期刊文献+
共找到54篇文章
< 1 2 3 >
每页显示 20 50 100
Gearbox Fault Diagnosis using Adaptive Zero Phase Time-varying Filter Based on Multi-scale Chirplet Sparse Signal Decomposition 被引量:16
1
作者 WU Chunyan LIU Jian +2 位作者 PENG Fuqiang YU Dejie LI Rong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第4期831-838,共8页
When used for separating multi-component non-stationary signals, the adaptive time-varying filter(ATF) based on multi-scale chirplet sparse signal decomposition(MCSSD) generates phase shift and signal distortion. To o... When used for separating multi-component non-stationary signals, the adaptive time-varying filter(ATF) based on multi-scale chirplet sparse signal decomposition(MCSSD) generates phase shift and signal distortion. To overcome this drawback, the zero phase filter is introduced to the mentioned filter, and a fault diagnosis method for speed-changing gearbox is proposed. Firstly, the gear meshing frequency of each gearbox is estimated by chirplet path pursuit. Then, according to the estimated gear meshing frequencies, an adaptive zero phase time-varying filter(AZPTF) is designed to filter the original signal. Finally, the basis for fault diagnosis is acquired by the envelope order analysis to the filtered signal. The signal consisting of two time-varying amplitude modulation and frequency modulation(AM-FM) signals is respectively analyzed by ATF and AZPTF based on MCSSD. The simulation results show the variances between the original signals and the filtered signals yielded by AZPTF based on MCSSD are 13.67 and 41.14, which are far less than variances (323.45 and 482.86) between the original signals and the filtered signals obtained by ATF based on MCSSD. The experiment results on the vibration signals of gearboxes indicate that the vibration signals of the two speed-changing gearboxes installed on one foundation bed can be separated by AZPTF effectively. Based on the demodulation information of the vibration signal of each gearbox, the fault diagnosis can be implemented. Both simulation and experiment examples prove that the proposed filter can extract a mono-component time-varying AM-FM signal from the multi-component time-varying AM-FM signal without distortion. 展开更多
关键词 zero phase time-varying filter multi-scale CHIRPLET sparse signal decomposition speed-changing gearbox fault diagnosis
在线阅读 下载PDF
Bounds for Polynomial’s Roots from Fiedler and Sparse Companion Matrices for Submultiplicative Matrix Norms 被引量:1
2
作者 Mamoudou Amadou Bondabou Ousmane Moussa Tessa Amidou Morou 《Advances in Linear Algebra & Matrix Theory》 2021年第1期1-13,共13页
We use submultiplicative companion matrix norms to provide new bounds for roots for a given polynomial <i>P</i>(<i>X</i>) over the field C[<i>X</i>]. From a <i>n</i>... We use submultiplicative companion matrix norms to provide new bounds for roots for a given polynomial <i>P</i>(<i>X</i>) over the field C[<i>X</i>]. From a <i>n</i>×<i>n</i> Fiedler companion matrix <i>C</i>, sparse companion matrices and triangular Hessenberg matrices are introduced. Then, we identify a special triangular Hessenberg matrix <i>L<sub>r</sub></i>, supposed to provide a good estimation of the roots. By application of Gershgorin’s theorems to this special matrix in case of submultiplicative matrix norms, some estimations of bounds for roots are made. The obtained bounds have been compared to known ones from the literature precisely Cauchy’s bounds, Montel’s bounds and Carmichel-Mason’s bounds. According to the starting formel of <i>L<sub>r</sub></i>, we see that the more we have coefficients closed to zero with a norm less than 1, the more the Sparse method is useful. 展开更多
关键词 Fiedler matrices Polynomial’s Roots Bounds for Polynomials Companion matrices sparse Companion matrices Hessenberg matrices Submultiplicative Matrix Norm
在线阅读 下载PDF
Ship recognition based on HRRP via multi-scale sparse preserving method
3
作者 YANG Xueling ZHANG Gong SONG Hu 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期599-608,共10页
In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) ba... In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance. 展开更多
关键词 ship target recognition high-resolution range profile(HRRP) multi-scale fusion kernel sparse preserving projection(MSFKSPP) feature extraction dimensionality reduction
在线阅读 下载PDF
Faulty-feeder Detection Based on Sparse Waveform Encoding and Simple Convolutional Neural Network with Multi-scale Filters and One Layer of Convolution
4
作者 Jiawei Yuan Tong Wu Zaibin Jiao 《CSEE Journal of Power and Energy Systems》 2025年第5期2150-2164,共15页
Faulty-feeder detection in neutral point noneffectively grounded distribution networks consistently attracts research attention since it directly affects quality and safety of energy supply.Most modern research on fau... Faulty-feeder detection in neutral point noneffectively grounded distribution networks consistently attracts research attention since it directly affects quality and safety of energy supply.Most modern research on faulty-feeder detection tends to apply more complex digital signal processing techniques and deeper neural networks in order to better extract and learn as many detailed characteristics as possible.However,these approaches may easily result in overfitting and high computational cost,which cannot meet requirements for detection accuracy and efficiency in practical applications.This paper proposes an innovative waveform encoding method and details a simple convolutional neural network(CNN)with one layer of convolution used for identification,which seeks to improve detection accuracy and efficiency simultaneously.First,sparse characteristics of waveforms are utilized to encode into compact vectors,and a waveform-vector matrix is generated.Second,to deduce waveform-vector matrix,a simple CNN with multi-scale filters and one layer of convolution is established.Finally,a methodology for faulty-feeder detection is proposed,and both detection accuracy and efficiency are considerably enhanced.Comparative studies have confirmed clear superiority of the developed method,which outperforms existing approaches in both detection accuracy and efficiency,thus highlighting its significant potential for application. 展开更多
