatic Registration of Multi-Source Remote Sensing Images Based on the Software of ERDAS Imagine 被引量:1
8
作者 Debao Yuan Ximin Cui +2 位作者 Yahui Qiu Xueyun Gu Li Zhang 《Advances in Remote Sensing》 2013年第2期140-148,共9页
The automatic registration of multi-source remote sensing images (RSI) is a research hotspot of remote sensing image preprocessing currently. A special automatic image registration module named the Image Autosync has ... The automatic registration of multi-source remote sensing images (RSI) is a research hotspot of remote sensing image preprocessing currently. A special automatic image registration module named the Image Autosync has been embedded into the ERDAS IMAGINE software of version 9.0 and above. The registration accuracies of the module verified for the remote sensing images obtained from different platforms or their different spatial resolution. Four tested registration experiments are discussed in this article to analyze the accuracy differences based on the remote sensing data which have different spatial resolution. The impact factors inducing the differences of registration accuracy are also analyzed. 展开更多
关键词 multi-source remote sensing Images Automatic REGISTRATION Image Autosync REGISTRATION ACCURACY
在线阅读 下载PDF
A global multimodal flood event dataset with heterogeneous text and multi-source remote sensing images
9
作者 Zhixin Zhang Yan Ma Peng Liu 《Big Earth Data》 2025年第3期362-388,共27页
With the increasing frequency of floods,in-depth flood event analyses are essential for effective disaster relief and prevention.Satellite-based flood event datasets have become the primary data source for flood event... With the increasing frequency of floods,in-depth flood event analyses are essential for effective disaster relief and prevention.Satellite-based flood event datasets have become the primary data source for flood event analyses instead of limited disaster maps due to their enhanced availability.Nevertheless,despite the vast amount of available remote sensing images,existing flood event datasets continue to pose significant challenges in flood event analyses due to the uneven geographical distribution of data,the scarcity of time series data,and the limited availability of flood-related semantic information.There has been a surge in acceptance of deep learning models for flood event analyses,but some existing flood datasets do not align well with model training,and distinguishing flooded areas has proven difficult with limited data modalities and semantic information.Moreover,efficient retrieval and pre-screening of flood-related imagery from vast satellite data impose notable obstacles,particularly within large-scale analyses.To address these issues,we propose a Multimodal Flood Event Dataset(MFED)for deep-learning-based flood event analyses and data retrieval.It consists of 18 years of multi-source remote sensing imagery and heterogeneous textual information covering flood-prone areas worldwide.Incorporating optical and radar imagery can exploit the correlation and complementarity between distinct image modalities to capture the pixel features in flood imagery.It is worth noting that text modality data,including auxiliary hydrological information extracted from the Global Flood Database and text information refined from online news records,can also offer a semantic supplement to the images for flood event retrieval and analysis.To verify the applicability of the MFED in deep learning models,we carried out experiments with different models using a single modality and different combinations of modalities,which fully verified the effectiveness of the dataset.Furthermore,we also verify the efficiency of the MFED in comparative experiments with existing multimodal datasets and diverse neural network structures. 展开更多
关键词 Flood event multimodal dataset deep learning multi-source remote sensing data internet data
原文传递
Coupling Multi-Source Satellite Remote Sensing and Meteorological Data to Discriminate Yellow Rust and Fusarium Head Blight in Winter Wheat 被引量:1
10
作者 Qi Sheng Huiqin Ma +4 位作者 Jingcheng Zhang Zhiqin Gui Wenjiang Huang Dongmei Chen Bo Wang 《Phyton-International Journal of Experimental Botany》 2025年第2期421-440,共20页
