Dempster-Shafer evidence theory is broadly employed in the research of multi-source information fusion.Nevertheless,when fusing highly conflicting evidence it may pro-duce counterintuitive outcomes.To address this iss...Dempster-Shafer evidence theory is broadly employed in the research of multi-source information fusion.Nevertheless,when fusing highly conflicting evidence it may pro-duce counterintuitive outcomes.To address this issue,a fusion approach based on a newly defined belief exponential diver-gence and Deng entropy is proposed.First,a belief exponential divergence is proposed as the conflict measurement between evidences.Then,the credibility of each evidence is calculated.Afterwards,the Deng entropy is used to calculate information volume to determine the uncertainty of evidence.Then,the weight of evidence is calculated by integrating the credibility and uncertainty of each evidence.Ultimately,initial evidences are amended and fused using Dempster’s rule of combination.The effectiveness of this approach in addressing the fusion of three typical conflict paradoxes is demonstrated by arithmetic exam-ples.Additionally,the proposed approach is applied to aerial tar-get recognition and iris dataset-based classification to validate its efficacy.Results indicate that the proposed approach can enhance the accuracy of target recognition and effectively address the issue of fusing conflicting evidences.展开更多
Multi-Source Information Fusion(MSIF),as a comprehensive interdisciplinary field based on modern information technology,has gained significant research value and extensive application prospects in various domains,attr...Multi-Source Information Fusion(MSIF),as a comprehensive interdisciplinary field based on modern information technology,has gained significant research value and extensive application prospects in various domains,attracting high attention and interest from scholars,engineering experts,and practitioners worldwide.Despite achieving fruitful results in both theoretical and applied aspects over the past five decades,there remains a lack of comprehensive and systematic review articles that provide an overview of recent development in MSIF.In light of this,this paper aims to assist researchers and individuals interested in gaining a quick understanding of the relevant theoretical techniques and development trends in MSIF,which conducts a statistical analysis of academic reports and related application achievements in the field of MSIF over the past two decades,and provides a brief overview of the relevant theories,methodologies,and application domains,as well as key issues and challenges currently faced.Finally,an analysis and outlook on the future development directions of MSIF are presented.展开更多
When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ...When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ferromagnetic materials,thereby posing challenges in accurately determining the number of layers.To address this issue,this research proposes a layer counting method for penetration fuze that incorporates multi-source information fusion,utilizing both the temporal convolutional network(TCN)and the long short-term memory(LSTM)recurrent network.By leveraging the strengths of these two network structures,the method extracts temporal and high-dimensional features from the multi-source physical field during the penetration process,establishing a relationship between the multi-source physical field and the distance between the fuze and the target plate.A simulation model is developed to simulate the overload and magnetic field of a projectile penetrating multiple layers of target plates,capturing the multi-source physical field signals and their patterns during the penetration process.The analysis reveals that the proposed multi-source fusion layer counting method reduces errors by 60% and 50% compared to single overload layer counting and single magnetic anomaly signal layer counting,respectively.The model's predictive performance is evaluated under various operating conditions,including different ratios of added noise to random sample positions,penetration speeds,and spacing between target plates.The maximum errors in fuze penetration time predicted by the three modes are 0.08 ms,0.12 ms,and 0.16 ms,respectively,confirming the robustness of the proposed model.Moreover,the model's predictions indicate that the fitting degree for large interlayer spacings is superior to that for small interlayer spacings due to the influence of stress waves.展开更多
This paper addresses the challenge of accurately and timely determining the position of a train,with specific consideration given to the integration of the global navigation satellite system(GNSS)and inertial navigati...This paper addresses the challenge of accurately and timely determining the position of a train,with specific consideration given to the integration of the global navigation satellite system(GNSS)and inertial navigation system(INS).To overcome the increasing errors in the INS during interruptions in GNSS signals,as well as the uncertainty associated with process and measurement noise,a deep learning-based method for train positioning is proposed.This method combines convolutional neural networks(CNN),long short-term memory(LSTM),and the invariant extended Kalman filter(IEKF)to enhance the perception of train positions.It effectively handles GNSS signal interruptions and mitigates the impact of noise.Experimental evaluation and comparisons with existing approaches are provided to illustrate the effectiveness and robustness of the proposed method.展开更多
For milling tool life prediction and health management,accurate extraction and dimensionality reduction of its tool wear features are the key to reduce prediction errors.In this paper,we adopt multi-source information...For milling tool life prediction and health management,accurate extraction and dimensionality reduction of its tool wear features are the key to reduce prediction errors.In this paper,we adopt multi-source information fusion technology to extract and fuse the features of cutting vibration signal,cutting force signal and acoustic emission signal in time domain,frequency domain and time-frequency domain,and downscale the sample features by Pearson correlation coefficient to construct a sample data set;then we propose a tool life prediction model based on CNN-SVM optimized by genetic algorithm(GA),which uses CNN convolutional neural network as the feature learner and SVM support vector machine as the trainer for regression prediction.The results show that the improved model in this paper can effectively predict the tool life with better generalization ability,faster network fitting,and 99.85%prediction accuracy.And compared with the BP model,CNN model,SVM model and CNN-SVM model,the performance of the coefficient of determination R2 metric improved by 4.88%,2.96%,2.53%and 1.34%,respectively.展开更多
The existing Low-Earth-Orbit(LEO)positioning performance cannot meet the requirements of Unmanned Aerial Vehicle(UAV)clusters for high-precision real-time positioning in the Global Navigation Satellite System(GNSS)den...The existing Low-Earth-Orbit(LEO)positioning performance cannot meet the requirements of Unmanned Aerial Vehicle(UAV)clusters for high-precision real-time positioning in the Global Navigation Satellite System(GNSS)denial conditions.Therefore,this paper proposes a UAV Clusters Information Geometry Fusion Positioning(UC-IGFP)method using pseudoranges from the LEO satellites.A novel graph model for linking and computing between the UAV clusters and LEO satellites was established.By utilizing probability to describe the positional states of UAVs and sensor errors,the distributed multivariate Probability Fusion Cooperative Positioning(PF-CP)algorithm is proposed to achieve high-precision cooperative positioning and integration of the cluster.Criteria to select the centroid of the cluster were set.A new Kalman filter algorithm that is suitable for UAV clusters was designed based on the global benchmark and Riemann information geometry theory,which overcomes the discontinuity problem caused by the change of cluster centroids.Finally,the UC-IGFP method achieves the LEO continuous highprecision positioning of UAV clusters.The proposed method effectively addresses the positioning challenges caused by the strong direction of signal beams from LEO satellites and the insufficient constraint quantity of information sources at the edge nodes of the cluster.It significantly improves the accuracy and reliability of LEO-UAV cluster positioning.The results of comprehensive simulation experiments show that the proposed method has a 30.5%improvement in performance over the mainstream positioning methods,with a positioning error of 14.267 m.展开更多