关键词 Convolutional neural network faulty-feeder detection multi-scale filters sparse waveform encoding
原文传递
A novel sparse feature extraction method based on sparse signal via dual-channel self-adaptive TQWT 被引量:4
5
作者 Junlin LI Huaqing WANG Liuyang SONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第7期157-169,共13页
Sparse signal is a kind of sparse matrices which can carry fault information and simplify the signal at the same time.This can effectively reduce the cost of signal storage,improve the efficiency of data transmission,... Sparse signal is a kind of sparse matrices which can carry fault information and simplify the signal at the same time.This can effectively reduce the cost of signal storage,improve the efficiency of data transmission,and ultimately save the cost of equipment fault diagnosis in the aviation field.At present,the existing sparse decomposition methods generally extract sparse fault characteristics signals based on orthogonal basis atoms,which limits the adaptability of sparse decomposition.In this paper,a self-adaptive atom is extracted by the improved dual-channel tunable Q-factor wavelet transform(TQWT)method to construct a self-adaptive complete dictionary.Finally,the sparse signal is obtained by the orthogonal matching pursuit(OMP)algorithm.The atoms obtained by this method are more flexible,and are no longer constrained to an orthogonal basis to reflect the oscillation characteristics of signals.Therefore,the sparse signal can better extract the fault characteristics.The simulation and experimental results show that the selfadaptive dictionary with the atom extracted from the dual-channel TQWT has a stronger decomposition freedom and signal matching ability than orthogonal basis dictionaries,such as discrete cosine transform(DCT),discrete Hartley transform(DHT)and discrete wavelet transform(DWT).In addition,the sparse signal extracted by the self-adaptive complete dictionary can reflect the time-domain characteristics of the vibration signals,and can more accurately extract the bearing fault feature frequency. 展开更多
关键词 Complete dictionary Data transmission Fault diagnosis sparse matrices sparse signal Wavelet transform
原文传递
HIGH PERFORMANCE SPARSE SOLVER FOR UNSYMMETRICAL LINEAR EQUATIONS WITH OUT-OF-CORE STRATEGIES AND ITS APPLICATION ON MESHLESS METHODS 被引量:1
6
作者 苑维然 陈璞 刘凯欣 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第10期1339-1348,共10页
A new direct method for solving unsymmetrical sparse linear systems(USLS) arising from meshless methods was introduced. Computation of certain meshless methods such as meshless local Petrov-Galerkin (MLPG) method ... A new direct method for solving unsymmetrical sparse linear systems(USLS) arising from meshless methods was introduced. Computation of certain meshless methods such as meshless local Petrov-Galerkin (MLPG) method need to solve large USLS. The proposed solution method for unsymmetrical case performs factorization processes symmetrically on the upper and lower triangular portion of matrix, which differs from previous work based on general unsymmetrical process, and attains higher performance. It is shown that the solution algorithm for USLS can be simply derived from the existing approaches for the symmetrical case. The new matrix factorization algorithm in our method can be implemented easily by modifying a standard JKI symmetrical matrix factorization code. Multi-blocked out-of-core strategies were also developed to expand the solution scale. The approach convincingly increases the speed of the solution process, which is demonstrated with the numerical tests. 展开更多
关键词 sparse matrices linear equations meshless methods high performance computation
在线阅读 下载PDF
Fractional-order Sparse Representation for Image Denoising 被引量:1
7
作者 Leilei Geng Zexuan Ji +1 位作者 Yunhao Yuan Yilong Yin 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第2期555-563,共9页
Sparse representation models have been shown promising results for image denoising. However, conventional sparse representation-based models cannot obtain satisfactory estimations for sparse coefficients and the dicti... Sparse representation models have been shown promising results for image denoising. However, conventional sparse representation-based models cannot obtain satisfactory estimations for sparse coefficients and the dictionary. To address this weakness, in this paper, we propose a novel fractional-order sparse representation(FSR) model. Specifically, we cluster the image patches into K groups, and calculate the singular values for each clean/noisy patch pair in the wavelet domain. Then the uniform fractional-order parameters are learned for each cluster.Then a novel fractional-order sample space is constructed using adaptive fractional-order parameters in the wavelet domain to obtain more accurate sparse coefficients and dictionary for image denoising. Extensive experimental results show that the proposed model outperforms state-of-the-art sparse representation-based models and the block-matching and 3D filtering algorithm in terms of denoising performance and the computational efficiency. 展开更多
关键词 Index Terms-Fractional-order image denoising multi-scale sparse representation.