Yellow rust(Puccinia striiformis f.sp.Tritici,YR)and fusarium head blight(Fusarium graminearum,FHB)are the two main diseases affecting wheat in the main grain-producing areas of East China,which is common for the two ... Yellow rust(Puccinia striiformis f.sp.Tritici,YR)and fusarium head blight(Fusarium graminearum,FHB)are the two main diseases affecting wheat in the main grain-producing areas of East China,which is common for the two diseases to appear simultaneously in some main production areas.It is necessary to discriminate wheat YR and FHB at the regional scale to accurately locate the disease in space,conduct detailed disease severity monitoring,and scientific control.Four images on different dates were acquired from Sentinel-2,Landsat-8,and Gaofen-1 during the critical period of winter wheat,and 22 remote sensing features that characterize the wheat growth status were then calculated.Meanwhile,6 meteorological parameters that reflect the wheat phenological information were also obtained by combining the site meteorological data and spatial interpolation technology.Then,the principal components(PCs)of comprehensive remote sensing and meteorological features were extracted with principal component analysis(PCA).The PCs-based discrimination models were established to map YR and FHB damage using the random forest(RF)and backpropagation neural network(BPNN).The models’performance was verified based on the disease field truth data(57 plots during the filling period)and 5-fold cross-validation.The results revealed that the PCs obtained after PCA dimensionality reduction outperformed the initial features(IFs)from remote sensing and meteorology in discriminating between the two diseases.Compared to the IFs,the average area under the curve for both micro-average and macro-average ROC curves increased by 0.07 in the PCs-based RF models and increased by 0.16 and 0.13,respectively,in the PCs-based BPNN models.Notably,the PCs-based BPNN discrimination model emerged as the most effective,achieving an overall accuracy of 83.9%.Our proposed discrimination model for wheat YR and FHB,coupled with multi-source remote sensing images and meteorological data,overcomes the limitations of a single-sensor and single-phase remote sensing information in multiple stress discrimination in cloudy and rainy areas.It performs well in revealing the damage spatial distribution of the two diseases at a regional scale,providing a basis for detailed disease severity monitoring,and scientific prevention and control. 展开更多
关键词 Winter wheat yellow rust(YR) fusarium head blight(FHB) DISCRIMINATION remote sensing and meteorology
在线阅读 下载PDF
MewCDNet: A Wavelet-Based Multi-Scale Interaction Network for Efficient Remote Sensing Building Change Detection
11
作者 Jia Liu Hao Chen +5 位作者 Hang Gu Yushan Pan Haoran Chen Erlin Tian Min Huang Zuhe Li 《Computers, Materials & Continua》 2026年第1期687-710,共24页
Accurate and efficient detection of building changes in remote sensing imagery is crucial for urban planning,disaster emergency response,and resource management.However,existing methods face challenges such as spectra... Accurate and efficient detection of building changes in remote sensing imagery is crucial for urban planning,disaster emergency response,and resource management.However,existing methods face challenges such as spectral similarity between buildings and backgrounds,sensor variations,and insufficient computational efficiency.To address these challenges,this paper proposes a novel Multi-scale Efficient Wavelet-based Change Detection Network(MewCDNet),which integrates the advantages of Convolutional Neural Networks and Transformers,balances computational costs,and achieves high-performance building change detection.The network employs EfficientNet-B4 as the backbone for hierarchical feature extraction,integrates multi-level feature maps through a multi-scale fusion strategy,and incorporates two key modules:Cross-temporal Difference Detection(CTDD)and Cross-scale Wavelet Refinement(CSWR).CTDD adopts a dual-branch architecture that combines pixel-wise differencing with semanticaware Euclidean distance weighting to enhance the distinction between true changes and background noise.CSWR integrates Haar-based Discrete Wavelet Transform with multi-head cross-attention mechanisms,enabling cross-scale feature fusion while significantly improving edge localization and suppressing spurious changes.Extensive experiments on four benchmark datasets demonstrate MewCDNet’s superiority over comparison methods:achieving F1 scores of 91.54%on LEVIR,93.70%on WHUCD,and 64.96%on S2Looking for building change detection.Furthermore,MewCDNet exhibits optimal performance on the multi-class⋅SYSU dataset(F1:82.71%),highlighting its exceptional generalization capability. 展开更多
关键词 remote sensing change detection deep learning wavelet transform MULTI-SCALE
在线阅读 下载PDF
GLMCNet: A Global-Local Multiscale Context Network for High-Resolution Remote Sensing Image Semantic Segmentation
12
作者 Yanting Zhang Qiyue Liu +4 位作者 Chuanzhao Tian Xuewen Li Na Yang Feng Zhang Hongyue Zhang 《Computers, Materials & Continua》 2026年第1期2086-2110,共25页