Taking the Ming Tombs Forest Farm in Beijing as the research object,this research applied multi-source data fusion and GIS heat-map overlay analysis techniques,systematically collected bird observation point data from...Taking the Ming Tombs Forest Farm in Beijing as the research object,this research applied multi-source data fusion and GIS heat-map overlay analysis techniques,systematically collected bird observation point data from the Global Biodiversity Information Facility(GBIF),population distribution data from the Oak Ridge National Laboratory(ORNL)in the United States,as well as information on the composition of tree species in suitable forest areas for birds and the forest geographical information of the Ming Tombs Forest Farm,which is based on literature research and field investigations.By using GIS technology,spatial processing was carried out on bird observation points and population distribution data to identify suitable bird-watching areas in different seasons.Then,according to the suitability value range,these areas were classified into different grades(from unsuitable to highly suitable).The research findings indicated that there was significant spatial heterogeneity in the bird-watching suitability of the Ming Tombs Forest Farm.The north side of the reservoir was generally a core area with high suitability in all seasons.The deep-aged broad-leaved mixed forests supported the overlapping co-existence of the ecological niches of various bird species,such as the Zosterops simplex and Urocissa erythrorhyncha.In contrast,the shallow forest-edge coniferous pure forests and mixed forests were more suitable for specialized species like Carduelis sinica.The southern urban area and the core area of the mausoleums had relatively low suitability due to ecological fragmentation or human interference.Based on these results,this paper proposed a three-level protection framework of“core area conservation—buffer zone management—isolation zone construction”and a spatio-temporal coordinated human-bird co-existence strategy.It was also suggested that the human-bird co-existence space could be optimized through measures such as constructing sound and light buffer interfaces,restoring ecological corridors,and integrating cultural heritage elements.This research provided an operational technical approach and decision-making support for the scientific planning of bird-watching sites and the coordination of ecological protection and tourism development.展开更多
Images with complementary spectral information can be recorded using image sensors that can identify visible and near-infrared spectrum.The fusion of visible and nearinfrared(NIR)aims to enhance the quality of images ...Images with complementary spectral information can be recorded using image sensors that can identify visible and near-infrared spectrum.The fusion of visible and nearinfrared(NIR)aims to enhance the quality of images acquired by video monitoring systems for the ease of user observation and data processing.Unfortunately,current fusion algorithms produce artefacts and colour distortion since they cannot make use of spectrum properties and are lacking in information complementarity.Therefore,an information complementarity fusion(ICF)model is designed based on physical signals.In order to separate high-frequency noise from important information in distinct frequency layers,the authors first extracted texture-scale and edge-scale layers using a two-scale filter.Second,the difference map between visible and near-infrared was filtered using the extended-DoG filter to produce the initial visible-NIR complementary weight map.Then,to generate a guide map,the near-infrared image with night adjustment was processed as well.The final complementarity weight map was subsequently derived via an arctanI function mapping using the guide map and the initial weight maps.Finally,fusion images were generated with the complementarity weight maps.The experimental results demonstrate that the proposed approach outperforms the state-of-the-art in both avoiding artificial colours as well as effectively utilising information complementarity.展开更多
Intercepting high-maneuverability hypersonic targets in near-space environments poses significant challenges due to their extreme speeds and evasive capabilities.To address these challenges,this study presents an inte...Intercepting high-maneuverability hypersonic targets in near-space environments poses significant challenges due to their extreme speeds and evasive capabilities.To address these challenges,this study presents an integrated approach that combines a Three-Dimensional Finite-Time Optimal Cooperative Guidance Law(FTOC)with an Information Fusion Anti-saturation Predefined-time Observer(IFAPO).The proposed FTOC guidance law employs a nonlinear,non-quadratic finite-time optimal control strategy designed for rapid convergence within the limited timeframes of near-space interceptions,avoiding the need for remaining flight time estimation or linear decoupling inherent in traditional methods.To complement the guidance strategy,the IFAPO leverages multi-source information fusion theory and incorporates anti-saturation mechanisms to enhance target maneuver estimation.This method ensures accurate and real-time prediction of target acceleration while maintaining predefined convergence performance,even under complex interception conditions.By integrating the FTOC guidance law and IFAPO,the approach optimizes cooperative missile positioning,improves interception success rates,and minimizes fuel consumption,addressing practical constraints in military applications.Simulation results and comparative analyses confirm the effectiveness of the integrated approach,demonstrating its capability to achieve cooperative interception of highly maneuvering targets with enhanced efficiency and reduced economic costs,aligning with realistic combat scenarios.展开更多
To aim at the multimode character of the data from the airplane detecting system, the paper combines Dempster- Shafer evidence theory and subjective Bayesian algorithm and makes to propose a mixed structure multimode ...To aim at the multimode character of the data from the airplane detecting system, the paper combines Dempster- Shafer evidence theory and subjective Bayesian algorithm and makes to propose a mixed structure multimode data fusion algorithm. The algorithm adopts a prorated algorithm relate to the incertitude evaluation to convert the probability evaluation into the precognition probability in an identity frame, and ensures the adaptability of different data from different source to the mixed system. To guarantee real time fusion, a combination of time domain fusion and space domain fusion is established, this not only assure the fusion of data chain in different time of the same sensor, but also the data fusion from different sensors distributed in different platforms and the data fusion among different modes. The feasibility and practicability are approved through computer simulation.展开更多
