Microstructural heterogeneity of low-permeability sandstone roofs of deep unmineable coal seams due to diagenesis significantly affects rock mechanical behavior,greatly impacting the sealing potential of in situ CO_(2...Microstructural heterogeneity of low-permeability sandstone roofs of deep unmineable coal seams due to diagenesis significantly affects rock mechanical behavior,greatly impacting the sealing potential of in situ CO_(2) sequestration and the structural stability of the geological formation.However,little is known about how the microstructure of different mineral groups influences the multiscale mechanical behavior of deep sandstone.This study proposes a new method for quantitatively characterizing the multiscale mechanical properties of low-permeability sandstone and shows the mechanisms responsible for mechanical failure at the micro-,meso-,and macroscale.Triaxial compression tests and targeted nanoindentation tests were conducted to assess the micro-and macroscale mechanical properties of different types of sandstone.The micro-and macroscale experiments were coupled with numerical simulations of compression using a unified cohesive model based on Voronoi polygons to clarify the multiscale mechanical behavior.The results indicate that quartz,the primary mineral component of the sandstones examined,exhibits the strongest micromechanical properties,followed by feldspar,calcite,and clay minerals.Compared to polycrystalline quartz,monocrystalline quartz has a more stable microstructure and is mechanically stronger.The macro-mechanical properties of tight sandstone samples are weakened by increased microstructural inhomogeneity and larger grain size.This leads to a higher likelihood of splitting damage,characterized by a high degree of discrete and weak stress sensitivity.The major conclusion is that the positive rhythm lithofacies of medium-grained sandstone to siltstone are the most favorable for efficient CO_(2) sequestration in deep unmineable coal seams.展开更多
With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods ...With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods face numerous challenges in practical deployment,including scale variation handling,feature degradation,and complex backgrounds.To address these issues,we propose Edge-enhanced and Detail-Capturing You Only Look Once(EHDC-YOLO),a novel framework for object detection in Unmanned Aerial Vehicle(UAV)imagery.Based on the You Only Look Once version 11 nano(YOLOv11n)baseline,EHDC-YOLO systematically introduces several architectural enhancements:(1)a Multi-Scale Edge Enhancement(MSEE)module that leverages multi-scale pooling and edge information to enhance boundary feature extraction;(2)an Enhanced Feature Pyramid Network(EFPN)that integrates P2-level features with Cross Stage Partial(CSP)structures and OmniKernel convolutions for better fine-grained representation;and(3)Dynamic Head(DyHead)with multi-dimensional attention mechanisms for enhanced cross-scale modeling and perspective adaptability.Comprehensive experiments on the Vision meets Drones for Detection(VisDrone-DET)2019 dataset demonstrate that EHDC-YOLO achieves significant improvements,increasing mean Average Precision(mAP)@0.5 from 33.2%to 46.1%(an absolute improvement of 12.9 percentage points)and mAP@0.5:0.95 from 19.5%to 28.0%(an absolute improvement of 8.5 percentage points)compared with the YOLOv11n baseline,while maintaining a reasonable parameter count(2.81 M vs the baseline’s 2.58 M).Further ablation studies confirm the effectiveness of each proposed component,while visualization results highlight EHDC-YOLO’s superior performance in detecting objects and handling occlusions in complex drone scenarios.展开更多
The long-lasting expectation“the hotter the engine,the better”calls for the development of high-temperature metallic alloys.Although the high specific strengths of titanium alloys are compelling for such application...The long-lasting expectation“the hotter the engine,the better”calls for the development of high-temperature metallic alloys.Although the high specific strengths of titanium alloys are compelling for such applications,their deleterious softening beyond 600℃ imposes serious limitations.Much has been known for decades regarding the phase metallurgy for precipitation strengthening design in titanium alloys,however,the other facile strength promotion mechanism,dispersion strengthening,remains comparatively less-explored and unutilized.The present research concerns the multi-scale dispersion strengthening in titanium alloys,with mechanistic emphases on the critical plasticity micro-events that affect strength preservation.Due to the simultaneous introduction of intragranular dispersoids and intergranular reinforcers,the current titanium alloys present superior engineering tensile strength of 519 MPa at 700℃.Throughout the examined 25-800℃ temperature range,noticeable softening induced by the thermal activation occurs above 600℃,accompanied by evident strength loss.The temperature-dependence transition of dominated softening mechanisms from dynamic recovery to dynamic recrystallization has been clarified by theoretical calculations.Furthermore,the strengthening effect of multi-scale architectures is underpinned as the enhanced dislocation strengthening owing to the introduction of thermally-stable heterointerfaces,which could generically guide the design of similar heat-resistant titanium alloys.展开更多
The bulge test is a widely utilized method for assessing the mechanical properties of thin films,including metals,polymers,and semiconductors.However,as film thickness diminishes to nanometer scales,boundary condition...The bulge test is a widely utilized method for assessing the mechanical properties of thin films,including metals,polymers,and semiconductors.However,as film thickness diminishes to nanometer scales,boundary conditions dominated by weak van der Waals forces significantly impact mechanical responses.Instead of sample fracture,interfacial shear deformation and delamination become the primary deformation modes,thereby challenging the applicability of conventional bulge models.To accommodate the interfacial effect,a modified mechanical model based on the bulge test has been proposed.This review summarizes recent advancements in the bulge test to highlight the potential challenges and opportunities for future research.展开更多