High-resolution remote sensing images(HRSIs)are now an essential data source for gathering surface information due to advancements in remote sensing data capture technologies.However,their significant scale changes an... High-resolution remote sensing images(HRSIs)are now an essential data source for gathering surface information due to advancements in remote sensing data capture technologies.However,their significant scale changes and wealth of spatial details pose challenges for semantic segmentation.While convolutional neural networks(CNNs)excel at capturing local features,they are limited in modeling long-range dependencies.Conversely,transformers utilize multihead self-attention to integrate global context effectively,but this approach often incurs a high computational cost.This paper proposes a global-local multiscale context network(GLMCNet)to extract both global and local multiscale contextual information from HRSIs.A detail-enhanced filtering module(DEFM)is proposed at the end of the encoder to refine the encoder outputs further,thereby enhancing the key details extracted by the encoder and effectively suppressing redundant information.In addition,a global-local multiscale transformer block(GLMTB)is proposed in the decoding stage to enable the modeling of rich multiscale global and local information.We also design a stair fusion mechanism to transmit deep semantic information from deep to shallow layers progressively.Finally,we propose the semantic awareness enhancement module(SAEM),which further enhances the representation of multiscale semantic features through spatial attention and covariance channel attention.Extensive ablation analyses and comparative experiments were conducted to evaluate the performance of the proposed method.Specifically,our method achieved a mean Intersection over Union(mIoU)of 86.89%on the ISPRS Potsdam dataset and 84.34%on the ISPRS Vaihingen dataset,outperforming existing models such as ABCNet and BANet. 展开更多
关键词 Multiscale context attention mechanism remote sensing images semantic segmentation
在线阅读 下载PDF
Multi-Constraint Generative Adversarial Network-Driven Optimization Method for Super-Resolution Reconstruction of Remote Sensing Images
13
作者 Binghong Zhang Jialing Zhou +3 位作者 Xinye Zhou Jia Zhao Jinchun Zhu Guangpeng Fan 《Computers, Materials & Continua》 2026年第1期779-796,共18页
Remote sensing image super-resolution technology is pivotal for enhancing image quality in critical applications including environmental monitoring,urban planning,and disaster assessment.However,traditional methods ex... Remote sensing image super-resolution technology is pivotal for enhancing image quality in critical applications including environmental monitoring,urban planning,and disaster assessment.However,traditional methods exhibit deficiencies in detail recovery and noise suppression,particularly when processing complex landscapes(e.g.,forests,farmlands),leading to artifacts and spectral distortions that limit practical utility.To address this,we propose an enhanced Super-Resolution Generative Adversarial Network(SRGAN)framework featuring three key innovations:(1)Replacement of L1/L2 loss with a robust Charbonnier loss to suppress noise while preserving edge details via adaptive gradient balancing;(2)A multi-loss joint optimization strategy dynamically weighting Charbonnier loss(β=0.5),Visual Geometry Group(VGG)perceptual loss(α=1),and adversarial loss(γ=0.1)to synergize pixel-level accuracy and perceptual quality;(3)A multi-scale residual network(MSRN)capturing cross-scale texture features(e.g.,forest canopies,mountain contours).Validated on Sentinel-2(10 m)and SPOT-6/7(2.5 m)datasets covering 904 km2 in Motuo County,Xizang,our method outperforms the SRGAN baseline(SR4RS)with Peak Signal-to-Noise Ratio(PSNR)gains of 0.29 dB and Structural Similarity Index(SSIM)improvements of 3.08%on forest imagery.Visual comparisons confirm enhanced texture continuity despite marginal Learned Perceptual Image Patch Similarity(LPIPS)increases.The method significantly improves noise robustness and edge retention in complex geomorphology,demonstrating 18%faster response in forest fire early warning and providing high-resolution support for agricultural/urban monitoring.Future work will integrate spectral constraints and lightweight architectures. 展开更多
关键词 Charbonnier loss function deep learning generative adversarial network perceptual loss remote sensing image super-resolution
在线阅读 下载PDF
Retrieval of urban land surface component temperature using multi-source remote-sensing data
14
作者 郑文武 曾永年 《Journal of Central South University》 SCIE EI CAS 2013年第9期2489-2497,共9页
