期刊文献+
共找到48,820篇文章
< 1 2 250 >
每页显示 20 50 100
Assessing the Applicability of Multi-Source Precipitation Products over the Chinese Mainland and Its Seven Regions
1
作者 TIAN Wei WU Yun-long +2 位作者 LIN Chen ZHANG Jing-guo LIM KAM SIAN Kenny Thiam Choy 《Journal of Tropical Meteorology》 SCIE 2024年第3期275-288,共14页
Satellite-based and reanalysis precipitation products provide valuable information for various applications.However,their performance varies widely across regions due to different data sources and production processes... Satellite-based and reanalysis precipitation products provide valuable information for various applications.However,their performance varies widely across regions due to different data sources and production processes.This paper evaluated the daily performance of four precipitation products(MSWEP,ERA5,PERSIANN,and TRMM)for seven regions of the Chinese mainland,using observations from 2462 ground stations across the country as a benchmark.We used four statistical and four classification indicators to describe their spatial and temporal accuracy,and capability to detect precipitation events while analyzing their applicability.The results show that according to the precipitation char-acteristics and accuracy of different types of precipitation products over the Chinese mainland,MSWEP was the most suitable product over the Chinese mainland,having the lowest root mean square error and mean absolute error,along with the highest coefficient of determination.It was followed by TRMM and ERA5,whereas PERSIANN lagged behind in terms of performance.In terms of different regions,MSWEP still performed well,especially in North China and East China.The accuracy of the four precipitation products was relatively low in the summer months,and they all overestimated in the northwest region.In other months,MSWEP and TRMM were better than PERSIANN and ERA5.The four precipitation products had good detection performance over the Chinese mainland,with probability of detection above 0.5.However,with the increase of precipitation threshold,the detection capability of the four products decreased,and MSWEP and ERA5 had good detection capability for moderate rain.TRMM’s detection capability for heavy rain and rainstorms was better than that of the other three products,and PERSIANN’s detection capability for moderate rain,heavy rain and rainstorms was relatively poor,with a large deviation. 展开更多
关键词 precipitation product MSWEP TRMM ERA5 PERSIANN
在线阅读 下载PDF
Quantitative analysis on T1 phase precipitation behaviors and mechanicalproperties of 2195 Al−Li alloy after cryogenic deformation and aging
2
作者 Meng-jia YAO Hua-bo ZHOU +1 位作者 Rui-qian WANG Wei LIU 《Transactions of Nonferrous Metals Society of China》 2026年第1期25-42,共18页
The water-quenched(WQ)2195 Al−Li alloy was subjected to stretching at different temperatures,from room temperature(RT)to−196℃(CT),to investigate the effect of cryogenic deformation on the aging precipitation behavior... The water-quenched(WQ)2195 Al−Li alloy was subjected to stretching at different temperatures,from room temperature(RT)to−196℃(CT),to investigate the effect of cryogenic deformation on the aging precipitation behaviors and mechanical properties.The precipitation kinetics of the T1 phase and the microstructures in peak aging state were investigated through the differential scanning calorimetric(DSC)tests and electron microscopy observation.The results show that−196℃deformation produces a high dislocation density,which promotes the precipitation of the T1 phase and refines its sizes significantly.In addition,the grain boundary precipitates(GBPs)of−196℃-stretched samples are suppressed considerably due to the high dislocation density in the grain interiors,which increases the ductility.In comparison,the strength remains nearly constant.Thus,it is indicated that cryogenic forming has the potential to provide the shape and property control for the manufacture of critical components of aluminum alloys. 展开更多
关键词 Al−Li alloy cryogenic stretching T1 phase precipitation kinetics grain boundary precipitates
在线阅读 下载PDF
Spatial pattern of hourly precipitation events in China revealed by precipitation event detection indices
3
作者 ZHANG Yihui LIANG Kang LIU Changming 《Journal of Geographical Sciences》 2026年第1期129-148,共20页
Precipitation events,which follow a life cycle of initiation,development,and decay,represent the fundamental form of precipitation.Comprehensive and accurate detection of these events is crucial for effective water re... Precipitation events,which follow a life cycle of initiation,development,and decay,represent the fundamental form of precipitation.Comprehensive and accurate detection of these events is crucial for effective water resource management and flood control.However,current investigations on their spatio-temporal patterns remain limited,largely because of the lack of systematic detection indices that are specifically designed for precipitation events,which constrains event-scale research.In this study,we defined a set of precipitation event detection indices(PEDI)that consists of five conventional and fourteen extreme indices to characterize precipitation events from the perspectives of intensity,duration,and frequency.Applications of the PEDI revealed the spatial patterns of hourly precipitation events in China and its first-and second-order river basins from 2008 to 2017.Both conventional and extreme precipitation events displayed spatial distribution patterns that gradually decreased in intensity,duration,and frequency from southeast to northwest China.Compared with those in northwest China,the average values of most PEDIs in southeast China were usually 2-10 times greater for first-order river basins and 3-15 times greater for second-order basins.The PEDI could serve as a reference method for investigating precipitation events at global,regional,and basin scales. 展开更多
