Wavelet, a powerful tool for signal processing, can be used to approximate the target func-tion. For enhancing the sparse property of wavelet approximation, a new algorithm was proposed by using wavelet kernel Support...Wavelet, a powerful tool for signal processing, can be used to approximate the target func-tion. For enhancing the sparse property of wavelet approximation, a new algorithm was proposed by using wavelet kernel Support Vector Machines (SVM), which can converge to minimum error with bet-ter sparsity. Here, wavelet functions would be firstly used to construct the admitted kernel for SVM according to Mercy theory; then new SVM with this kernel can be used to approximate the target fun-citon with better sparsity than wavelet approxiamtion itself. The results obtained by our simulation ex-periment show the feasibility and validity of wavelet kernel support vector machines.展开更多
A new filtering method for SAR data de-noising using wavelet support vector regression (WSVR) is developed. On the basis of the grey scale distribution character of SAR imagery, the logarithmic SAR image as a noise ...A new filtering method for SAR data de-noising using wavelet support vector regression (WSVR) is developed. On the basis of the grey scale distribution character of SAR imagery, the logarithmic SAR image as a noise polluted signal is taken and the noise model assumption in logarithmic domain with Gaussian noise and impact noise is proposed. Based on the better per- formance of support vector regression (SVR) for complex signal approximation and the wavelet for signal detail expression, the wavelet kernel function is chosen as support vector kernel func- tion. Then the logarithmic SAR image is regressed with WSVR. Furthermore the regression distance is used as a judgment index of the noise type. According to the judgment of noise type every pixel can be adaptively de-noised with different filters. Through an approximation experiment for a one-dimensional complex signal, the feasibility of SAR data regression based on WSVR is con- firmed. Afterward the SAR image is treated as a two-dimensional continuous signal and filtered by an SVR with wavelet kernel function. The results show that the method proposed here reduces the radar speckle noise effectively while maintaining edge features and details well.展开更多
The focal problems of projection include out-of-focus projection images from the projector caused by incomplete mechanical focus and screen-door effects produced by projection pixilation. To eliminate these defects an...The focal problems of projection include out-of-focus projection images from the projector caused by incomplete mechanical focus and screen-door effects produced by projection pixilation. To eliminate these defects and enhance the imaging quality and clarity of projectors, a novel adaptive projection defocus algorithm is proposed based on multi-scale convolution kernel templates. This algorithm applies the improved Sobel-Tenengrad focus evaluation function to calculate the sharpness degree of intensity equalization and then constructs multi-scale defocus convolution kernels to remap and render the defocus projection image. The resulting projection defocus corrected images can eliminate out-of-focus effects and improve the sharpness of uncorrected images. Experiments show that the algorithm works quickly and robustly and that it not only effectively eliminates visual artifacts and can run on a self-designed smart projection system in real time but also significantly improves the resolution and clarity of the observer's visual perception.展开更多
基于支持向量机(SVM)核方法和小波框架理论,提出了一种称为小波支持向量机(Wavelet Support Vector Machines,WSVM)的新的机器学习方法,并把这种方法应用于组合预测,得到了一种基于WSVM的非线性组合预测新模型,然后给出了此模型的结构...基于支持向量机(SVM)核方法和小波框架理论,提出了一种称为小波支持向量机(Wavelet Support Vector Machines,WSVM)的新的机器学习方法,并把这种方法应用于组合预测,得到了一种基于WSVM的非线性组合预测新模型,然后给出了此模型的结构设计和实现算法.通过仿真实验,把该方法与小波神经网络等方法相比较,得到了更好的实验结果,从而验证了该方法的正确性和有效性.展开更多
文摘Wavelet, a powerful tool for signal processing, can be used to approximate the target func-tion. For enhancing the sparse property of wavelet approximation, a new algorithm was proposed by using wavelet kernel Support Vector Machines (SVM), which can converge to minimum error with bet-ter sparsity. Here, wavelet functions would be firstly used to construct the admitted kernel for SVM according to Mercy theory; then new SVM with this kernel can be used to approximate the target fun-citon with better sparsity than wavelet approxiamtion itself. The results obtained by our simulation ex-periment show the feasibility and validity of wavelet kernel support vector machines.
基金supported by Shanghai Science and Technology Commission Innovation Action Plan(08DZ1205708)
文摘A new filtering method for SAR data de-noising using wavelet support vector regression (WSVR) is developed. On the basis of the grey scale distribution character of SAR imagery, the logarithmic SAR image as a noise polluted signal is taken and the noise model assumption in logarithmic domain with Gaussian noise and impact noise is proposed. Based on the better per- formance of support vector regression (SVR) for complex signal approximation and the wavelet for signal detail expression, the wavelet kernel function is chosen as support vector kernel func- tion. Then the logarithmic SAR image is regressed with WSVR. Furthermore the regression distance is used as a judgment index of the noise type. According to the judgment of noise type every pixel can be adaptively de-noised with different filters. Through an approximation experiment for a one-dimensional complex signal, the feasibility of SAR data regression based on WSVR is con- firmed. Afterward the SAR image is treated as a two-dimensional continuous signal and filtered by an SVR with wavelet kernel function. The results show that the method proposed here reduces the radar speckle noise effectively while maintaining edge features and details well.
基金Project supported by the National Natural Science Foundation of China(Nos.11272285,61008048,and 10876036)the Zhejiang Provincial Natural Science Foundation(No.LY12F02026)the Department of Science and Technology of Zhejiang Province(No.2009C31112),China
文摘The focal problems of projection include out-of-focus projection images from the projector caused by incomplete mechanical focus and screen-door effects produced by projection pixilation. To eliminate these defects and enhance the imaging quality and clarity of projectors, a novel adaptive projection defocus algorithm is proposed based on multi-scale convolution kernel templates. This algorithm applies the improved Sobel-Tenengrad focus evaluation function to calculate the sharpness degree of intensity equalization and then constructs multi-scale defocus convolution kernels to remap and render the defocus projection image. The resulting projection defocus corrected images can eliminate out-of-focus effects and improve the sharpness of uncorrected images. Experiments show that the algorithm works quickly and robustly and that it not only effectively eliminates visual artifacts and can run on a self-designed smart projection system in real time but also significantly improves the resolution and clarity of the observer's visual perception.
文摘基于支持向量机(SVM)核方法和小波框架理论,提出了一种称为小波支持向量机(Wavelet Support Vector Machines,WSVM)的新的机器学习方法,并把这种方法应用于组合预测,得到了一种基于WSVM的非线性组合预测新模型,然后给出了此模型的结构设计和实现算法.通过仿真实验,把该方法与小波神经网络等方法相比较,得到了更好的实验结果,从而验证了该方法的正确性和有效性.