After the excavation of deep mining tunnels and underground caverns,the stability of surrounding rock controlled by structural planes is prone to structural damage and even engineering disasters due to three-dimension...After the excavation of deep mining tunnels and underground caverns,the stability of surrounding rock controlled by structural planes is prone to structural damage and even engineering disasters due to three-dimensional stress redistribution and multi-directional dynamic construction interference.However,the shear mechanical behavior,fracture evolution mechanism and precursor characteristics of rockmass under true triaxial stress and multi-directional coupling disturbance are not unclear.Therefore,this study carried out true triaxial shear tests on limestone intermittent structural planes under uni-,bi-and tri-directional coupling disturbances to analyze its mechanical behavior,fracture evolution mechanism and precursor characteristics.The results show that as the disturbance direction increase,the shear strength of limestone generally decreases,while the roughness of structural planes and the degree of anisotropy generally exhibit an increasing trend.The proportion of shear cracks on the structural plane increases with the increase of shear stress.The disturbance strain rate before failure shows a U-shaped trend.Near to disturbance failure,there were more high-energy and high-amplitude acoustic emission events near the structural plane,and b-value drops rapidly below 1,while lgN/b ratio increased to above 3.These findings provide experimental recognition and theoretical support for assessing the stability of rockmass under blasting excavation.展开更多
Large-scale field shear tests on ten specimens of the red-sandstone embankment at a highway in Hunan,China,were performed to examine mechanical characteristics and parameters of red-sandstone.The curves of thrust-disp...Large-scale field shear tests on ten specimens of the red-sandstone embankment at a highway in Hunan,China,were performed to examine mechanical characteristics and parameters of red-sandstone.The curves of thrust-displacement,failure mode,and shear strength parameters for red-sandstone with different water contents,different compactions,and different grain size distributions were obtained from the tests.A practical procedure of in-situ test for red-sandstone embankment was proposed to normalize the test equipment and test steps.Based on three-dimensional thrust-sliding limit equilibrium method,the formulas for calculating strength parameters of red-sandstone considering three-dimensional sliding surface were inferred.The results show that red-sandstone has typical complete curves of stress-strain,strain softening,which are caused by the special structure of red-sandstone;water content and compaction are important factors for strength and failure mode of red-sandstone;The average value of cohesion and internal friction angle of the specimens calculated by three-dimensional technique are 21.56 kPa and 29.29°,respectively,and those by traditional two-dimensional method are 25.52 kPa and 33.76°,respectively.展开更多
The mechanical properties are essentially different when rock material is subjected to loading or unloading conditions. In this study, loading and unloading tests with various confining pressures are conducted to inve...The mechanical properties are essentially different when rock material is subjected to loading or unloading conditions. In this study, loading and unloading tests with various confining pressures are conducted to investigate the mechanical properties of marble material samples taken from the deep diversion tunnels of Jinping II Hydropower Station. The stress-strain relationship, failure characteristics and strength criterion are compared and analyzed based on the experiment results. The results show: in the loading and unloading test, peak strength, lateral strain, axial strain and plastic deformation increase significantly as the confining pressure increases. Lateral strain increased significantly and obvious lateral dilatancy can be observed to the change of confining pressure; The fracture mode is mainly the single shear fracture for the triaxial compression test and post-peak test, angle between the failure surface and the ends of the rock material becomes smaller as the confining pressure increases. Hock-Brown strength criterion reflects the strength characteristics of marble material under two different unloading conditions, and has some supplementary effects to the rock material of mechanical field.展开更多
Microstructural characteristics and mechanical behavior of hot extruded Al5083/B4C nanocomposites were studied.Al5083and Al5083/B4C powders were milled for50h under argon atmosphere in attrition mill with rotational s...Microstructural characteristics and mechanical behavior of hot extruded Al5083/B4C nanocomposites were studied.Al5083and Al5083/B4C powders were milled for50h under argon atmosphere in attrition mill with rotational speed of400r/min.For increasing the elongation,milled powders were mixed with30%and50%unmilled aluminum powder(mass fraction)with meanparticle size of>100μm and<100μm and then consolidated by hot pressing and hot extrusion with9:1extrusion ratio.Hot extrudedsamples were studied by optical microscopy,scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),transmission electron microscopy(TEM),tensile and hardness tests.The results showed that mechanical milling process andpresence of B4C particles increase the yield strength of Al5083alloy from130to566MPa but strongly decrease elongation(from11.3%to0.49%).Adding<100μm unmilled particles enhanced the ductility and reduced tensile strength and hardness,but usingthe>100μm unmilled particles reduced the tensile strength and ductility at the same time.By increasing the content of unmilledparticles failure mechanism changed from brittle to ductile.展开更多