关键词 precipitation events precipitation event detection indices(PEDI) spatial heterogeneity IETD(inter-event time definition)method
原文传递
Decadal shift in Northeast China’s precipitation around 2000
4
作者 Yawen Liao Tianbao Zhao +1 位作者 Jingpeng Zhang Yankun Sun 《Atmospheric and Oceanic Science Letters》 2026年第1期14-21,共8页
Northeast China(NEC),a critical agricultural and ecological zone,has experienced intensified hydrological variability under global warming,with cascading impacts on food security and ecosystem resilience.This study ut... Northeast China(NEC),a critical agricultural and ecological zone,has experienced intensified hydrological variability under global warming,with cascading impacts on food security and ecosystem resilience.This study utilized observational data and two new generation reanalysis products(i.e.,the fifth major global reanalysis produced by ECMWF(ERA5)and the Japanese Reanalysis for Three Quarters of a Century(JRA-3Q))to investigate the shift changes in precipitation in NEC around 2000 and associated water vapor transport.The analysis identified a pivotal interdecadal shift in 1998/99,transitioning from moderate increases(17.5 mm/10 yr during 1980-1998)to accelerated but more variable precipitation growth(85.4 mm/10 yr post-1999).While the mean precipitation during the post-shift period decreased,enhanced anticyclonic circulation amplified moisture divergence over continental NEC,redirecting vapor flux toward coastal regions.Crucially,trajectory analysis demonstrated regime-dependent moisture sourcing:midlatitude westerlies dominated during wet extremes(44% of trajectories in 1998),whereas East Asian monsoon flows prevailed in drought years(36% of trajectories in 2007).The post-1998 period exhibited increased reliance on localized recycling(45%of mid-tropospheric trajectories),reflecting weakened monsoonal inflow.These findings highlight NEC’s growing vulnerability to competing moisture pathways and atmospheric blocking-a dual mechanism that explains rising extremes despite declining mean precipitation.By reconciling dataset discrepancies(ERA5 vs.JRA-3Q trends)and elucidating circulation-precipitation linkages,this work provides actionable insights for climate-resilient agriculture in NEC’s water-stressed ecosystems. 展开更多
关键词 precipitation Decadal shift Water vapor transport Northeast China
在线阅读 下载PDF
Interannual modulation of summer precipitation over North China by the coupled tropical Pacific-Atlantic SST Dipole Mode
5
作者 Yanjin Mao Xiaorui Niu +3 位作者 Ping Li Xianchun Chen Libin Huang Xin Tan 《Atmospheric and Oceanic Science Letters》 2026年第1期1-6,共6页
Using multi-source reanalysis data,this study examines the relationship between the tropical Pacific-Atlantic SST Dipole Mode(TPA-DM)and summer precipitation in North China(NCSP)on the interannual timescale during the... Using multi-source reanalysis data,this study examines the relationship between the tropical Pacific-Atlantic SST Dipole Mode(TPA-DM)and summer precipitation in North China(NCSP)on the interannual timescale during the period of 1979-2022.The results show that the TPA-DM,the dominant pattern of interannual variability in the tropical Pacific and Atlantic regions,exhibits a significant negative correlation with NCSP.The positive phase of TPA-DM induces subsidence over the Maritime Continent through a zonal circulation pattern,which initiates a Pacific-Japan-like wave train along the East Asian coast.The circulation anomalies lead to moisture deficits and convergence subsidence over North China,leading to below-normal rainfall.Further analysis reveals that cooler SST in the Southern Tropical Atlantic facilitates the persistence of the TPA-DM by stimulating the anomalous Walker circulation associated with wind-evaporation-SST-convection feedback. 展开更多
关键词 Coupled tropical Pacific-Atlantic SST mode precipitation ENSO Atmospheric teleconnection
在线阅读 下载PDF
Decreased Interhemispheric Asymmetries of Global Land Monsoon Precipitation toward the Carbon Neutrality Goal
6
作者 Xiaochao YU Hua ZHANG +1 位作者 Zhili WANG Bing XIE 《Advances in Atmospheric Sciences》 2026年第1期120-134,共15页