在线阅读 下载PDF
Frequency Extrapolation through Sparse Sums of Lorentzians
8
作者 Fredrik Andersson Marcus Carlsson Maarten V de Hoop 《Journal of Earth Science》 SCIE CAS CSCD 2014年第1期117-125,共9页
Sparse sums of Lorentzians can give good approximations to functions consisting of linear combination of piecewise continuous functions. To each Lorentzian, two parameters are as- signed: translation and scale. These... Sparse sums of Lorentzians can give good approximations to functions consisting of linear combination of piecewise continuous functions. To each Lorentzian, two parameters are as- signed: translation and scale. These parameters can be found by using a method for complex fre- quency detection in the frequency domain. This method is based on an alternating projection scheme between Hankel matrices and finite rank operators, and have the advantage that it can be done in weighted spaces. The weighted spaces can be used to partially revoke the effect of finite band-width filters. Apart from frequency extrapolation the method provides a way of estimating discontinuity locations. 展开更多
关键词 sparse sum Lorentzians Hankel matrices finite rank operator discontinuity location.
原文传递
An Improved Wavelet Based Preconditioner for Sparse Linear Problems
9
作者 Arikera Padmanabha Reddy Nagendrapp M. Bujurke 《Applied Mathematics》 2010年第5期370-376,共7页
In this paper, we present the construction of purely algebraic Daubechies wavelet based preconditioners for Krylov subspace iterative methods to solve linear sparse system of equations. Effective preconditioners are d... In this paper, we present the construction of purely algebraic Daubechies wavelet based preconditioners for Krylov subspace iterative methods to solve linear sparse system of equations. Effective preconditioners are designed with DWTPerMod algorithm by knowing size of the matrix and the order of Daubechies wavelet. A notable feature of this algorithm is that it enables wavelet level to be chosen automatically making it more robust than other wavelet based preconditioners and avoids user choosing a level of transform. We demonstrate the efficiency of these preconditioners by applying them to several matrices from Tim Davis collection of sparse matrices for restarted GMRES. 展开更多