The macro mechanical properties of materials with characteristics of large scale and complicated structural composition can be analyzed through its reconstructed meso-structures.In this work,the meso-structures of tal...The macro mechanical properties of materials with characteristics of large scale and complicated structural composition can be analyzed through its reconstructed meso-structures.In this work,the meso-structures of talus deposits that widely exist in the hydro-power engineering in the southwest of China were first reconstructed by small particles according to the in-situ photographs based on the self-adaptive PCNN digital image processing,and then numerical direct shear tests were carried out for studying the mechanical properties of talus deposits.Results indicate that the reconstructed meso-structures of talus deposits are more consistent with the actual situation because the self-adaptive PCNN digital image processing has a higher discrimination in the details of soil-rock segmentation.The existence and random distribution of rock blocks make the initial shear stiffness,the peak strength and the residual strength higher than those of the "pure soil" with particle size less than 1.25 cm apparently,but reduce the displacements required for the talus deposits reaching its peak shear strength.The increase of rock proportion causes a significant improvement in the internal friction angle of talus deposit,which to a certain degree leads to the characteristics of shear stress-displacement curves having a changing trend from the plastic strain softening deformation to the nonlinear strain hardening deformation,while an unconspicuous increase in cohesion.The uncertainty and heterogeneity of rock distributions cause the differences of rock proportion within shear zone,leading to a relatively strong fluctuation in peak strengths during the shear process,while movement features of rock blocks,such as translation,rotation and crossing,expand the scope of shear zone,increase the required shear force,and also directly lead to the misjudgment that the lower shear strength is obtained from the samples with high rock proportion.That,however,just explains the reason why the shear strength gained from a small amount of indoor test data is not consistent with engineering practice.展开更多
The Stinger PDC cutter has high rock-breaking efficiency and excellent impact and wear resistance, which can significantly increase the rate of penetration (ROP) and extend PDC bit life for drilling hard and abrasive ...The Stinger PDC cutter has high rock-breaking efficiency and excellent impact and wear resistance, which can significantly increase the rate of penetration (ROP) and extend PDC bit life for drilling hard and abrasive formation. The knowledge of force response and mechanical specific energy (MSE) for the Stinger PDC cutter is of great importance for improving the cutter's performance and optimizing the hybrid PDC bit design. In this paper, 87 single cutter tests were conducted on the granite. A new method for precisely obtaining the rock broken volume was proposed. The influences of cutting depth, cutting angle, and cutting speed on cutting force and MSE were analyzed. Besides, a phenomenological cutting force model of the Stinger PDC cutter was established by regression of experimental data. Moreover, the surface topography and fracture morphology of the cutting groove and large size cuttings were measured by a 3D profilometer and a scanning electron microscope (SEM). Finally, the rock-breaking mechanism of the Stinger PDC cutter was illustrated. The results indicated that the cutting depth has the greatest influence on the cutting force and MSE, while the cutting speed has no obvious effects, especially at low cutting speeds. As the increase of cutting depth, the cutting force increases linearly, and MSE reduces with a quadratic polynomial relationship. When the cutting angle raises from 10° to 30°, the cutting force increases linearly, and the MSE firstly decreases and then increases. The optimal cutting angle for breaking rock is approximately 20°. The Stinger PDC cutter breaks granite mainly by high concentrated point loading and tensile failure, which can observably improve the rock breaking efficiency. The key findings of this work will help to reveal the rock-breaking mechanisms and optimize the cutter arrangement for the Stinger PDC cutter.展开更多
Superalloy thin-walled structures are achieved mainly by brazing,but the deformation process of brazed joints is non-uniform,making it a challenging research task.This paper records a thorough investigation of the eff...Superalloy thin-walled structures are achieved mainly by brazing,but the deformation process of brazed joints is non-uniform,making it a challenging research task.This paper records a thorough investigation of the effect of brazing parameters on the microstructure of joints and its mechanical properties,which mainly inquires into the deformation and fracture mechanisms in the shearing process of GH99/BNi-5a/GH99 joints.The macroscopic-microscopic deformation mechanism of the brazing interface during shearing was studied by Crystal Plasticity(CP)and Molecular Dynamics(MD)on the basis of the optimal brazing parameters.The experimental results show that the brazing interface is mainly formed by(Ni,Cr,Co)(s,s)and possesses a shear strength of approximately 546 MPa.The shearing fracture of the brazed joint occurs along the brazing seam,displaying the characteristics of intergranular fracture.MD simulations show that dislocations disassociate and transform into fine twinning with increased strain.CP simulated the shear deformation process of the brazed joint.The multiscale simulation results are consistent with the experimental results.The mechanical properties of thin-walled materials for brazing are predicted using MD and CP methods.展开更多