Efficiently performing high-resolution direction of arrival(DOA)estimation under low signal-to-noise ratio(SNR)conditions has always been a challenge task in the literatures.Obvi-ously,in order to address this problem...Efficiently performing high-resolution direction of arrival(DOA)estimation under low signal-to-noise ratio(SNR)conditions has always been a challenge task in the literatures.Obvi-ously,in order to address this problem,the key is how to mine or reveal as much DOA related in-formation as possible from the degraded array outputs.However,it is certain that there is no per-fect solution for low SNR DOA estimation designed in the way of winner-takes-all.Therefore,this paper proposes to explore in depth the complementary DOA related information that exists in spa-tial spectrums acquired by different basic DOA estimators.Specifically,these basic spatial spec-trums are employed as the input of multi-source information fusion model.And the multi-source in-formation fusion model is composed of three heterogeneous meta learning machines,namely neural networks(NN),support vector machine(SVM),and random forests(RF).The final meta-spec-trum can be obtained by performing a final decision-making method.Experimental results illus-trate that the proposed information fusion based DOA estimation method can really make full use of the complementary information in the spatial spectrums obtained by different basic DOA estim-ators.Even under low SNR conditions,promising DOA estimation performance can be achieved.展开更多
Undesirable self-excited chatter has always been a typical issue restricting the improvement of robotic milling quality and efficiency.Sensitive chatter identification based on processing signals can prompt operators ...Undesirable self-excited chatter has always been a typical issue restricting the improvement of robotic milling quality and efficiency.Sensitive chatter identification based on processing signals can prompt operators to adjust the machining process and prevent chatter damage.Compared with the traditional machine tool,the uncertain multiple chatter frequency bands and the band-moving of the chatter frequency in robotic milling process make it more challenging to extract chatter information.This paper proposes a novel method of chatter identification using optimized variational mode decomposition(OVMD)with multi-band information fusion and compression technology(MT).During the robotic milling process,the number of decomposed modes k and the penalty coefficient a are optimized based on the dominant component of frequency scope partition and fitness of the mode center frequency.Moreover,the mayfly optimization algorithm(MA)is employed to obtain the global optimal parameter selection.In order to conquer information collection about the uncertain multiple chatter frequency bands and the band-moving of the chatter frequency in robotic milling process,MT is presented to reduce computation and extract signal characteristics.Finally,the cross entropy of the image(CEI)is proposed as the final chatter indicator to identify the chatter occurrence.The robotic milling experiments are carried out to verify the proposed method,and the results show that it can distinguish the robotic milling condition by extracting the uncertain multiple chatter frequency bands and overcome the band-moving of the chatter frequency in robotic milling process.展开更多
Video camouflaged object detection(VCOD)has become a fundamental task in computer vision that has attracted significant attention in recent years.Unlike image camouflaged object detection(ICOD),VCOD not only requires ...Video camouflaged object detection(VCOD)has become a fundamental task in computer vision that has attracted significant attention in recent years.Unlike image camouflaged object detection(ICOD),VCOD not only requires spatial cues but also needs motion cues.Thus,effectively utilizing spatiotemporal information is crucial for generating accurate segmentation results.Current VCOD methods,which typically focus on exploring motion representation,often ineffectively integrate spatial and motion features,leading to poor performance in diverse scenarios.To address these issues,we design a novel spatiotemporal network with an encoder-decoder structure.During the encoding stage,an adjacent space-time memory module(ASTM)is employed to extract high-level temporal features(i.e.,motion cues)from the current frame and its adjacent frames.In the decoding stage,a selective space-time aggregation module is introduced to efficiently integrate spatial and temporal features.Additionally,a multi-feature fusion module is developed to progressively refine the rough prediction by utilizing the information provided by multiple types of features.Furthermore,we incorporate multi-task learning into the proposed network to obtain more accurate predictions.Experimental results show that the proposed method outperforms existing cutting-edge baselines on VCOD benchmarks.展开更多
The existingmultipath routing in Software Defined Network (SDN) is relatively blind and inefficient, and there is alack of cooperation between the terminal and network sides, making it difficult to achieve dynamic ada...The existingmultipath routing in Software Defined Network (SDN) is relatively blind and inefficient, and there is alack of cooperation between the terminal and network sides, making it difficult to achieve dynamic adaptationof service requirements and network resources. To address these issues, we propose a multi-constraint pathoptimization scheme based on information fusion in SDN. The proposed scheme collects network topology andnetwork state information on the network side and computes disjoint paths between end hosts. It uses the FuzzyAnalytic Hierarchy Process (FAHP) to calculate the weight coefficients of multiple constrained parameters andconstructs a composite quality evaluation function for the paths to determine the priority of the disjoint paths. TheSDN controller extracts the service attributes by analyzing the packet header and selects the optimal path for flowrule forwarding. Furthermore, the service attributes are fed back to the path composite quality evaluation function,and the path priority is dynamically adjusted to achieve dynamic adaptation between service requirements andnetwork status. By continuously monitoring and analyzing the service attributes, the scheme can ensure optimalrouting decisions in response to varying network conditions and evolving service demands. The experimentalresults demonstrated that the proposed scheme can effectively improve average throughput and link utilizationwhile meeting the Quality of Service (QoS) requirements of various applications.展开更多
Driving fatigue is a physiological phenomenon that often occurs during driving.After the driver enters a fatigued state,the attentionis lax,the response is slow,and the ability todeal with emergencies is significantly...Driving fatigue is a physiological phenomenon that often occurs during driving.After the driver enters a fatigued state,the attentionis lax,the response is slow,and the ability todeal with emergencies is significantly reduced,which can easily cause traffic accidents.Therefore,studying driver fatigue detectionmethods is significant in ensuring safe driving.However,the fatigue state of actual drivers is easily interfered with by the external environment(glasses and light),which leads to many problems,such as weak reliability of fatigue driving detection.Moreover,fatigue is a slow process,first manifested in physiological signals and then reflected in human face images.To improve the accuracy and stability of fatigue detection,this paper proposed a driver fatigue detection method based on image information and physiological information,designed a fatigue driving detection device,built a simulation driving experiment platform,and collected facial as well as physiological information of drivers during driving.Finally,the effectiveness of the fatigue detection method was evaluated.Eye movement feature parameters and physiological signal features of drivers’fatigue levels were extracted.The driver fatigue detection model was trained to classify fatigue and non-fatigue states based on the extracted features.Accuracy rates of the image,electroencephalogram(EEG),and blood oxygen signals were 86%,82%,and 71%,separately.Information fusion theory was presented to facilitate the fatigue detection effect;the fatigue features were fused using multiple kernel learning and typical correlation analysis methods to increase the detection accuracy to 94%.It can be seen that the fatigue driving detectionmethod based onmulti-source feature fusion effectively detected driver fatigue state,and the accuracy rate was higher than that of a single information source.In summary,fatigue drivingmonitoring has broad development prospects and can be used in traffic accident prevention and wearable driver fatigue recognition.展开更多