关键词 Discrete Wavelet Transform PRECONDITIONERS sparse matriceS Krylov SUBSPACE ITERATIVE Methods
在线阅读 下载PDF
基于GPU并行计算的拓扑优化全流程加速设计方法
10
作者 张长东 吴奕凡 +3 位作者 周铉华 李旭东 肖息 张自来 《航空制造技术》 北大核心 2025年第12期34-41,67,共9页
随着大尺寸航空航天装备的发展需求,高效高精度的大规模拓扑优化设计成为该领域关注的焦点。针对现有大规模拓扑优化设计存在的计算量巨大、计算效率低下等问题,基于GPU并行计算开展了拓扑优化全流程加速设计方法的研究。对网格划分、... 随着大尺寸航空航天装备的发展需求,高效高精度的大规模拓扑优化设计成为该领域关注的焦点。针对现有大规模拓扑优化设计存在的计算量巨大、计算效率低下等问题,基于GPU并行计算开展了拓扑优化全流程加速设计方法的研究。对网格划分、刚度矩阵计算与组装、有限元求解等过程进行了并行加速,实现了高效高精度的体素网格划分及有限元过程的高效求解。此外,该方法针对拓扑优化设计过程的加速需求,对灵敏度过滤过程进行了并行加速处理。以300万体素单元的姿态推力器模型为设计对象,发现相比于Abaqus 2022软件的拓扑优化并行加速计算,本文所提方法的加速比提高了1259%,且两种方法的相似度极高,验证了所提方法的有效性与实用性。 展开更多
关键词 拓扑优化 并行计算 GPU加速 符号距离场 稀疏矩阵 网格划分
在线阅读 下载PDF
基于稀疏技术的原对偶内点法电压无功功率优化 被引量:19
11
作者 王晓东 李乃湖 丁恰 《电网技术》 EI CSCD 北大核心 1999年第3期23-26,30,共5页
文章结合电力系统的稀疏特性,提出了一种基于稀疏技术的原对偶内点法电压无功优化控制数学模型,并给出了提高原对偶内点法计算速度的措施。所提算法在实际电力系统中的试算表明,该方法能够有效地解决大规模电力系统中带有大量不等式... 文章结合电力系统的稀疏特性,提出了一种基于稀疏技术的原对偶内点法电压无功优化控制数学模型,并给出了提高原对偶内点法计算速度的措施。所提算法在实际电力系统中的试算表明,该方法能够有效地解决大规模电力系统中带有大量不等式约束的电压无功优化控制问题;同经典的二次规划法以及采用致密模型的原对偶内点法比较表明,所提算法在速度上有明显的优越性。 展开更多
关键词 稀疏技术 无功功率 原对偶内点法 电力系统 优化
在线阅读 下载PDF
三维电阻率正演计算中的Lanczos迭代算法 被引量:3
12
作者 宛新林 席道瑛 高尔根 《岩土力学》 EI CAS CSCD 北大核心 2003年第S2期108-111,共4页
在三维电阻率的正反演计算中,快速、准确的正演计算是反演的关键。而正演计算往往涉及到求解大型线性方程组Ax=b的问题,通过Lanczos迭代构造出对称三对角阵方程组,并采用正交分解法进行求解,与传统算法相比,此算法占用内存少、收敛速度... 在三维电阻率的正反演计算中,快速、准确的正演计算是反演的关键。而正演计算往往涉及到求解大型线性方程组Ax=b的问题,通过Lanczos迭代构造出对称三对角阵方程组,并采用正交分解法进行求解,与传统算法相比,此算法占用内存少、收敛速度快、且稳定;针对大型稀疏矩阵的特点,采用简单地记录矩阵的非零元素值及其所在行、列值的方法,来存储大型稀疏矩阵,可大大节省机器内存,提高运算速度。通过理论分析和点电源三维地电场计算实例,阐述该法是地电三维正演计算的有效方法。 展开更多
关键词 三维地电场 正演计算 稀疏矩阵 Lanczos迭代
在线阅读 下载PDF
超稀疏三元循环测量矩阵的设计 被引量:1
13
作者 张成 章权兵 +1 位作者 张芬 韦穗 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第10期37-41,共5页