During long-term service in space,Gallium Arsenide(GaAs)solar cells are directly exposed to electron irradiation which usually causes a dramatic decrease in their performance.In the multilayer structure of solar cells...During long-term service in space,Gallium Arsenide(GaAs)solar cells are directly exposed to electron irradiation which usually causes a dramatic decrease in their performance.In the multilayer structure of solar cells,the germanium(Ge)layer occupies the majority of the thickness as the substrate.Due to the intrinsic brittleness of semiconductor material,there exist various defects during the preparation and assembly of solar cells,the influences of which tend to be intensified by the irradiation effect.In this work,first,Ge specimens for mechanical tests were prepared at scales from microscopic to macroscopic.Then,after different doses of electron irradiation,the mechanical properties of the Ge specimens were investigated.The experimental results demonstrate that electron irradiation has an obvious effect on the mechanical property variation of Ge in diverse scales.The four-point bending test indicates that the elastic modulus,fracture strength,and maximum displacement of the Ge specimens all increase,and reach the maximum value at the irradiation dose of 1×10^(15)e/cm^(2).The micrometer scale cantilever and nanoindentation tests present similar trends for Ge specimens after irradiation.Atomic Force Microscope(AFM)also observed the change in surface roughness.Finally,a fitting model was established to characterize the relation between modulus change and electron irradiation dose.展开更多
Laser powder bed fusion(LPBF)is a potential additive manufacturing process to manufacture Invar 36 alloy components with complicated geometry.Whereas it inevitably introduces specific microstructures and pore defects,...Laser powder bed fusion(LPBF)is a potential additive manufacturing process to manufacture Invar 36 alloy components with complicated geometry.Whereas it inevitably introduces specific microstructures and pore defects,which will further influence the mechanical properties.Hence,aiming at exploring the LPBF process-related microstructures and pore defects,and especially their influences on the damage mechanism and mechanical properties,Invar 36 alloy was manufactured by LPBF under designed different laser scanning speeds.The microstructure observations reveal that higher scanning speeds lead to equiaxed and short columnar grains with higher dislocation density,while lower scanning speeds result in elongated columnar grains with lower dislocation density.The pore defects analyzed by X-ray computed tomography(XCT)suggest that the high laser scanning speed gives rise to numerous lamellar and large lack-of-fusion(LOF)pores,and the excessively low laser scanning speed produces relatively small keyhole pores with high sphericity.Moreover,the insitu XCT tensile tests were originally performed to evaluate the damage evolution and failure mechanism.Specifically,high laser scanning speed causes brittle fracture due to the rapid growth and coalescence of initial lamellar LOF pores along the scan-ning direction.Low laser scanning speed induces ductile fracture originating from unstable depressions in the surfaces,while metallurgical and keyhole pores have little impact on damage evolution.Eventually,the process-structure-property correlation is established.The presence of high volume fraction of lamel-lar LOF pores,resulting from high scanning speed,leads to inferior yield strength and ductility.Besides,specimens without LOF pores exhibit larger grain sizes and lower dislocation density at decreased scanning speeds,slightly reducing yield strength while slightly enhancing ductility.This understanding lays the foundation for widespread applications of LPBF-processed Invar 36 alloy.展开更多
The redistribution of three-dimensional(3D)geostress during underground tunnel excavation can easily induce to shear failure along rockmass structural plane,potentially resulting in engineering disasters.However,the c...The redistribution of three-dimensional(3D)geostress during underground tunnel excavation can easily induce to shear failure along rockmass structural plane,potentially resulting in engineering disasters.However,the current understanding of rockmass shear behavior is mainly based on shear tests under2D stress without lateral stress,the shear fracture under 3D stress is unclear,and the relevant 3D shear fracture theory research is deficient.Therefore,this study conducted true triaxial cyclic loading and unloading shear tests on intact and bedded limestone under different normal stress σ_(n) and lateral stressσ_(p)to investigate the shear strength,deformation,and failure characteristics.The results indicate that under differentσ_(n)and σ_(p),the stress–strain hysteresis loop area gradually increases from nearly zero in the pre-peak stage,becomes most significant in the post-peak stage,and then becomes very small in the residual stage as the number of shear test cycles increases.The shear peak strength and failure surface roughness almost linearly increase with the increase inσ_(n),while they first increase and then gradually decrease asσ_(p)increases,with the maximum increases of 12.9%for strength and 15.1%for roughness.The shear residual strength almost linearly increases withσ_(n),but shows no significant change withσ_(p).Based on the acoustic emission characteristic parameters during the test process,the shear fracture process and microscopic failure mechanism were analyzed.As the shear stressτincreases,the acoustic emission activity,main frequency,and amplitude gradually increase,showing a significant rise during the cycle near the peak strength,while remaining almost unchanged in the residual stage.The true triaxial shear fracture process presents tensile-shear mixture failure characteristics dominated by microscopic tensile failure.Based on the test results,a 3D shear strength criterion considering the lateral stress effect was proposed,and the determination methods and evolution of the shear modulus G,cohesion c_(jp),friction angleφ_(jp),and dilation angleψjpduring rockmass shear fracture process were studied.Under differentσ_(n)andσ_(p),G first rapidly decreases and then tends to stabilize;cjp,φ_(jp),andψjpfirst increase rapidly to the maximum value,then decrease slowly,and finally remain basically unchanged.A 3D shear mechanics model considering the effects of lateral stress and shear parameter degradation was further established,and a corresponding numerical calculation program was developed based on3D discrete element software.The proposed model effectively simulates the shear failure evolution process of rockmass under true triaxial shear test,and is further applied to successfully reveal the failure characteristics of surrounding rocks with structural planes under different combinations of tunnel axis and geostress direction.展开更多