In the aircraft control system,sensor networks are used to sample the attitude and environmental data.As a result of the external and internal factors(e.g.,environmental and task complexity,inaccurate sensing and comp...In the aircraft control system,sensor networks are used to sample the attitude and environmental data.As a result of the external and internal factors(e.g.,environmental and task complexity,inaccurate sensing and complex structure),the aircraft control system contains several uncertainties,such as imprecision,incompleteness,redundancy and randomness.The information fusion technology is usually used to solve the uncertainty issue,thus improving the sampled data reliability,which can further effectively increase the performance of the fault diagnosis decision-making in the aircraft control system.In this work,we first analyze the uncertainties in the aircraft control system,and also compare different uncertainty quantitative methods.Since the information fusion can eliminate the effects of the uncertainties,it is widely used in the fault diagnosis.Thus,this paper summarizes the recent work in this aera.Furthermore,we analyze the application of information fusion methods in the fault diagnosis of the aircraft control system.Finally,this work identifies existing problems in the use of information fusion for diagnosis and outlines future trends.展开更多
The development of network and information technology has brought changes to the production environment of scientific and technological information,leading to the integration of multi-type scien-tific and technologica...The development of network and information technology has brought changes to the production environment of scientific and technological information,leading to the integration of multi-type scien-tific and technological information,which has become one of the primary research focuses in the cur-rent field of scientific and technological information analysis.This article proposes a basic mode to realize the fusion of multi-type scientific and technological information,expounds the corresponding basic construction method,and applies it to the scientific and technological topics identification in the field of artificial intelligence(AI).The research results show that the multi-type scientific and technological information fusion mode proposed in this article has certain feasibility in specific appli-cation scenarios,which lays a foundation for the subsequent research work.展开更多
To address the limitation of single acceleration sensor signals in effectively reflecting the health status of rolling bearings,a rolling bearing fault diagnosis method based on the fusion of data-level and feature-le...To address the limitation of single acceleration sensor signals in effectively reflecting the health status of rolling bearings,a rolling bearing fault diagnosis method based on the fusion of data-level and feature-level information was proposed.First,according to the impact characteristics of rolling bearing faults,correlation kurtosis rules were designed to guide the weight distribution of multi-sensor signals.These rules were then combined with a weighted fusion method to obtain high-quality data-level fusion signals.Subsequently,a feature-fusion convolutional neural network(FFCNN)that merges the one-dimensional(1D)features extracted from the fused signal with the two-dimensional(2D)features extracted from the wavelet time-frequency spectrum was designed to obtain a comprehensive representation of the health status of rolling bearings.Finally,the fused features were fed into a Softmax classifier to complete the fault diagnosis.The results show that the proposed method exhibits an average test accuracy of over 99.00%on the two rolling bearing fault datasets,outperforming other comparison methods.Thus,the method can be effectively utilized for diagnosing rolling bearing faults.展开更多
Multi-source information fusion (MSIF) is imported into structural damage diagnosis methods to improve the validity of damage detection. After the introduction of the basic theory, the function model, classification...Multi-source information fusion (MSIF) is imported into structural damage diagnosis methods to improve the validity of damage detection. After the introduction of the basic theory, the function model, classifications and mathematical methods of MSIF, a structural damage detection method based on MSIF is presented, which is to fuse two or more damage character vectors from different structural damage diagnosis methods on the character-level. In an experiment of concrete plates, modal information is measured and analyzed. The structural damage detection method based on MSIF is taken to localize cracks of concrete plates and it is proved to be effective. Results of damage detection by the method based on MSIF are compared with those from the modal strain energy method and the flexibility method. Damage, which can hardly be detected by using the single damage identification method, can be diagnosed by the damage detection method based on the character-level MSIF technique. Meanwhile multi-location damage can be identified by the method based on MSIF. This method is sensitive to structural damage and different mathematical methods for MSIF have different preconditions and applicabilities for diversified structures. How to choose mathematical methods for MSIF should be discussed in detail in health monitoring systems of actual structures.展开更多
For some important object recognition applications such as intelligent robots and unmanned driving, images are collected on a consecutive basis and associated among themselves, besides, the scenes have steady prior fe...For some important object recognition applications such as intelligent robots and unmanned driving, images are collected on a consecutive basis and associated among themselves, besides, the scenes have steady prior features. Yet existing technologies do not take full advantage of this information. In order to take object recognition further than existing algorithms in the above application, an object recognition method that fuses temporal sequence with scene priori information is proposed. This method first employs YOLOv3 as the basic algorithm to recognize objects in single-frame images, then the DeepSort algorithm to establish association among potential objects recognized in images of different moments, and finally the confidence fusion method and temporal boundary processing method designed herein to fuse, at the decision level, temporal sequence information with scene priori information. Experiments using public datasets and self-built industrial scene datasets show that due to the expansion of information sources, the quality of single-frame images has less impact on the recognition results, whereby the object recognition is greatly improved. It is presented herein as a widely applicable framework for the fusion of information under multiple classes. All the object recognition algorithms that output object class, location information and recognition confidence at the same time can be integrated into this information fusion framework to improve performance.展开更多
基金supported by the National Natural Science Foundation of China(61903305,62073267)the Fundamental Research Funds for the Central Universities(HXGJXM202214).