Global land monsoon precipitation(GLMP)is highly sensitive to changes in interhemispheric thermal contrast(ITC).Amplified interhemispheric asymmetries of GLMP due to enhanced ITC driven by high-level anthropogenic emi... Global land monsoon precipitation(GLMP)is highly sensitive to changes in interhemispheric thermal contrast(ITC).Amplified interhemispheric asymmetries of GLMP due to enhanced ITC driven by high-level anthropogenic emissions are expected to simultaneously increase the probability of regional floods and droughts,threatening ecosystems within global terrestrial monsoon regions and the freshwater supply for billions of residents in these areas.In this study,the responses of GLMP to the evolution of ITC toward the carbon neutrality goal are assessed using multimodel outputs from a new model intercomparison project(CovidMIP).The results show that the Northern Hemisphere-Southern Hemisphere(NH-SH)asymmetry of GLMP in boreal summer weakens during the 2040s,as a persistent reduction in well-mixed greenhouse gas(WMGHG)emissions leads to a downward trend in the ITC after 2040.At the same time,the reduction in WMGHG emissions dampens the Eastern Hemisphere-Western Hemisphere(EH-WH)asymmetry of GLMP by inducing La Niña-like cooling and enhancing moisture transport to Inner America.The resulting increases in land monsoon precipitation(LMP)may alleviate drought under the global warming scenario by about 19%-25%and 7%-9%in the WH and SH monsoon regions,respectively.However,a persistent reduction in aerosol emissions in Asia will dominate the increases in LMP in this region until the mid-21st century,and these increases may be approximately 23%-60%of the growth under the global warming scenario.Our results highlight the different rates of response of aerosol and WMGHG concentrations to the carbon neutrality goal,leading to various changes in LMP at global and regional scales. 展开更多
关键词 global land monsoon precipitation interhemispheric thermal contrast carbon neutrality goal CovidMIP
在线阅读 下载PDF
Relationship between the Southern Indian Ocean Dipole and ENSO and their effect on summer precipitation in China
7
作者 Xingyu Li Yuanhong Guan +3 位作者 Ran Dong Qifeng Lu Yue Zhang Jiani Zhen 《Atmospheric and Oceanic Science Letters》 2026年第1期53-58,共6页
Based on reanalysis data from 1979 to 2021,this study explores the spatial distribution of the Southern Indian Ocean Dipole(SIOD)and its individual and synergistic effects with the El Niño-Southern Oscillation(EN... Based on reanalysis data from 1979 to 2021,this study explores the spatial distribution of the Southern Indian Ocean Dipole(SIOD)and its individual and synergistic effects with the El Niño-Southern Oscillation(ENSO)on summer precipitation in China.The inverse phase spatial distribution of sea surface temperature anomalies(SSTAs)in the southwest and northeast of the southern Indian Ocean is defined as the SIOD.Positive SIOD events(positive SSTAs in the southwest,negative SSTAs in the northeast)are associated with La Niña events(Central Pacific(CP)type),while negative SIOD events(negative SSTAs in the southwest,positive SSTAs in the northeast)are associated with El Niño events(Eastern Pacific(EP)type).Both SIOD and ENSO have certain impacts on summer precipitation in China.Precipitation in the Yangtze River basin decreases,while precipitation in southern China increases during pure positive SIOD(P_PSIOD)events.During pure negative SIOD(P_NSIOD)events,the changes in precipitation are exactly the opposite of those during P_PSIOD events,which may be due to differences in the cross-equatorial flow in the southern Indian Ocean,particularly in low-level Australian cross-equatorial flow.When positive SIOD and CP-type La Niña events occur simultaneously(PSIOD+La_Niña),precipitation increases in the Yangtze-Huaihe River basin,while it decreases in northern China.When negative SIOD and EP-type El Niño events occur simultaneously(NSIOD+El_Niño),precipitation in the Yangtze-Huaihe River basin is significantly lower than during P_NSIOD events.This is caused by differences in water vapor originating from the Pacific Ocean during different events. 展开更多
关键词 Southern Indian Ocean Dipole ENSO Summer precipitation in China Cross-equatorial flow Composite analysis
在线阅读 下载PDF
Unanticipated strengthening of Cu−19Ni−6Cr−7Mn alloy achieved by synergistic effect of spinodal decomposition and multiscale precipitation
8
作者 Shao-lin LI Ying-ying ZHU +3 位作者 Xiu-hua GUO Qiang-song WANG Wen-ming SUN Ke-xing SONG 《Transactions of Nonferrous Metals Society of China》 2026年第1期183-202,共20页
The microstructural evolution of Cu−19Ni−6Cr−7Mn alloy during aging treatment was investigated.After aging for 120 min at 500℃,the alloy exhibited excellent mechanical properties,including a tensile strength of 978 M... The microstructural evolution of Cu−19Ni−6Cr−7Mn alloy during aging treatment was investigated.After aging for 120 min at 500℃,the alloy exhibited excellent mechanical properties,including a tensile strength of 978 MPa and an elastic modulus of 145.8 GPa.After aging for 240 min at 500℃,the elastic modulus of the alloy reached 149.5 GPa,which was among the highest values reported for Cu alloys.It was worth mentioning that the tensile strength increased rapidly from 740 to 934 MPa after aging for 5 min at 500℃,which was close to the maximum tensile strength(978 MPa).Analysis of the underlying strengthening mechanisms and phase transformation behavior revealed that the Cu−19Ni−6Cr−7Mn alloy underwent spinodal decomposition and DO_(22) ordering during the first 5 min of aging at 500℃,and L1_(2) ordered phases and bcc-Cr precipitates appeared.Therefore,the enhanced mechanical properties of the Cu−19Ni−6Cr−7Mn alloy can be attributed to the stress field generated by spinodal decomposition and the presence of nanoscale ordered phase and Cr precipitates. 展开更多