在伯努利循环矩阵的基础上,对其独立元素中随机地引入零元,形成超稀疏三元循环矩阵,与伯努利-循环矩阵相比,其随机独立变元个数和矩阵非零元数目显著减少,从而有利于信息的传输和存储.数值实验结果表明:提出的测量矩阵重建效果略优于伯... 在伯努利循环矩阵的基础上,对其独立元素中随机地引入零元,形成超稀疏三元循环矩阵,与伯努利-循环矩阵相比,其随机独立变元个数和矩阵非零元数目显著减少,从而有利于信息的传输和存储.数值实验结果表明:提出的测量矩阵重建效果略优于伯努利矩阵和伯努利循环矩阵的重建效果,并在绝大多数情形下重建时间可以降低到原来的10%~40%,加快了后端信号重建的速度,有利于压缩感知理论的实用化. 展开更多
关键词 香农采样定理 奈奎斯特率 压缩感知 测量矩阵 确定性测量 稀疏三元循环矩阵
原文传递
大型稀疏矩阵线性化方程组的数值解法 被引量:7
14
作者 林首位 徐宏 +2 位作者 侯华 褚忠 龚荣良 《华北工学院学报》 2002年第4期265-269,共5页
目的 研究大型稀疏矩阵线性化方程组的数值解法 .方法 以 C+ +为程序开发语言 ,采用十字链表的数据存储结构与独特的选主元以及消元策略 ,结合铸件凝固过程三维温度场数值模拟实例 ,对大型稀疏矩阵线性化方程组的数值解法进行研究 .... 目的 研究大型稀疏矩阵线性化方程组的数值解法 .方法 以 C+ +为程序开发语言 ,采用十字链表的数据存储结构与独特的选主元以及消元策略 ,结合铸件凝固过程三维温度场数值模拟实例 ,对大型稀疏矩阵线性化方程组的数值解法进行研究 .结果 开发了相应的程序 ,可应用于 CASTSoft/CAE软件的温度场数值模拟 .结论 作者所采纳的数据存储结构 ,提出的相应数值求解算法 ,具有计算准确、速度较快而且比较节省内存的优点 ,具有一定的应用与参考价值 . 展开更多
关键词 稀疏矩阵 线性方程 数值计算 数据结构 十字链表 高斯消元 铸件 凝固 温度场
在线阅读 下载PDF
基于动态矩阵分解模型的电影推荐系统研究 被引量:6
15
作者 王璇 杜宇超 +1 位作者 杜军 邹军 《电子器件》 CAS 北大核心 2022年第2期483-489,共7页
推荐系统已成为电子商务企业吸引客户、实现盈利的有效技术支持,它能够根据用户的网络点击数据预测其偏好,做出个性化推荐。研究了一个基于动态矩阵分解模型的NETFLIX电影推荐系统。该系统通过训练一个来自NETFLIX平台、包含9000部电影... 推荐系统已成为电子商务企业吸引客户、实现盈利的有效技术支持,它能够根据用户的网络点击数据预测其偏好,做出个性化推荐。研究了一个基于动态矩阵分解模型的NETFLIX电影推荐系统。该系统通过训练一个来自NETFLIX平台、包含9000部电影历史评分的数据集进行预测评分。核心算法包括运用矩阵分解(Matrix Factorization,MF)建立有效的数据处理模型,以及使用随机梯度下降(Stochastic Gradient Descent,SGD)训练该模型。数据集采用稀疏矩阵存储,以节省空间。在训练过程中,对预测评分增加了特定的偏向值。该系统与市场同类产品相比拥有更高的预测准确度,并向电影观众推荐符合他们喜好的电影,能极大地提高电影观看票房值。 展开更多
关键词 电影推荐系统 动态矩阵分解模型 随机梯度下降算法 稀疏矩阵 预测评分
在线阅读 下载PDF
稀疏随机矩阵的观测次数下界 被引量:2
16
作者 孙晶明 王殊 董燕 《信号处理》 CSCD 北大核心 2012年第8期1156-1163,共8页
压缩感知理论中的稀疏重构问题,要将一个高维信号从它的低维投影中恢复出来,通常选用稠密随机矩阵作为观测矩阵来解决这一问题。而某些稀疏随机矩阵作为观测矩阵也可以达到这一目的。稀疏随机矩阵的特点是,在编码和重构过程中都具有较... 压缩感知理论中的稀疏重构问题,要将一个高维信号从它的低维投影中恢复出来,通常选用稠密随机矩阵作为观测矩阵来解决这一问题。而某些稀疏随机矩阵作为观测矩阵也可以达到这一目的。稀疏随机矩阵的特点是,在编码和重构过程中都具有较低的计算复杂度,更新方便,且对存储容量的要求较低。该文基于压缩感知理论,分别对列重固定、行重固定以及一般的稀疏随机矩阵进行了研究,当这些稀疏随机矩阵满足有限等距性质时,推导了观测次数应满足的下界条件,并对三种矩阵的性能进行了分析。以二值稀疏随机矩阵为特例,进行了仿真实验。实验结果显示,结论给出的观测次数下界是比较紧的,并验证了列重固定、行重固定的稀疏随机矩阵作为观测矩阵的可行性和实用性。 展开更多
关键词 压缩感知 观测矩阵 稀疏随机矩阵 有限等距性质 观测次数