文摘Dempster-Shafer evidence theory is broadly employed in the research of multi-source information fusion.Nevertheless,when fusing highly conflicting evidence it may pro-duce counterintuitive outcomes.To address this issue,a fusion approach based on a newly defined belief exponential diver-gence and Deng entropy is proposed.First,a belief exponential divergence is proposed as the conflict measurement between evidences.Then,the credibility of each evidence is calculated.Afterwards,the Deng entropy is used to calculate information volume to determine the uncertainty of evidence.Then,the weight of evidence is calculated by integrating the credibility and uncertainty of each evidence.Ultimately,initial evidences are amended and fused using Dempster’s rule of combination.The effectiveness of this approach in addressing the fusion of three typical conflict paradoxes is demonstrated by arithmetic exam-ples.Additionally,the proposed approach is applied to aerial tar-get recognition and iris dataset-based classification to validate its efficacy.Results indicate that the proposed approach can enhance the accuracy of target recognition and effectively address the issue of fusing conflicting evidences.
基金co-supported by the National Natural Science Foundation of China(Nos.62233003 and 62073072)the Key Projects of Key R&D Program of Jiangsu Province,China(Nos.BE2020006 and BE2020006-1)the Shenzhen Science and Technology Program,China(Nos.JCYJ20210324132202005 and JCYJ20220818101206014).
文摘Multi-Source Information Fusion(MSIF),as a comprehensive interdisciplinary field based on modern information technology,has gained significant research value and extensive application prospects in various domains,attracting high attention and interest from scholars,engineering experts,and practitioners worldwide.Despite achieving fruitful results in both theoretical and applied aspects over the past five decades,there remains a lack of comprehensive and systematic review articles that provide an overview of recent development in MSIF.In light of this,this paper aims to assist researchers and individuals interested in gaining a quick understanding of the relevant theoretical techniques and development trends in MSIF,which conducts a statistical analysis of academic reports and related application achievements in the field of MSIF over the past two decades,and provides a brief overview of the relevant theories,methodologies,and application domains,as well as key issues and challenges currently faced.Finally,an analysis and outlook on the future development directions of MSIF are presented.
文摘When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ferromagnetic materials,thereby posing challenges in accurately determining the number of layers.To address this issue,this research proposes a layer counting method for penetration fuze that incorporates multi-source information fusion,utilizing both the temporal convolutional network(TCN)and the long short-term memory(LSTM)recurrent network.By leveraging the strengths of these two network structures,the method extracts temporal and high-dimensional features from the multi-source physical field during the penetration process,establishing a relationship between the multi-source physical field and the distance between the fuze and the target plate.A simulation model is developed to simulate the overload and magnetic field of a projectile penetrating multiple layers of target plates,capturing the multi-source physical field signals and their patterns during the penetration process.The analysis reveals that the proposed multi-source fusion layer counting method reduces errors by 60% and 50% compared to single overload layer counting and single magnetic anomaly signal layer counting,respectively.The model's predictive performance is evaluated under various operating conditions,including different ratios of added noise to random sample positions,penetration speeds,and spacing between target plates.The maximum errors in fuze penetration time predicted by the three modes are 0.08 ms,0.12 ms,and 0.16 ms,respectively,confirming the robustness of the proposed model.Moreover,the model's predictions indicate that the fitting degree for large interlayer spacings is superior to that for small interlayer spacings due to the influence of stress waves.
基金supported by the National Natural Science Foundation of China(Nos.61925302,62273027)the Beijing Natural Science Foundation(L211021).
文摘This paper addresses the challenge of accurately and timely determining the position of a train,with specific consideration given to the integration of the global navigation satellite system(GNSS)and inertial navigation system(INS).To overcome the increasing errors in the INS during interruptions in GNSS signals,as well as the uncertainty associated with process and measurement noise,a deep learning-based method for train positioning is proposed.This method combines convolutional neural networks(CNN),long short-term memory(LSTM),and the invariant extended Kalman filter(IEKF)to enhance the perception of train positions.It effectively handles GNSS signal interruptions and mitigates the impact of noise.Experimental evaluation and comparisons with existing approaches are provided to illustrate the effectiveness and robustness of the proposed method.
基金financed with the means of Basic Scientific Research Youth Program of Education Department of Liaoning Province,No.LJKQZ2021185Yingkou Enterprise and Doctor Innovation Program (QB-2021-05).
文摘For milling tool life prediction and health management,accurate extraction and dimensionality reduction of its tool wear features are the key to reduce prediction errors.In this paper,we adopt multi-source information fusion technology to extract and fuse the features of cutting vibration signal,cutting force signal and acoustic emission signal in time domain,frequency domain and time-frequency domain,and downscale the sample features by Pearson correlation coefficient to construct a sample data set;then we propose a tool life prediction model based on CNN-SVM optimized by genetic algorithm(GA),which uses CNN convolutional neural network as the feature learner and SVM support vector machine as the trainer for regression prediction.The results show that the improved model in this paper can effectively predict the tool life with better generalization ability,faster network fitting,and 99.85%prediction accuracy.And compared with the BP model,CNN model,SVM model and CNN-SVM model,the performance of the coefficient of determination R2 metric improved by 4.88%,2.96%,2.53%and 1.34%,respectively.