关键词 Cu−Ni−Cr−Mn alloy mechanical properties nanoscale precipitates spinodal decomposition elastic modulus
在线阅读 下载PDF
Deep learning-based multi-source precipitation merging for the Tibetan Plateau 被引量:3
9
作者 Tianyi NAN Jie CHEN +2 位作者 Zhiwei DING Wei LI Hua CHEN 《Science China Earth Sciences》 SCIE EI CAS CSCD 2023年第4期852-870,共19页
Due to its complex and diverse terrain,precipitation gauges in the Tibetan Plateau(TP)are sparse,making it difficult to obtain reliable precipitation data for environmental studies.Data merging is a method that can in... Due to its complex and diverse terrain,precipitation gauges in the Tibetan Plateau(TP)are sparse,making it difficult to obtain reliable precipitation data for environmental studies.Data merging is a method that can integrate precipitation data from multiple sources to generate high-precision precipitation data.However,the more commonly used methods,such as regression and machine learning,do not usually consider the local correlation of precipitation,so that the spatial pattern of precipitation cannot be reproduced,while deep learning methods do incorporate spatial correlation.To explore the ability of using deep learning methods in merging precipitation data for the TP,this study compared three methods:a deep learning method—a convolutional neural network(CNN)algorithm,a machine learning method—an artificial neural network(ANN)algorithm,and a statistical method based on Extended Triple Collocation(ETC)in merging precipitation from multiple sources(gauged,grid,satellite and dynamic downscaling)over the TP,as well as their performance for hydrological simulations.Dynamic downscaling data driven by global reanalysis data centered on the TP were introduced in the merging process to better reflect the spatial variability of precipitation.The results show that:(1)in terms of the meteorological metrics,the merged data perform better than the gauge interpolation data.By using data merging,the error between the raw multi-source and gauged precipitation can be reduced,and the precipitation detection capability can be greatly improved;(2)The merged precipitation data also perform well in the hydrological evaluation.The Xin’anjiang(XAJ)model parameter calibration experiments at the source of the Yangtze River(SYR)and the source of the Yellow River(SHR)were repeated 300 times to remove uncertainty in the model parameter results.The median Kling-Gupta Efficiency Coefficients(KGE)of simulated runoff from the merged data of the ANN,CNN and ETC methods for the SYR and the SHR are 0.859,0.864,0.838 and 0.835,0.835,0.789,respectively.Except for the ETC merging data at the SHR,the performance of other merged data was improved compared to the simulation results of the gauged precipitation(KGE=0.807 at the SYR,KGE=0.828 at the SHR);and(3)In contrast to the machine learning ANN method and the statistical ETC method,the deep learning method,CNN,consistently showed better performance. 展开更多
关键词 Tibetan Plateau precipitation data merging Deep learning Dynamic downscaling
原文传递
Applicability Assessment of the 1998–2018 CLDAS Multi-Source Precipitation Fusion Dataset over China 被引量:18
10
作者 Shuai SUN Chunxiang SHI +5 位作者 Yang PAN Lei BAI Bin XU Tao ZHANG Shuai HAN Lipeng JIANG 《Journal of Meteorological Research》 SCIE CSCD 2020年第4期879-892,共14页
Traditional hourly rain gauges and automatic weather stations rarely measure solid precipitation, except for those stations with weighing-type precipitation sensors. Microwave remote sensing has only a low ability to ... Traditional hourly rain gauges and automatic weather stations rarely measure solid precipitation, except for those stations with weighing-type precipitation sensors. Microwave remote sensing has only a low ability to retrieve solid precipitation. In addition, there are no long-term, high-quality precipitation data in China that can be used to drive land surface models. To address these issues, in the China Meteorological Administration(CMA) Land Data Assimilation System(CLDAS), we blended the Climate Prediction Center(CPC) morphing technique(CMORPH) and Modern-Era Retrospective analysis for Research and Applications version 2(MERRA2) precipitation datasets with observed temperature and precipitation data on various temporal scales using multigrid variational analysis and temporal downscaling to produce a multi-source precipitation fusion dataset for China(CLDAS-Prcp). This dataset covers all of China at a resolution of 6.25 km at hourly intervals from 1998 to 2018. We performed dependent and independent evaluations of the CLDAS-Prcp dataset from the perspectives of seasonal total precipitation and land surface model simulation. Our results show that the CLDAS-Prcp dataset represents reasonably the spatial distribution of precipitation in China. The dependent evaluation indicates that the CLDAS-Prcp performs better than the MERRA2 precipitation, CMORPH precipitation, Global Land Data Assimilation System version 2(GLDAS-V2.1) precipitation,and CLDAS-V2.0 winter precipitation, as compared to the meteorological observational precipitation. The independent evaluation indicates that the CLDAS-Prcp dataset performs better than the Global Precipitation Measurement(GPM) precipitation dataset and is similar to the CLDAS-V2.0 summer precipitation dataset based on the hydrological observational precipitation. The simulated soil moisture content driven by CLDAS-Prcp is slightly better than that driven by the CLDAS-V2.0 precipitation, whereas the snow depth simulation driven by CLDAS-Prcp is much better than that driven by the CLDAS-V2.0 precipitation. This is because the CLDAS-Prcp data have included solid precipitation. Overall, the CLDAS-Prcp dataset can meet the needs of land surface and hydrological modeling studies. 展开更多