The components of urban surface cover are diversified,and component temperature has greater physical significance and application values in the studies on urban thermal environment.Although the multi-angle retrieval a... The components of urban surface cover are diversified,and component temperature has greater physical significance and application values in the studies on urban thermal environment.Although the multi-angle retrieval algorithm of component temperature has been matured gradually,its application in the studies on urban thermal environment is restricted due to the difficulty in acquiring urban-scale multi-angle thermal infrared data.Therefore,based on the existing multi-source multi-band remote sensing data,access to appropriate urban-scale component temperature is an urgent issue to be solved in current studies on urban thermal infrared remote sensing.Then,a retrieval algorithm of urban component temperature by multi-source multi-band remote sensing data on the basis of MODIS and Landsat TM images was proposed with expectations achieved in this work,which was finally validated by the experiment on urban images of Changsha,China.The results show that:1) Mean temperatures of impervious surface components and vegetation components are the maximum and minimum,respectively,which are in accordance with the distribution laws of actual surface temperature; 2) High-accuracy retrieval results are obtained in vegetation component temperature.Moreover,through a contrast between retrieval results and measured data,it is found that the retrieval temperature of impervious surface component has the maximum deviation from measured temperature and its deviation is greater than 1 ℃,while the deviation in vegetation component temperature is relatively low at 0.5 ℃. 展开更多
关键词 component temperature urban thermal environment multi-source remote sensing thermal infrared remote sensing
在线阅读 下载PDF
A new multi-source remote sensing image sample dataset with high resolution for flood area extraction:GF-FloodNet
15
作者 Yuwei Zhang Peng Liu +3 位作者 Lajiao Chen Mengzhen Xu Xingyan Guo Lingjun Zhao 《International Journal of Digital Earth》 SCIE EI 2023年第1期2522-2554,共33页
Deep learning algorithms show good prospects for remote sensingflood monitoring.They mostly rely on huge amounts of labeled data.However,there is a lack of available labeled data in actual needs.In this paper,we propo... Deep learning algorithms show good prospects for remote sensingflood monitoring.They mostly rely on huge amounts of labeled data.However,there is a lack of available labeled data in actual needs.In this paper,we propose a high-resolution multi-source remote sensing dataset forflood area extraction:GF-FloodNet.GF-FloodNet contains 13388 samples from Gaofen-3(GF-3)and Gaofen-2(GF-2)images.We use a multi-level sample selection and interactive annotation strategy based on active learning to construct it.Compare with otherflood-related datasets,GF-FloodNet not only has a spatial resolution of up to 1.5 m and provides pixel-level labels,but also consists of multi-source remote sensing data.We thoroughly validate and evaluate the dataset using several deep learning models,including quantitative analysis,qualitative analysis,and validation on large-scale remote sensing data in real scenes.Experimental results reveal that GF-FloodNet has significant advantages by multi-source data.It can support different deep learning models for training to extractflood areas.There should be a potential optimal boundary for model training in any deep learning dataset.The boundary seems close to 4824 samples in GF-FloodNet.We provide GF-FloodNet at https://www.kaggle.com/datasets/pengliuair/gf-floodnet and https://pan.baidu.com/s/1vdUCGNAfFwG5UjZ9RLLFMQ?pwd=8v6o. 展开更多
关键词 Flood area extraction dataset construction multi-source remote sensing data deep learning
原文传递
Remote Sensing Dynamic Monitoring System for Agricultural Disaster in Henan Province Based on Multi-source Satellite Data
16
作者 刘婷 王来刚 +1 位作者 左守亭 杨春华 《Agricultural Science & Technology》 CAS 2013年第1期155-161,共7页
Using 3S technology, relying on earth-space three-dimensional agriculture disaster monitoring network, remote sensing monitoring model for agricultural disaster in Henan Province was established, and agricultural disa... Using 3S technology, relying on earth-space three-dimensional agriculture disaster monitoring network, remote sensing monitoring model for agricultural disaster in Henan Province was established, and agricultural disaster monitoring system plat- form of Henan Province based on multi-souroe satellite data was further constructed, which realizes dynamic monitoring of agricultural disasters in Henan Province (drought, flood, snow cover and straw burning). 展开更多
关键词 Agricultural disaster remote sensing monitoring 3S technology System application Henan Province
在线阅读 下载PDF
Wetland Vegetation Species Classification Using Optical and SAR Remote Sensing Images: A Case Study of Chongming Island, Shanghai, China
17
作者 DENG Yaozi SHI Runhe +3 位作者 ZHANG Chao WANG Xiaoyang LIU Chaoshun GAO Wei 《Chinese Geographical Science》 2025年第3期510-527,共18页