基金supported in part by the National Natural Science Foundation of China(Nos.62171375,62271397,62001392,62101458,62173276,61803310 and 61801394)the Shenzhen Science and Technology Innovation ProgramChina(No.JCYJ20220530161615033)。
文摘The existing Low-Earth-Orbit(LEO)positioning performance cannot meet the requirements of Unmanned Aerial Vehicle(UAV)clusters for high-precision real-time positioning in the Global Navigation Satellite System(GNSS)denial conditions.Therefore,this paper proposes a UAV Clusters Information Geometry Fusion Positioning(UC-IGFP)method using pseudoranges from the LEO satellites.A novel graph model for linking and computing between the UAV clusters and LEO satellites was established.By utilizing probability to describe the positional states of UAVs and sensor errors,the distributed multivariate Probability Fusion Cooperative Positioning(PF-CP)algorithm is proposed to achieve high-precision cooperative positioning and integration of the cluster.Criteria to select the centroid of the cluster were set.A new Kalman filter algorithm that is suitable for UAV clusters was designed based on the global benchmark and Riemann information geometry theory,which overcomes the discontinuity problem caused by the change of cluster centroids.Finally,the UC-IGFP method achieves the LEO continuous highprecision positioning of UAV clusters.The proposed method effectively addresses the positioning challenges caused by the strong direction of signal beams from LEO satellites and the insufficient constraint quantity of information sources at the edge nodes of the cluster.It significantly improves the accuracy and reliability of LEO-UAV cluster positioning.The results of comprehensive simulation experiments show that the proposed method has a 30.5%improvement in performance over the mainstream positioning methods,with a positioning error of 14.267 m.
基金Sponsored by Beijing Youth Innovation Talent Support Program for Urban Greening and Landscaping——The 2024 Special Project for Promoting High-Quality Development of Beijing’s Landscaping through Scientific and Technological Innovation(KJCXQT202410).
文摘Taking the Ming Tombs Forest Farm in Beijing as the research object,this research applied multi-source data fusion and GIS heat-map overlay analysis techniques,systematically collected bird observation point data from the Global Biodiversity Information Facility(GBIF),population distribution data from the Oak Ridge National Laboratory(ORNL)in the United States,as well as information on the composition of tree species in suitable forest areas for birds and the forest geographical information of the Ming Tombs Forest Farm,which is based on literature research and field investigations.By using GIS technology,spatial processing was carried out on bird observation points and population distribution data to identify suitable bird-watching areas in different seasons.Then,according to the suitability value range,these areas were classified into different grades(from unsuitable to highly suitable).The research findings indicated that there was significant spatial heterogeneity in the bird-watching suitability of the Ming Tombs Forest Farm.The north side of the reservoir was generally a core area with high suitability in all seasons.The deep-aged broad-leaved mixed forests supported the overlapping co-existence of the ecological niches of various bird species,such as the Zosterops simplex and Urocissa erythrorhyncha.In contrast,the shallow forest-edge coniferous pure forests and mixed forests were more suitable for specialized species like Carduelis sinica.The southern urban area and the core area of the mausoleums had relatively low suitability due to ecological fragmentation or human interference.Based on these results,this paper proposed a three-level protection framework of“core area conservation—buffer zone management—isolation zone construction”and a spatio-temporal coordinated human-bird co-existence strategy.It was also suggested that the human-bird co-existence space could be optimized through measures such as constructing sound and light buffer interfaces,restoring ecological corridors,and integrating cultural heritage elements.This research provided an operational technical approach and decision-making support for the scientific planning of bird-watching sites and the coordination of ecological protection and tourism development.
基金supports in part by the Natural Science Foundation of China(NSFC)under contract No.62171253the Young Elite Scientists Sponsorship Program by CAST under program No.2022QNRC001,as well as the Fundamental Research Funds for the Central Universities.
文摘Images with complementary spectral information can be recorded using image sensors that can identify visible and near-infrared spectrum.The fusion of visible and nearinfrared(NIR)aims to enhance the quality of images acquired by video monitoring systems for the ease of user observation and data processing.Unfortunately,current fusion algorithms produce artefacts and colour distortion since they cannot make use of spectrum properties and are lacking in information complementarity.Therefore,an information complementarity fusion(ICF)model is designed based on physical signals.In order to separate high-frequency noise from important information in distinct frequency layers,the authors first extracted texture-scale and edge-scale layers using a two-scale filter.Second,the difference map between visible and near-infrared was filtered using the extended-DoG filter to produce the initial visible-NIR complementary weight map.Then,to generate a guide map,the near-infrared image with night adjustment was processed as well.The final complementarity weight map was subsequently derived via an arctanI function mapping using the guide map and the initial weight maps.Finally,fusion images were generated with the complementarity weight maps.The experimental results demonstrate that the proposed approach outperforms the state-of-the-art in both avoiding artificial colours as well as effectively utilising information complementarity.
基金supported by the National Natural Science Foundation of China(Grant No.61773142).
文摘Intercepting high-maneuverability hypersonic targets in near-space environments poses significant challenges due to their extreme speeds and evasive capabilities.To address these challenges,this study presents an integrated approach that combines a Three-Dimensional Finite-Time Optimal Cooperative Guidance Law(FTOC)with an Information Fusion Anti-saturation Predefined-time Observer(IFAPO).The proposed FTOC guidance law employs a nonlinear,non-quadratic finite-time optimal control strategy designed for rapid convergence within the limited timeframes of near-space interceptions,avoiding the need for remaining flight time estimation or linear decoupling inherent in traditional methods.To complement the guidance strategy,the IFAPO leverages multi-source information fusion theory and incorporates anti-saturation mechanisms to enhance target maneuver estimation.This method ensures accurate and real-time prediction of target acceleration while maintaining predefined convergence performance,even under complex interception conditions.By integrating the FTOC guidance law and IFAPO,the approach optimizes cooperative missile positioning,improves interception success rates,and minimizes fuel consumption,addressing practical constraints in military applications.Simulation results and comparative analyses confirm the effectiveness of the integrated approach,demonstrating its capability to achieve cooperative interception of highly maneuvering targets with enhanced efficiency and reduced economic costs,aligning with realistic combat scenarios.
文摘To aim at the multimode character of the data from the airplane detecting system, the paper combines Dempster- Shafer evidence theory and subjective Bayesian algorithm and makes to propose a mixed structure multimode data fusion algorithm. The algorithm adopts a prorated algorithm relate to the incertitude evaluation to convert the probability evaluation into the precognition probability in an identity frame, and ensures the adaptability of different data from different source to the mixed system. To guarantee real time fusion, a combination of time domain fusion and space domain fusion is established, this not only assure the fusion of data chain in different time of the same sensor, but also the data fusion from different sensors distributed in different platforms and the data fusion among different modes. The feasibility and practicability are approved through computer simulation.