关键词 China Meteorological Administration Land Data Assimilation System(CLDAS) precipitation data fusion Modern-Era Retrospective analysis for Research and Applications version 2(MERRA2) Climate Prediction Center(CPC)morphing technique(CMORPH) Space–Time Multiscale Variational Analysis System(STMAS) Noah land surface model with multiparameterization options(Noah-MP)
原文传递
Improving the Seasonal Forecast of Summer Precipitation in Southeastern China Using a CycleGAN-based Deep Learning Bias Correction Method 被引量:1
11
作者 Song YANG Fenghua LING +1 位作者 Jing-Jia LUO Lei BAI 《Advances in Atmospheric Sciences》 2025年第1期26-35,共10页
Accurate seasonal precipitation forecasts,especially for extreme events,are crucial to preventing meteorological hazards and their potential impacts on national development,social activity,and security.However,the int... Accurate seasonal precipitation forecasts,especially for extreme events,are crucial to preventing meteorological hazards and their potential impacts on national development,social activity,and security.However,the intensity of summer precipitation is often largely underestimated in many current dynamic models.This study uses a deep learning method called Cycle-Consistent Generative Adversarial Networks(CycleGAN)to improve the seasonal forecasts for June-JulyAugust precipitation in southeastern China by the Nanjing University of Information Science and Technology Climate Forecast System(NUIST-CFS 1.0).The results suggest that the CycleGAN-based model significantly improves the accuracy in predicting the spatiotemporal distribution of summer precipitation compared to the traditional quantile mapping(QM)method.Using the unpaired bias-correction model,we can also obtain advanced forecasts of the frequency,intensity,and duration of extreme precipitation events over the dynamic model predictions.This study expands the potential applications of deep learning models toward improving seasonal precipitation forecasts. 展开更多
关键词 bias correction CycleGAN QM NUIST-CFS 1.0 extreme precipitation
在线阅读 下载PDF
Regulation mechanism of active magnesium oxide on precipitation of lanthanum hydroxide 被引量:1
12
作者 Jianwei Zhao Haiqing Hao +4 位作者 Yanyan Zhao Meng Wang Xu Sun Zongyu Feng Xiaowei Huang 《Journal of Rare Earths》 2025年第6期1264-1271,I0007,共9页
Precipitation is often used for the preparation of La(OH)_(3)with precipitants of liquid alkali and ammonia.To solve the problems of high cost and wastewater pollution caused by common precipitants,the active MgO synt... Precipitation is often used for the preparation of La(OH)_(3)with precipitants of liquid alkali and ammonia.To solve the problems of high cost and wastewater pollution caused by common precipitants,the active MgO synthesized by pyrolysis was used as the precipitant to prepare La(OH)_(3).The species distribution of LaCl_(3)and LaCl_(3)-MgCl_(2)mixed system solution was calculated,and the kinetic analysis of the precipi-tation process was carried out to confirm the key factors influencing the precipitation of La(OH)_(3).The results show that La(OH)_(3)with D_(50)of 5.57μm,a specific surface area of 25.70 m^(2)/g,a rod-like shape,and MgO content of 0.044 wt%,was successfully prepared by adding active MgO.The precipitation ratio of La reaches 99.92%.The La(OH)_(3)precipitation is controlled by the diffusion process.The activity of MgO has a significant influence on MgO content in the precipitate.The preparation of La(OH)_(3)by active MgO provides a potential way for an eco-friendly preparation method of rare earth. 展开更多
关键词 Active magnesium oxide precipitation Lanthanum hydroxide REGULATION Rare earths
原文传递
Making titanium alloys ultrahigh strength and toughness synergy through deformation kinks-me diate d hierarchical α-precipitation 被引量:1
13
作者 Keer Li Wei Chen +2 位作者 Jinyu Zhang Shewei Xin Jun Sun 《Journal of Materials Science & Technology》 2025年第4期142-159,共18页
Titanium alloys engineered in structural applications achieve ultrahigh strength primarily through precipitation strengthening of secondary α-phase(αs)during aging,while they often experience compromised ductility a... Titanium alloys engineered in structural applications achieve ultrahigh strength primarily through precipitation strengthening of secondary α-phase(αs)during aging,while they often experience compromised ductility and toughness due to traditional strength-toughness tradeoff.In this study,we propose a novel strategy to address this conflict by introducing deformation kinks prior to conventional cold rolling(CR)and aging processes.These kinks are produced by cold forging(CF)to create macroscopic lamellar structures in β-grains,which alter strain partitioning during subsequent CR and ultimately tailor α_(s)-precipitation upon aging.As a result,an ultrafine duplex(αe+β)-structure is formed within kink interi-ors,while hierarchicalαs-precipitates are generated in the external β-matrix.This unique microstructure effectively enhances dislocation activity,promotes uniform plastic strain distribution and impedes crack propagation.Consequently,a simple Ti-V binary titanium alloy exhibits exceptional properties with ultra-high strength∼1636 MPa,decent ductility∼5.4% and appreciable fracture toughness∼36.1 MPa m^(1/2).The synergetic properties surpass those obtained through traditional CR and aging processes for the alloy and even outperform numerous multielement engineering titanium alloys reported in literature.Our findings open up a new avenue for overcoming the strength-toughness tradeoffof ultrahigh-strength titanium alloys,and also offer a facile production route towards structural materials for advanced performance. 展开更多