The mechanical properties of the SiC fiber-reinforced Mg-Al metal matrix composite materials have been studied on internal microstructure by (scanning electron microscopy) SEM in-situ tensile test. The emergence and p...The mechanical properties of the SiC fiber-reinforced Mg-Al metal matrix composite materials have been studied on internal microstructure by (scanning electron microscopy) SEM in-situ tensile test. The emergence and propagation of the crack, and the fracture behavior in materials have been observed and studied. It is found that in the case of the tensile test, the crack emerged in SiC fiber initially. In the case of the strong cohesion of the fiber-metal interface, the crack propagated in the fiber, meanwhile the fibers in the neighborhood of the cracked fiber began to crack and the Mg-Al metal deformed plastically, and at last the material fractured. Otherwise the toughness of the materials grows in the case of the lower cohesion of the fiber-metal matrix interface.展开更多
The effect of a variety of geometrics, initial conditions and material properties on the deformation behavior of thin films in the plane-strain bulge test was systematically scrutinized by performing the finite elemen...The effect of a variety of geometrics, initial conditions and material properties on the deformation behavior of thin films in the plane-strain bulge test was systematically scrutinized by performing the finite element analysis, and then the accuracy of the plane-strain bulge test in determining the mechanical properties of thin films in terms of our finite element results was analyzed. The results indicate that although the determination of the plane-strain modulus in the light of the plane-strain bulge equation is fairly accurate, the calculation of the residual stress is not satisfied as expected, especially for low residual stress. Finally, an approach is proposed for analyzing bulge test data, which will improve the accuracy and reliability of this bulge test technique.展开更多
A device for supporting soft rock masses combined with a constant resistance structure characterized by constant resistance and large deformation at the end of a steel bar, known as the constant resistance and large d...A device for supporting soft rock masses combined with a constant resistance structure characterized by constant resistance and large deformation at the end of a steel bar, known as the constant resistance and large deformation(CRLD) bolt, has recently been developed to counteract soft rock swelling that often occurs during deep mining. In order to further study the mechanical properties of the CRLD bolt, we investigated its mechanical properties by comparison with the conventional strength bolt(rebar) using static pull tests on many aspects, including supporting capacity, elongation, radial deformation, and energy absorption. The tests verified that the mechanical defects of the rebar, which include the decrease of bolt diameter, reduction of supporting capacity, and emergence and evolution of fracture until failure during the whole pull process, were caused by the Poisson's ratio effect. Due to the special structure set on the CRLD bolt, the bolt presents a seemingly unusual phenomenon of the negative Poisson's ratio effect, i.e., the diameter of the constant resistance structure increases while under-pulling. It is the very effect that ensures the extraordinary mechanical properties, including high resistance, large elongation, and strong energy absorption. According to the comparison and analysis of numerical simulation and field test, we can conclude that the CRLD bolt works better than the rebar bolt.展开更多
When transparent soil technology is used to study the displacement of a slope, the internal deformation of the slope can be visualized. We studied the sliding mechanism of the soil-rock slope by using transparent soil...When transparent soil technology is used to study the displacement of a slope, the internal deformation of the slope can be visualized. We studied the sliding mechanism of the soil-rock slope by using transparent soil technology and considering the influence of the rock mass Barton joint roughness coefficient, angle of the soil mass, angle of the rock mass and soil thickness factors on slope stability. We obtained the deformation characteristics of the soil and rock slope with particle image velocimetry and the laser speckle technique. The test analysis shows that the slope sliding can be divided into three parts: displacements at the top, the middle, and the bottom of the slope; the decrease in the rock mass Barton joint roughness coefficient, and the increase in soil thickness, angles of the rock mass and soil mass lead to larger sliding displacements. Furthermore, we analyzed the different angles between the rock mass and soil thickness. The test result shows that the displacement of slope increases with larger angle of the rock mass. Conclusively, all these results can help to explain the soil-rock interfacial sliding mechanism.展开更多