基金the National Natural Science Foundation of China(Nos.11774073 and 51279033).
文摘Efficiently performing high-resolution direction of arrival(DOA)estimation under low signal-to-noise ratio(SNR)conditions has always been a challenge task in the literatures.Obvi-ously,in order to address this problem,the key is how to mine or reveal as much DOA related in-formation as possible from the degraded array outputs.However,it is certain that there is no per-fect solution for low SNR DOA estimation designed in the way of winner-takes-all.Therefore,this paper proposes to explore in depth the complementary DOA related information that exists in spa-tial spectrums acquired by different basic DOA estimators.Specifically,these basic spatial spec-trums are employed as the input of multi-source information fusion model.And the multi-source in-formation fusion model is composed of three heterogeneous meta learning machines,namely neural networks(NN),support vector machine(SVM),and random forests(RF).The final meta-spec-trum can be obtained by performing a final decision-making method.Experimental results illus-trate that the proposed information fusion based DOA estimation method can really make full use of the complementary information in the spatial spectrums obtained by different basic DOA estim-ators.Even under low SNR conditions,promising DOA estimation performance can be achieved.
基金supported by the Civil Aircraft Project(No.MJZ4-1N22),National Natural Science Foundation of China(No.51975053)Inversion and Application Project of Outcome(Nos.D44F9A65 and 2B0188E1)+1 种基金Key R&D Program of Inner Mongolia(No.2022YFHH0121)the Basic Research Fund of Beijing Institute of Technology(No.2021CX01023).
文摘Undesirable self-excited chatter has always been a typical issue restricting the improvement of robotic milling quality and efficiency.Sensitive chatter identification based on processing signals can prompt operators to adjust the machining process and prevent chatter damage.Compared with the traditional machine tool,the uncertain multiple chatter frequency bands and the band-moving of the chatter frequency in robotic milling process make it more challenging to extract chatter information.This paper proposes a novel method of chatter identification using optimized variational mode decomposition(OVMD)with multi-band information fusion and compression technology(MT).During the robotic milling process,the number of decomposed modes k and the penalty coefficient a are optimized based on the dominant component of frequency scope partition and fitness of the mode center frequency.Moreover,the mayfly optimization algorithm(MA)is employed to obtain the global optimal parameter selection.In order to conquer information collection about the uncertain multiple chatter frequency bands and the band-moving of the chatter frequency in robotic milling process,MT is presented to reduce computation and extract signal characteristics.Finally,the cross entropy of the image(CEI)is proposed as the final chatter indicator to identify the chatter occurrence.The robotic milling experiments are carried out to verify the proposed method,and the results show that it can distinguish the robotic milling condition by extracting the uncertain multiple chatter frequency bands and overcome the band-moving of the chatter frequency in robotic milling process.
文摘Video camouflaged object detection(VCOD)has become a fundamental task in computer vision that has attracted significant attention in recent years.Unlike image camouflaged object detection(ICOD),VCOD not only requires spatial cues but also needs motion cues.Thus,effectively utilizing spatiotemporal information is crucial for generating accurate segmentation results.Current VCOD methods,which typically focus on exploring motion representation,often ineffectively integrate spatial and motion features,leading to poor performance in diverse scenarios.To address these issues,we design a novel spatiotemporal network with an encoder-decoder structure.During the encoding stage,an adjacent space-time memory module(ASTM)is employed to extract high-level temporal features(i.e.,motion cues)from the current frame and its adjacent frames.In the decoding stage,a selective space-time aggregation module is introduced to efficiently integrate spatial and temporal features.Additionally,a multi-feature fusion module is developed to progressively refine the rough prediction by utilizing the information provided by multiple types of features.Furthermore,we incorporate multi-task learning into the proposed network to obtain more accurate predictions.Experimental results show that the proposed method outperforms existing cutting-edge baselines on VCOD benchmarks.
基金the National Key R&D Program of China(No.2021YFB2700800)the GHfund B(No.202302024490).
文摘The existingmultipath routing in Software Defined Network (SDN) is relatively blind and inefficient, and there is alack of cooperation between the terminal and network sides, making it difficult to achieve dynamic adaptationof service requirements and network resources. To address these issues, we propose a multi-constraint pathoptimization scheme based on information fusion in SDN. The proposed scheme collects network topology andnetwork state information on the network side and computes disjoint paths between end hosts. It uses the FuzzyAnalytic Hierarchy Process (FAHP) to calculate the weight coefficients of multiple constrained parameters andconstructs a composite quality evaluation function for the paths to determine the priority of the disjoint paths. TheSDN controller extracts the service attributes by analyzing the packet header and selects the optimal path for flowrule forwarding. Furthermore, the service attributes are fed back to the path composite quality evaluation function,and the path priority is dynamically adjusted to achieve dynamic adaptation between service requirements andnetwork status. By continuously monitoring and analyzing the service attributes, the scheme can ensure optimalrouting decisions in response to varying network conditions and evolving service demands. The experimentalresults demonstrated that the proposed scheme can effectively improve average throughput and link utilizationwhile meeting the Quality of Service (QoS) requirements of various applications.
基金the Fundamental Research Funds for the Central Universities(GrantNo.IR2021222)received by J.Sthe Future Science and Technology Innovation Team Project of HIT(216506)received by Q.W.