关键词 Titanium alloys Strength-toughness synergy KINK precipitation Deformation and damage
原文传递
A Year Marked by Extreme Precipitation and Floods:Weather and Climate Extremes in 2024 被引量:1
14
作者 Wenxia ZHANG Tianjun ZHOU +17 位作者 Wanheng YE Tingyu ZHANG Lixia ZHANG Piotr WOLSKI James RISBEY Zhuo WANG Seung-Ki MIN Hamish RAMSAY Michael BRODY Alice GRIMM Robin CLARK Kangnian REN Jie JIANG Xiaolong CHEN Shenming FU Lan LI Shijie TANG Shuai HU 《Advances in Atmospheric Sciences》 2025年第6期1045-1063,共19页
This past year, 2024, is on track to be the warmest year, joining 2023 as the two hottest years on record. With the exceptional heat, weather and climate extremes were common across the world. In particular, 2024 has ... This past year, 2024, is on track to be the warmest year, joining 2023 as the two hottest years on record. With the exceptional heat, weather and climate extremes were common across the world. In particular, 2024 has seen a remarkable run of extreme precipitation events and resulting impacts. Here, we provide an overview of the most notable extreme events of the year, including extreme precipitation and floods, tropical cyclones, and droughts. The characteristics and impacts of these extreme events are summarized, followed by discussion on the physical drivers and the role of global warming.Finally, we also discuss the future prospects in extreme event studies, including impact-based perspectives, challenges in attribution of precipitation extremes, and the existing gap to minimize impacts from climate extremes. 展开更多
关键词 weather and climate extremes extreme precipitation tropical cyclones DROUGHTS
在线阅读 下载PDF
Water–Heat Synergy Shapes Evapotranspiration–Precipitation Coupling Patterns across Northern China 被引量:1
15
作者 Zesu YANG Qiang ZHANG +4 位作者 Yu ZHANG Ping YUE Jian ZENG Lixia MENG Yulei QI 《Advances in Atmospheric Sciences》 2025年第6期1167-1178,共12页
Northern China is a prominent “hotspot” for land–atmosphere interactions, with substantial gradients in both moisture and thermal conditions. Previous studies have identified a link between land–atmosphere couplin... Northern China is a prominent “hotspot” for land–atmosphere interactions, with substantial gradients in both moisture and thermal conditions. Previous studies have identified a link between land–atmosphere coupling and the individual roles of each factor, but the synergistic effect of the two factors remains unclear. This study considers the covariation of evapotranspiration and precipitation to assess evapotranspiration–precipitation(ET–P) coupling across northern China,exploring its spatial variations and their linkage to water and heat factors. Our findings reveal a transition from strongly positive coupling in the northwest to weakly negative coupling in the southeast, peaking in spring. These spatial variations are attributable to water(soil moisture) and heat(air temperature), which explain 39% and 25% of the variability,respectively. The aridity index(AI), a water–heat synergy factor, is the dominant factor, explaining 66% of the spatial variation in ET–P coupling. As the AI increases, ET–P coupling shifts from strongly positive to weakly negative, with an AI around 0.7. This shift is determined by a shift in the evapotranspiration–lifting condensation level(LCL) coupling under an AI change. Regions with an AI below 0.7 experience water-limited evapotranspiration, where increased soil moisture enhances evapotranspiration, reduces sensible heat(H), and lowers the LCL, resulting in a negative ET–LCL coupling.Conversely, regions with an AI above 0.7 experience energy-limited evapotranspiration, where the positive ET–LCL coupling reflects a positive H–LCL coupling or a positive impact of the LCL on evapotranspiration. This analysis advances our understanding of the intricate influences of multifactor surface interactions on the spatial variations of land–atmosphere coupling. 展开更多
关键词 land–atmosphere interaction EVAPOTRANSPIRATION precipitation aridity index climate transition zone
在线阅读 下载PDF
Effect of cold rolling on aging precipitation and mechanical properties of magnesium-aluminum alloy 被引量:1
16
作者 Feiya Liu Renlong Xin +1 位作者 Yiru Zhong Qing Liu 《Journal of Magnesium and Alloys》 2025年第6期2606-2617,共12页