The elastoplastic mechanical properties of the weld and heat affected zone metals have comparatively major impact on the forming process of tailor-welded blanks. A few scholars investigated the elastoplastic mechanica...The elastoplastic mechanical properties of the weld and heat affected zone metals have comparatively major impact on the forming process of tailor-welded blanks. A few scholars investigated the elastoplastic mechanical properties of the weld and heat affected zone, but they only simply assumed that it was a uniform distribution elastoplastic material different from the base materials. Four types of tailor-welded blanks which consist of ST12 and 304 stainless steel plates are selected as the research objects, the elastoplastic mechanical properties of the tailor-welded blanks weld and heat affected zone metals are obtained based on the nanoindentation tests, and the Erichsen cupping tests are conducted by combining numerical simulation with physical experiment. The nanoindentation tests results demonstrate that the elastoplastic mechanical properties of the weld and heat affected zone metals are not only different from the base materials, but also varying between the weld metals and the heat affected zone metals. Comparing the Erichsen cupping test resulted from numerical with that from experimental method, it is found that the numerical value of Erichsen cupping test which consider the elastoplastic mechanical properties of the weld and heat affected zone metals have a good agreement with the experimental result, and the relative error is only 4.8%. The proposed research provides good solutions for the inhomogeneous elastoplastic mechanical properties of the tailor-welded blanks weld and heat affected zone metals, and improves the control performance of tailor-welded blanks forming accuracy.展开更多
The high-temperature mechanical properties of 95W-3.5Ni-1.5Fe and 95W-4.5Ni-0.5Co alloys were investigated in the temperature range of room temperature to1100℃. The yield strength and tensile strengths declined gradu...The high-temperature mechanical properties of 95W-3.5Ni-1.5Fe and 95W-4.5Ni-0.5Co alloys were investigated in the temperature range of room temperature to1100℃. The yield strength and tensile strengths declined gradually, and the ductility of both alloys increased as the testing temperature was increased to 300℃. All the three properties reached a plateau at temperatures between 300 and 500℃ in the case of 95W-3.5Ni-l.5Fe and at temperatures between 350 and 700℃ in the case of 95W-4.5Ni-0.5Co. Thereafter, the ductility as well as yield and tensile strengths decreased considerably.展开更多
基金supported by the project from the Exploration and Development Research Institute of PetroChina Daqing Oilfield Companyfinancial support from the research by the National Natural Science Foundation of China(42402148)+1 种基金Sichuan Provincial Fund(24NSFSC4997)Guizhou Outstanding Young Science and Technology Talent Program(YQK[2023]012).
文摘Microstructural heterogeneity of low-permeability sandstone roofs of deep unmineable coal seams due to diagenesis significantly affects rock mechanical behavior,greatly impacting the sealing potential of in situ CO_(2) sequestration and the structural stability of the geological formation.However,little is known about how the microstructure of different mineral groups influences the multiscale mechanical behavior of deep sandstone.This study proposes a new method for quantitatively characterizing the multiscale mechanical properties of low-permeability sandstone and shows the mechanisms responsible for mechanical failure at the micro-,meso-,and macroscale.Triaxial compression tests and targeted nanoindentation tests were conducted to assess the micro-and macroscale mechanical properties of different types of sandstone.The micro-and macroscale experiments were coupled with numerical simulations of compression using a unified cohesive model based on Voronoi polygons to clarify the multiscale mechanical behavior.The results indicate that quartz,the primary mineral component of the sandstones examined,exhibits the strongest micromechanical properties,followed by feldspar,calcite,and clay minerals.Compared to polycrystalline quartz,monocrystalline quartz has a more stable microstructure and is mechanically stronger.The macro-mechanical properties of tight sandstone samples are weakened by increased microstructural inhomogeneity and larger grain size.This leads to a higher likelihood of splitting damage,characterized by a high degree of discrete and weak stress sensitivity.The major conclusion is that the positive rhythm lithofacies of medium-grained sandstone to siltstone are the most favorable for efficient CO_(2) sequestration in deep unmineable coal seams.
文摘With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods face numerous challenges in practical deployment,including scale variation handling,feature degradation,and complex backgrounds.To address these issues,we propose Edge-enhanced and Detail-Capturing You Only Look Once(EHDC-YOLO),a novel framework for object detection in Unmanned Aerial Vehicle(UAV)imagery.Based on the You Only Look Once version 11 nano(YOLOv11n)baseline,EHDC-YOLO systematically introduces several architectural enhancements:(1)a Multi-Scale Edge Enhancement(MSEE)module that leverages multi-scale pooling and edge information to enhance boundary feature extraction;(2)an Enhanced Feature Pyramid Network(EFPN)that integrates P2-level features with Cross Stage Partial(CSP)structures and OmniKernel convolutions for better fine-grained representation;and(3)Dynamic Head(DyHead)with multi-dimensional attention mechanisms for enhanced cross-scale modeling and perspective adaptability.Comprehensive experiments on the Vision meets Drones for Detection(VisDrone-DET)2019 dataset demonstrate that EHDC-YOLO achieves significant improvements,increasing mean Average Precision(mAP)@0.5 from 33.2%to 46.1%(an absolute improvement of 12.9 percentage points)and mAP@0.5:0.95 from 19.5%to 28.0%(an absolute improvement of 8.5 percentage points)compared with the YOLOv11n baseline,while maintaining a reasonable parameter count(2.81 M vs the baseline’s 2.58 M).Further ablation studies confirm the effectiveness of each proposed component,while visualization results highlight EHDC-YOLO’s superior performance in detecting objects and handling occlusions in complex drone scenarios.