在线阅读 下载PDF
一种基于信号流图理论的流体网络建模方法 被引量:2
17
作者 张悦 韩璞 《系统仿真学报》 CAS CSCD 北大核心 2016年第5期1038-1044,共7页
在流体网络机理建模过程中,引入信号流图的概念来描述流体网络,将流体网络中的各种结构规范为节点和支路两大类,建立节点压力和支路阻力的算法关系。针对流体网络的非线性,强耦合的特点,对节点压力在静态工作点附近泰勒级数展开,通过静... 在流体网络机理建模过程中,引入信号流图的概念来描述流体网络,将流体网络中的各种结构规范为节点和支路两大类,建立节点压力和支路阻力的算法关系。针对流体网络的非线性,强耦合的特点,对节点压力在静态工作点附近泰勒级数展开,通过静态工作点附近线性模型去描述非线性网络,给出了利用有向图提高工作点导纳矩阵计算效率的方法。并对网络模型进行分析,给出了流体网络分段模型的一般结构形式。借助于一个实例,阐述了利用上述方法建立流体网络模型的方法和过程。建模过程表明,该方法简单有效,获得的分段模型具有很强的实用价值。 展开更多
关键词 流体网络 机理建模 信号流图 稀疏矩阵
原文传递
利用稀疏贝叶斯理论的跳时估计方法 被引量:4
18
作者 张朝柱 王宇 荆福龙 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2019年第3期39-44,共6页
当跳频信号的频率不在预设的频率集中时,为了提高跳时估计的正确率,提出了一种基于稀疏贝叶斯理论的跳时估计方法。该方法首先在信号模型中设置频率偏差参数;其次利用狄利克雷过程以及稀疏贝叶斯理论,设计接收信号模型中各个参数的迭代... 当跳频信号的频率不在预设的频率集中时,为了提高跳时估计的正确率,提出了一种基于稀疏贝叶斯理论的跳时估计方法。该方法首先在信号模型中设置频率偏差参数;其次利用狄利克雷过程以及稀疏贝叶斯理论,设计接收信号模型中各个参数的迭代规则,并在每次迭代中利用频率偏差参数修正频率字典矩阵;最后,算法收敛时可得到用于计算谱图的稀疏矩阵,进而可以得到跳时的估计值。仿真结果表明,该算法估计的跳时正确率高于其他方法,并且计算的谱图的真实性也高于其他方法。 展开更多
关键词 跳频 狄利克雷过程 稀疏贝叶斯理论 稀疏矩阵
在线阅读 下载PDF
基于大型稀疏线性方程组拓扑的拖拉机精确定位系统 被引量:1
19
作者 王发兴 赵卫滨 蒋晶 《农机化研究》 北大核心 2018年第9期242-246,共5页
由于在实时导航过程中存在大量的坐标转换数据,拖拉机的精确导航高度依赖于计算机环境,计算速度和存储能力直接决定了拖拉机导航的水平高低。在拖拉机实时导航时存在大量的大型矩阵的计算工作,由于存储和计算时间问题,往往超过了处理器... 由于在实时导航过程中存在大量的坐标转换数据,拖拉机的精确导航高度依赖于计算机环境,计算速度和存储能力直接决定了拖拉机导航的水平高低。在拖拉机实时导航时存在大量的大型矩阵的计算工作,由于存储和计算时间问题,往往超过了处理器的计算能力。为了解决这个问题,提出了利用矩阵稀疏性,降低存储量和运算次数的方法,并利用DGPMHSS迭代方法完成了稀疏矩阵的有效求解。在考虑到计算精度、数值稳定性及拖拉机导航求解器采用的求解方法的情况下,通过导航实验对该方法进行了验证。拖拉机导航实验表明:该方法可以有效解决导航过程产生的万阶稀疏矩阵,且计算效率高,可以满足拖拉机精确定位的计算需求。 展开更多
关键词 线性方程组 稀疏矩阵 迭代计算 精确导航 拖拉机
在线阅读 下载PDF
二次筛选法中大型稀疏矩阵规模缩减算法 被引量:1
20
作者 褚一平 陈勤 《计算机工程与设计》 CSCD 北大核心 2005年第10期2624-2626,共3页
利用二次筛选法分解RSA的模数时,矩阵规模对算法性能有着重要的影响,缩减矩阵的规模可以有效地缩短算法的运行时间。根据二次筛选法的原理,给出了3种缩减矩阵规模的方法,结合二次筛选中的稀疏矩阵的存储结构,提出了相应的3种缩减算法。... 利用二次筛选法分解RSA的模数时,矩阵规模对算法性能有着重要的影响,缩减矩阵的规模可以有效地缩短算法的运行时间。根据二次筛选法的原理,给出了3种缩减矩阵规模的方法,结合二次筛选中的稀疏矩阵的存储结构,提出了相应的3种缩减算法。最后实现了这3种缩减算法,并在二次筛选法分解70位十进制大数程序中进行了成功的应用,给出了实验的结果。 展开更多
关键词 RSA 二次筛选法 大型稀疏矩阵缩减 分块Lanczos算法
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部