Although magnesium-aluminum alloys,such as AZ80 and AZ91 have promising application potential in automotive,high-speed train and aerospace fields,their age-hardening response is generally not very appreciable.In this ... Although magnesium-aluminum alloys,such as AZ80 and AZ91 have promising application potential in automotive,high-speed train and aerospace fields,their age-hardening response is generally not very appreciable.In this work,the aging-hardening response of AZ80 alloy was effectively enhanced by applying cold-rolling deformation before conducting conventional aging treatment at 200°C.Compared to the directly aged sample,the yield strength of the pre-rolling and aged sample was increased by 35 MPa.Electron microscope examination confirmed that profuse{10¯11}and{10¯11}-{10¯12}twins,consisting of high density of dislocations and stacking faults,were generated by cold rolling.Blocky or ellipsoidal Mg_(17)Al_(12)precipitates formed at the twin boundaries(TBs)during subsequent aging treatment.Crystallographic analysis indicated that the precipitates at{10¯11}TBs always held an identical Potter OR with both the matrix and twin,while the precipitates at{10¯11}-{10¯12}TBs exhibited three different ORs:Burgers OR,Potter OR and P-S OR with either the matrix or the twin.Moreover,recrystallized grains were found inside{10¯11}-{10¯12}double twins after peak-aging at 200°C,implying that precipitation and recrystallization might occur concurrently along TBs at a relatively low temperature.It was speculated that the highly stored energy inside twins and the high elastic energy between the precipitates and twins were driving factors for the occurrence of recrystallization. 展开更多
关键词 Magnesium alloy Cold rolling Aging precipitation Twin boundary Orientation relationship
在线阅读 下载PDF
Disparities in precipitation effects on PM_(2.5)mass concentrations and chemical compositions:Insights from online monitoring data in Chengdu 被引量:1
17
作者 Yi Li Li Zhou +7 位作者 Hefan Liu Song Liu Miao Feng Danlin Song Qinwen Tan Hongbin Jiang Sophia Zuoqiu Fumo Yang 《Journal of Environmental Sciences》 2025年第10期421-434,共14页
Precipitation plays a pivotal role in wet deposition,significantly affecting aerosol purification.The efficacy of precipitation in removing aerosols depends on its type and the characteristics of the particulates invo... Precipitation plays a pivotal role in wet deposition,significantly affecting aerosol purification.The efficacy of precipitation in removing aerosols depends on its type and the characteristics of the particulates involved.However,further research is necessary to fully understand how precipitation impacts PM_(2.5)components.This study utilized high-temporalresolution data on PM_(2.5),its components and meteorological factors to examine varying responses influenced by precipitation intensity and duration.The findings indicate that increased rainfall intensity and duration enhance PM_(2.5)and its constituents removal efficiency.Specifically,longer precipitation periods significantly improve PM_(2.5)purification,especially with drizzle and light rain.Moreover,there is a direct correlation between preprecipitation PM_(2.5)levels and its scavenging rates,with drizzle potentially exacerbating PM_(2.5)pollution under cleaner conditions(≤35μg/m^(3)).Seasonally,the efficacy of removing PM_(2.5)components varies notably in response to drizzle and light rain.In spring,higher PM_(2.5)levels after drizzlewere primarily due to increased organic carbon concentrations favored by higher relative humidity and lower pH conditions compared to other seasons,conducive to secondary organic aerosol production.Lower wind speeds and higher temperatures further contribute to water-soluble organic carbon accumulation.Daytime and nighttime precipitation exerted differing influences on PM_(2.5)components,particularly in spring where daytime drizzle and light rain significantly increased PM_(2.5)and its constituents,notably NO_(3)-,potentially associated with phase distribution changes between gas and aerosol phases in low-temperature,high-RH conditions compared to nighttime.These results propose a dualimpact mechanism of precipitation on PM_(2.5)and provide scientific basis for designing effective control strategies. 展开更多
关键词 precipitation PM_(2.5)mass concentrations Scavenging rate Chemical components Chengdu
原文传递
Review of precipitation strengthening in ultrahigh-strength martensitic steel
18
作者 Zhihao Tian Chunlei Shang +7 位作者 Chaolei Zhang Xiaoye Zhou Honghui Wu Shuize Wang Guilin Wu Junheng Gao Jiaming Zhu Xinping Mao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期256-269,共14页
Martensite is an important microstructure in ultrahigh-strength steels,and enhancing the strength of martensitic steels often involves the introduction of precipitated phases within the martensitic matrix.Despite cons... Martensite is an important microstructure in ultrahigh-strength steels,and enhancing the strength of martensitic steels often involves the introduction of precipitated phases within the martensitic matrix.Despite considerable research efforts devoted to this area,a systematic summary of these advancements is lacking.This review focuses on the precipitates prevalent in ultrahigh-strength martensitic steel,primarily carbides(e.g.,MC,M_(2)C,and M_(3)C)and intermetallic compounds(e.g.,Ni Al,Ni_(3)X,and Fe_(2)Mo).The precipitation-strengthening effect of these precipitates on ultrahigh-strength martensitic steel is discussed from the aspects of heat treatment processes,microstructure of precipitate-strengthened martensite matrix,and mechanical performance.Finally,a perspective on the development of precipitation-strengthened martensitic steel is presented to contribute to the advancement of ultrahigh-strength martensitic steel.This review highlights significant findings,ongoing challenges,and opportunities in the development of ultrahigh-strength martensitic steel. 展开更多