Mudflat vegetation plays a crucial role in the ecological function of wetland environment,and obtaining its fine spatial distri-bution is of great significance for wetland protection and management.Remote sensing tech... Mudflat vegetation plays a crucial role in the ecological function of wetland environment,and obtaining its fine spatial distri-bution is of great significance for wetland protection and management.Remote sensing techniques can realize the rapid extraction of wetland vegetation over a large area.However,the imaging of optical sensors is easily restricted by weather conditions,and the backs-cattered information reflected by Synthetic Aperture Radar(SAR)images is easily disturbed by many factors.Although both data sources have been applied in wetland vegetation classification,there is a lack of comparative study on how the selection of data sources affects the classification effect.This study takes the vegetation of the tidal flat wetland in Chongming Island,Shanghai,China,in 2019,as the research subject.A total of 22 optical feature parameters and 11 SAR feature parameters were extracted from the optical data source(Sentinel-2)and SAR data source(Sentinel-1),respectively.The performance of optical and SAR data and their feature paramet-ers in wetland vegetation classification was quantitatively compared and analyzed by different feature combinations.Furthermore,by simulating the scenario of missing optical images,the impact of optical image missing on vegetation classification accuracy and the compensatory effect of integrating SAR data were revealed.Results show that:1)under the same classification algorithm,the Overall Accuracy(OA)of the combined use of optical and SAR images was the highest,reaching 95.50%.The OA of using only optical images was slightly lower,while using only SAR images yields the lowest accuracy,but still achieved 86.48%.2)Compared to using the spec-tral reflectance of optical data and the backscattering coefficient of SAR data directly,the constructed optical and SAR feature paramet-ers contributed to improving classification accuracy.The inclusion of optical(vegetation index,spatial texture,and phenology features)and SAR feature parameters(SAR index and SAR texture features)in the classification algorithm resulted in an OA improvement of 4.56%and 9.47%,respectively.SAR backscatter,SAR index,optical phenological features,and vegetation index were identified as the top-ranking important features.3)When the optical data were missing continuously for six months,the OA dropped to a minimum of 41.56%.However,when combined with SAR data,the OA could be improved to 71.62%.This indicates that the incorporation of SAR features can effectively compensate for the loss of accuracy caused by optical image missing,especially in regions with long-term cloud cover. 展开更多
关键词 optical images Synthetic Aperture Radar(SAR) multi-source remote sensing vegetation classification tidal flat wetland Chongming Island Shanghai China
在线阅读 下载PDF
Geospatial assessment of rooftop solar photovoltaic potential using multi-source remote sensing data 被引量:1
18
作者 Hou Jiang Ling Yao +4 位作者 Ning Lu Jun Qin Tang Liu Yujun Liu Chenghu Zhou 《Energy and AI》 2022年第4期17-28,共12页
Rooftop solar photovoltaics (PV) play increasing role in the global sustainable energy transition. This raises the challenge of accurate and high-resolution geospatial assessment of PV technical potential in policymak... Rooftop solar photovoltaics (PV) play increasing role in the global sustainable energy transition. This raises the challenge of accurate and high-resolution geospatial assessment of PV technical potential in policymaking and power system planning. To address the challenge, we propose a general framework that combines multi-resource satellite images and deep learning models to provide estimates of rooftop PV power generation. We apply deep learning based inversion model to estimate hourly solar radiation based on geostationary satellite images, and automatic segmentation model to extract building footprint from high-resolution satellite images. The framework enables precise survey of available rooftop resources and detailed simulation of power generation on an hourly basis with a spatial resolution of 100 m. The case study in Jiangsu Province demonstrates that the framework is applicable for large areas and scalable between precise locations and arbitrary regions across multiple temporal scales. Our estimates show that rooftop resources across the province have a potential installed capacity of 245.17 GW, corresponding to an annual power generation of 290.66 TWh. This highlights the huge space for carbon emissions reduction through developing rooftop PVs. 展开更多
关键词 Rooftop photovoltaics Building footprints remote sensing Deep learning Solar energy
在线阅读 下载PDF
Global Soil Salinity Estimation at 10 m Using Multi-Source Remote Sensing 被引量:3
19
作者 Nan Wang Songchao Chen +8 位作者 Jingyi Huang Frederic Frappart Ruhollah Taghizadeh Xianglin Zhang Jean-Pierre Wigneron Jie Xue Yi Xiao Jie Peng Zhou Shi 《Journal of Remote Sensing》 2024年第1期612-631,共20页