基金financially supported by the National Key R&D Program of China(No.2021YFB3701203)the National Natural Science Foundation of China(Nos.U22A20113,52261135543,52171137 and 52071116)the Heilongjiang Touyan Team Program,Heilongjiang Provincial Natural Science Foundation of China(No.TD2020E001).
文摘The long-lasting expectation“the hotter the engine,the better”calls for the development of high-temperature metallic alloys.Although the high specific strengths of titanium alloys are compelling for such applications,their deleterious softening beyond 600℃ imposes serious limitations.Much has been known for decades regarding the phase metallurgy for precipitation strengthening design in titanium alloys,however,the other facile strength promotion mechanism,dispersion strengthening,remains comparatively less-explored and unutilized.The present research concerns the multi-scale dispersion strengthening in titanium alloys,with mechanistic emphases on the critical plasticity micro-events that affect strength preservation.Due to the simultaneous introduction of intragranular dispersoids and intergranular reinforcers,the current titanium alloys present superior engineering tensile strength of 519 MPa at 700℃.Throughout the examined 25-800℃ temperature range,noticeable softening induced by the thermal activation occurs above 600℃,accompanied by evident strength loss.The temperature-dependence transition of dominated softening mechanisms from dynamic recovery to dynamic recrystallization has been clarified by theoretical calculations.Furthermore,the strengthening effect of multi-scale architectures is underpinned as the enhanced dislocation strengthening owing to the introduction of thermally-stable heterointerfaces,which could generically guide the design of similar heat-resistant titanium alloys.
基金supported by the National Natural Science Foundation of China(Grant Nos.22072031,12372107,11832010,and 11890682)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB36000000).
文摘The bulge test is a widely utilized method for assessing the mechanical properties of thin films,including metals,polymers,and semiconductors.However,as film thickness diminishes to nanometer scales,boundary conditions dominated by weak van der Waals forces significantly impact mechanical responses.Instead of sample fracture,interfacial shear deformation and delamination become the primary deformation modes,thereby challenging the applicability of conventional bulge models.To accommodate the interfacial effect,a modified mechanical model based on the bulge test has been proposed.This review summarizes recent advancements in the bulge test to highlight the potential challenges and opportunities for future research.
基金support received from the National Natural Science Foundation of China(Nos.52274145,52469019,and 52109119)the Guangxi Natural Science Foundation(No.2025GXNSFAA069165)the Chinese Postdoctoral Science Fund Project(No.2022M723408).
文摘After the excavation of deep mining tunnels and underground caverns,the stability of surrounding rock controlled by structural planes is prone to structural damage and even engineering disasters due to three-dimensional stress redistribution and multi-directional dynamic construction interference.However,the shear mechanical behavior,fracture evolution mechanism and precursor characteristics of rockmass under true triaxial stress and multi-directional coupling disturbance are not unclear.Therefore,this study carried out true triaxial shear tests on limestone intermittent structural planes under uni-,bi-and tri-directional coupling disturbances to analyze its mechanical behavior,fracture evolution mechanism and precursor characteristics.The results show that as the disturbance direction increase,the shear strength of limestone generally decreases,while the roughness of structural planes and the degree of anisotropy generally exhibit an increasing trend.The proportion of shear cracks on the structural plane increases with the increase of shear stress.The disturbance strain rate before failure shows a U-shaped trend.Near to disturbance failure,there were more high-energy and high-amplitude acoustic emission events near the structural plane,and b-value drops rapidly below 1,while lgN/b ratio increased to above 3.These findings provide experimental recognition and theoretical support for assessing the stability of rockmass under blasting excavation.
基金Project(200612) supported by Hunan Province Transportation Department of China
文摘Large-scale field shear tests on ten specimens of the red-sandstone embankment at a highway in Hunan,China,were performed to examine mechanical characteristics and parameters of red-sandstone.The curves of thrust-displacement,failure mode,and shear strength parameters for red-sandstone with different water contents,different compactions,and different grain size distributions were obtained from the tests.A practical procedure of in-situ test for red-sandstone embankment was proposed to normalize the test equipment and test steps.Based on three-dimensional thrust-sliding limit equilibrium method,the formulas for calculating strength parameters of red-sandstone considering three-dimensional sliding surface were inferred.The results show that red-sandstone has typical complete curves of stress-strain,strain softening,which are caused by the special structure of red-sandstone;water content and compaction are important factors for strength and failure mode of red-sandstone;The average value of cohesion and internal friction angle of the specimens calculated by three-dimensional technique are 21.56 kPa and 29.29°,respectively,and those by traditional two-dimensional method are 25.52 kPa and 33.76°,respectively.