关键词 ultrahigh-strength martensitic steel precipitation strengthening mechanical property CARBIDE intermetallic compound
在线阅读 下载PDF
Metastable core-shell precipitation strengthened high-entropy alloys fabricated by direct energy deposition with multi-stage terrace-like slip wave toughening 被引量:1
19
作者 Jian Liang Xiaochang Xie +4 位作者 Yongkun Mu Ping Yang Zhibin Wu Yandong Jia Gang Wang 《Journal of Materials Science & Technology》 2025年第7期40-57,共18页
This study investigates the development of novel high-entropy alloys(HEAs)with enhanced mechanical properties through an innovative fabrication method of direct energy deposition(DED).The focus is on the creation of m... This study investigates the development of novel high-entropy alloys(HEAs)with enhanced mechanical properties through an innovative fabrication method of direct energy deposition(DED).The focus is on the creation of metastable core-shell precipitation-strengthened HEAs that exhibit a unique multi-stage terrace-like slip wave toughening mechanism,a novel approach to improving both strength and ductility simultaneously.Mechanical testing reveals that the developed HEAs exhibit superior mechanical proper-ties,including high yield strength,ultimate tensile strength,and exceptional ductility.The improvement in these properties is attributed to the multi-stage terrace-like slip wave toughening mechanism activated by the unique microstructural features.This toughening mechanism involves the sequential activation of slip systems,facilitated by the stress concentration around the core-shell precipitates and the subsequent propagation of slip waves across the material.The terrace-like pattern of these slip waves enhances the material's ability to deform plastically,providing a significant toughening effect while maintaining high strength levels.Furthermore,the study delves into the fundamental interactions between the microstruc-tural elements and the deformation mechanisms.It elucidates how the core-shell precipitates and the matrix cooperate to distribute stress uniformly,delay the onset of necking,and prevent premature failure.This synergistic interaction between the microstructural features and the slip wave toughening mecha-nism is central to the remarkable balance of strength and ductility achieved in the HEAs.The introduction of a multi-stage terrace-like slip wave toughening mechanism offers a new pathway to designing HEAs with an exceptional amalgamation of strength and ductility. 展开更多
关键词 High-entropy alloys Direct energy deposition Core-shell precipitates Metastable phases Slip wave toughening mechanism
原文传递
Evaluation and comparison of separated precipitation types from multisources data in the Chinese Tianshan mountainous region
20
作者 YANG Chuanming LI Xuemei +2 位作者 ZHANG Xu WU Jun LI Lanhai 《Journal of Mountain Science》 2025年第2期489-504,共16页
Precipitation types primarily include rainfall,snowfall,and sleet,and the transformation of precipitation types has significant impacts on regional climate,ecosystems,and the land-atmosphere system.This study employs ... Precipitation types primarily include rainfall,snowfall,and sleet,and the transformation of precipitation types has significant impacts on regional climate,ecosystems,and the land-atmosphere system.This study employs the Ding method to separate precipitation types from three datasets(CMFD,ERA5_Land,and CN05.1).Using data from 26meteorological observation stations in the Chinese Tianshan Mountains Region(CTMR)of China as the validation dataset,the precipitation type separation accuracy of three datasets was evaluated.Additionally,the impacts of relative humidity,precipitation amount,and air temperature on the accuracy of precipitation type separation were analyzed.The results indicate that the CMFD dataset provides the highest separation accuracy,followed by CN05.1,with ERA5_Land showing the poorest performance.Spatial correlation analysis reveals that CMFD outperforms the other two datasets at both annual and monthly scales.Root Mean Square Error(RMSE)and Mean Deviation(MD)values suggest that CMFD is more consistent with the station observational data.The analysis further demonstrates that relative humidity and precipitation amount significantly affect separation accuracy.After bias correction,the correlation coefficients between CMFD,ERA5_Land,and station observational data improved to 0.85-0.94,while the RMSE was controlled within 2 mm.The study also revealed that the overestimation of precipitation was positively correlated with the overestimation of rainfall days,negatively correlated with the overestimation of snowfall days,and that underestimated air temperatures led to an increase in the misclassification of snowfall days.This research provides a basis for selecting climate change datasets and managing water resources in alpine regions. 展开更多
关键词 multi-sources data precipitation types Accuracy CTMR
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部