文摘Driving fatigue is a physiological phenomenon that often occurs during driving.After the driver enters a fatigued state,the attentionis lax,the response is slow,and the ability todeal with emergencies is significantly reduced,which can easily cause traffic accidents.Therefore,studying driver fatigue detectionmethods is significant in ensuring safe driving.However,the fatigue state of actual drivers is easily interfered with by the external environment(glasses and light),which leads to many problems,such as weak reliability of fatigue driving detection.Moreover,fatigue is a slow process,first manifested in physiological signals and then reflected in human face images.To improve the accuracy and stability of fatigue detection,this paper proposed a driver fatigue detection method based on image information and physiological information,designed a fatigue driving detection device,built a simulation driving experiment platform,and collected facial as well as physiological information of drivers during driving.Finally,the effectiveness of the fatigue detection method was evaluated.Eye movement feature parameters and physiological signal features of drivers’fatigue levels were extracted.The driver fatigue detection model was trained to classify fatigue and non-fatigue states based on the extracted features.Accuracy rates of the image,electroencephalogram(EEG),and blood oxygen signals were 86%,82%,and 71%,separately.Information fusion theory was presented to facilitate the fatigue detection effect;the fatigue features were fused using multiple kernel learning and typical correlation analysis methods to increase the detection accuracy to 94%.It can be seen that the fatigue driving detectionmethod based onmulti-source feature fusion effectively detected driver fatigue state,and the accuracy rate was higher than that of a single information source.In summary,fatigue drivingmonitoring has broad development prospects and can be used in traffic accident prevention and wearable driver fatigue recognition.
基金supported by the National Natural Science Foundation of China(62273176)the Aeronautical Science Foundation of China(20200007018001)the China Scholarship Council(202306830096).
文摘In the aircraft control system,sensor networks are used to sample the attitude and environmental data.As a result of the external and internal factors(e.g.,environmental and task complexity,inaccurate sensing and complex structure),the aircraft control system contains several uncertainties,such as imprecision,incompleteness,redundancy and randomness.The information fusion technology is usually used to solve the uncertainty issue,thus improving the sampled data reliability,which can further effectively increase the performance of the fault diagnosis decision-making in the aircraft control system.In this work,we first analyze the uncertainties in the aircraft control system,and also compare different uncertainty quantitative methods.Since the information fusion can eliminate the effects of the uncertainties,it is widely used in the fault diagnosis.Thus,this paper summarizes the recent work in this aera.Furthermore,we analyze the application of information fusion methods in the fault diagnosis of the aircraft control system.Finally,this work identifies existing problems in the use of information fusion for diagnosis and outlines future trends.
基金Supported by the National Natural Science Foundation of China(No.72074201).
文摘The development of network and information technology has brought changes to the production environment of scientific and technological information,leading to the integration of multi-type scien-tific and technological information,which has become one of the primary research focuses in the cur-rent field of scientific and technological information analysis.This article proposes a basic mode to realize the fusion of multi-type scientific and technological information,expounds the corresponding basic construction method,and applies it to the scientific and technological topics identification in the field of artificial intelligence(AI).The research results show that the multi-type scientific and technological information fusion mode proposed in this article has certain feasibility in specific appli-cation scenarios,which lays a foundation for the subsequent research work.
基金The National Natural Science Foundation of China(No.U22A20178)National Key Research and Development Program of China(No.2022YFB3404800)Jiangsu Province Science and Technology Achievement Transformation Special Fund Program(No.BA2023019).
文摘To address the limitation of single acceleration sensor signals in effectively reflecting the health status of rolling bearings,a rolling bearing fault diagnosis method based on the fusion of data-level and feature-level information was proposed.First,according to the impact characteristics of rolling bearing faults,correlation kurtosis rules were designed to guide the weight distribution of multi-sensor signals.These rules were then combined with a weighted fusion method to obtain high-quality data-level fusion signals.Subsequently,a feature-fusion convolutional neural network(FFCNN)that merges the one-dimensional(1D)features extracted from the fused signal with the two-dimensional(2D)features extracted from the wavelet time-frequency spectrum was designed to obtain a comprehensive representation of the health status of rolling bearings.Finally,the fused features were fed into a Softmax classifier to complete the fault diagnosis.The results show that the proposed method exhibits an average test accuracy of over 99.00%on the two rolling bearing fault datasets,outperforming other comparison methods.Thus,the method can be effectively utilized for diagnosing rolling bearing faults.
基金The National High Technology Research and Develop-ment Program of China(863Program)(No.2006AA04Z416)the Na-tional Science Fund for Distinguished Young Scholars(No.50725828)the Excellent Dissertation Program for Doctoral Degree of Southeast University(No.0705)
文摘Multi-source information fusion (MSIF) is imported into structural damage diagnosis methods to improve the validity of damage detection. After the introduction of the basic theory, the function model, classifications and mathematical methods of MSIF, a structural damage detection method based on MSIF is presented, which is to fuse two or more damage character vectors from different structural damage diagnosis methods on the character-level. In an experiment of concrete plates, modal information is measured and analyzed. The structural damage detection method based on MSIF is taken to localize cracks of concrete plates and it is proved to be effective. Results of damage detection by the method based on MSIF are compared with those from the modal strain energy method and the flexibility method. Damage, which can hardly be detected by using the single damage identification method, can be diagnosed by the damage detection method based on the character-level MSIF technique. Meanwhile multi-location damage can be identified by the method based on MSIF. This method is sensitive to structural damage and different mathematical methods for MSIF have different preconditions and applicabilities for diversified structures. How to choose mathematical methods for MSIF should be discussed in detail in health monitoring systems of actual structures.
文摘For some important object recognition applications such as intelligent robots and unmanned driving, images are collected on a consecutive basis and associated among themselves, besides, the scenes have steady prior features. Yet existing technologies do not take full advantage of this information. In order to take object recognition further than existing algorithms in the above application, an object recognition method that fuses temporal sequence with scene priori information is proposed. This method first employs YOLOv3 as the basic algorithm to recognize objects in single-frame images, then the DeepSort algorithm to establish association among potential objects recognized in images of different moments, and finally the confidence fusion method and temporal boundary processing method designed herein to fuse, at the decision level, temporal sequence information with scene priori information. Experiments using public datasets and self-built industrial scene datasets show that due to the expansion of information sources, the quality of single-frame images has less impact on the recognition results, whereby the object recognition is greatly improved. It is presented herein as a widely applicable framework for the fusion of information under multiple classes. All the object recognition algorithms that output object class, location information and recognition confidence at the same time can be integrated into this information fusion framework to improve performance.