Salinization is a threat to global agricultural and soil resource allocation.Current investigations of global soil salinity are limited to coarse spatial resolution of the available datasets(>250 m)and semiqualitat... Salinization is a threat to global agricultural and soil resource allocation.Current investigations of global soil salinity are limited to coarse spatial resolution of the available datasets(>250 m)and semiqualitative classification rules(five ranks).Based on these two limitations,we proposed a framework to quantitatively estimate global soil salt content in five climate regions at 10 m by integrating Sentinel-1/2 remotely sensed images,climate,parent material,terrain data,and machine learning.In hyper-arid and arid region,models established using Sentinel-2 and other geospatial data showed the highest accuracy with R^(2) of 0.85 and 0.62,respectively.In semi-arid,dry sub-humid,and humid regions,models performed best using Sentinel-1,Sentinel-2,and other geospatial data with R^(2) of 0.87,0.80,and 0.87,respectively.The accuracy of the global models is considerable with field validation in Iran and Xinjiang,and compared with digitized salinity maps in California,Brazil,Turkey,South Africa,and Shandong.The proportion of extremely saline soils in Europe is 10.21%,followed by South America(5.91%),Oceania(5.80%),North America(4.05%),Asia(1.19%),and Africa(1.11%).Climatic conditions,groundwater,and salinity index are key covariates in global soil salinity estimation.Use of radar data improves estimation accuracy in wet regions.The map of global soil salinity at 10 m provides a detailed,high-precision basis for soil property investigation and resource management. 展开更多
关键词 soil salt SENTINEL machine learningin remote sensing machine learning global estimation soil salinity
原文传递
Air Pollution Exposure Based on Nighttime Light Remote Sensing and Multi-source Geographic Data in Beijing
20
作者 ZHANG Zheyuan WANG Jia +2 位作者 XIONG Nina LIANG Boyi WANG Zong 《Chinese Geographical Science》 SCIE CSCD 2023年第2期320-332,共13页
Air pollution is a problem that directly affects human health,the global environment and the climate.The air quality index(AQI)indicates the degree of air pollution and effect on human health;however,when assessing ai... Air pollution is a problem that directly affects human health,the global environment and the climate.The air quality index(AQI)indicates the degree of air pollution and effect on human health;however,when assessing air pollution only based on AQI monitoring data the fact that the same degree of air pollution is more harmful in more densely populated areas is ignored.In the present study,multi-source data were combined to map the distribution of the AQI and population data,and the analyze their pollution population exposure of Beijing in 2018 was analyzed.Machine learning based on the random forest algorithm was adopted to calculate the monthly average AQI of Beijing in 2018.Using Luojia-1 nighttime light remote sensing data,population statistics data,the population of Beijing in 2018 and point of interest data,the distribution of the permanent population in Beijing was estimated with a high precision of 200 m×200 m.Based on the spatialization results of the AQI and population of Beijing,the air pollution exposure levels in various parts of Beijing were calculated using the population-weighted pollution exposure level(PWEL)formula.The results show that the southern region of Beijing had a more serious level of air pollution,while the northern region was less polluted.At the same time,the population was found to agglomerate mainly in the central city and the peripheric areas thereof.In the present study,the exposure of different districts and towns in Beijing to pollution was analyzed,based on high resolution population spatialization data,it could take the pollution exposure issue down to each individual town.And we found that towns with higher exposure such as Yongshun Town,Shahe Town and Liyuan Town were all found to have a population of over 200000 which was much higher than the median population of townships of51741 in Beijing.Additionally,the change trend of air pollution exposure levels in various regions of Beijing in 2018 was almost the same,with the peak value being in winter and the lowest value being in summer.The exposure intensity in population clusters was relatively high.To reduce the level and intensity of pollution exposure,relevant departments should strengthen the governance of areas with high AQI,and pay particular attention to population clusters. 展开更多
关键词 air quality index(AQI) population pollution exposure nighttime light remote sensing Luojia-1 random forest
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部