基金Supported by National Natural Science Foundation of China(No.50974100)WHUT(NO.125106002)
文摘The mechanical properties are essentially different when rock material is subjected to loading or unloading conditions. In this study, loading and unloading tests with various confining pressures are conducted to investigate the mechanical properties of marble material samples taken from the deep diversion tunnels of Jinping II Hydropower Station. The stress-strain relationship, failure characteristics and strength criterion are compared and analyzed based on the experiment results. The results show: in the loading and unloading test, peak strength, lateral strain, axial strain and plastic deformation increase significantly as the confining pressure increases. Lateral strain increased significantly and obvious lateral dilatancy can be observed to the change of confining pressure; The fracture mode is mainly the single shear fracture for the triaxial compression test and post-peak test, angle between the failure surface and the ends of the rock material becomes smaller as the confining pressure increases. Hock-Brown strength criterion reflects the strength characteristics of marble material under two different unloading conditions, and has some supplementary effects to the rock material of mechanical field.
文摘Microstructural characteristics and mechanical behavior of hot extruded Al5083/B4C nanocomposites were studied.Al5083and Al5083/B4C powders were milled for50h under argon atmosphere in attrition mill with rotational speed of400r/min.For increasing the elongation,milled powders were mixed with30%and50%unmilled aluminum powder(mass fraction)with meanparticle size of>100μm and<100μm and then consolidated by hot pressing and hot extrusion with9:1extrusion ratio.Hot extrudedsamples were studied by optical microscopy,scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),transmission electron microscopy(TEM),tensile and hardness tests.The results showed that mechanical milling process andpresence of B4C particles increase the yield strength of Al5083alloy from130to566MPa but strongly decrease elongation(from11.3%to0.49%).Adding<100μm unmilled particles enhanced the ductility and reduced tensile strength and hardness,but usingthe>100μm unmilled particles reduced the tensile strength and ductility at the same time.By increasing the content of unmilledparticles failure mechanism changed from brittle to ductile.
基金Project(2013BAB06B00) supported by the National Key Technology R&D Programof ChinaProject(2011CB013504) supported by the National Basic Research Program of ChinaProject(50911130366) supported by the National Natural Science Foundation of China
文摘The macro mechanical properties of materials with characteristics of large scale and complicated structural composition can be analyzed through its reconstructed meso-structures.In this work,the meso-structures of talus deposits that widely exist in the hydro-power engineering in the southwest of China were first reconstructed by small particles according to the in-situ photographs based on the self-adaptive PCNN digital image processing,and then numerical direct shear tests were carried out for studying the mechanical properties of talus deposits.Results indicate that the reconstructed meso-structures of talus deposits are more consistent with the actual situation because the self-adaptive PCNN digital image processing has a higher discrimination in the details of soil-rock segmentation.The existence and random distribution of rock blocks make the initial shear stiffness,the peak strength and the residual strength higher than those of the "pure soil" with particle size less than 1.25 cm apparently,but reduce the displacements required for the talus deposits reaching its peak shear strength.The increase of rock proportion causes a significant improvement in the internal friction angle of talus deposit,which to a certain degree leads to the characteristics of shear stress-displacement curves having a changing trend from the plastic strain softening deformation to the nonlinear strain hardening deformation,while an unconspicuous increase in cohesion.The uncertainty and heterogeneity of rock distributions cause the differences of rock proportion within shear zone,leading to a relatively strong fluctuation in peak strengths during the shear process,while movement features of rock blocks,such as translation,rotation and crossing,expand the scope of shear zone,increase the required shear force,and also directly lead to the misjudgment that the lower shear strength is obtained from the samples with high rock proportion.That,however,just explains the reason why the shear strength gained from a small amount of indoor test data is not consistent with engineering practice.
基金supported by the Joint Funds of The National Natural Science Foundation of China(Grant No.U19B6003-05)the National Key Research and Development Program of China(No.2019YFA0708302)+2 种基金the National Science Fund for Distinguished Young Scholars(Grant No.51725404)the Beijing Outstanding Young Scientist Program(Grant No.BJJWZYJH01201911414038)the Strategic Cooperation Technology Projects of CNPC and CUPB(Grant No.ZLZX2020-01).
文摘The Stinger PDC cutter has high rock-breaking efficiency and excellent impact and wear resistance, which can significantly increase the rate of penetration (ROP) and extend PDC bit life for drilling hard and abrasive formation. The knowledge of force response and mechanical specific energy (MSE) for the Stinger PDC cutter is of great importance for improving the cutter's performance and optimizing the hybrid PDC bit design. In this paper, 87 single cutter tests were conducted on the granite. A new method for precisely obtaining the rock broken volume was proposed. The influences of cutting depth, cutting angle, and cutting speed on cutting force and MSE were analyzed. Besides, a phenomenological cutting force model of the Stinger PDC cutter was established by regression of experimental data. Moreover, the surface topography and fracture morphology of the cutting groove and large size cuttings were measured by a 3D profilometer and a scanning electron microscope (SEM). Finally, the rock-breaking mechanism of the Stinger PDC cutter was illustrated. The results indicated that the cutting depth has the greatest influence on the cutting force and MSE, while the cutting speed has no obvious effects, especially at low cutting speeds. As the increase of cutting depth, the cutting force increases linearly, and MSE reduces with a quadratic polynomial relationship. When the cutting angle raises from 10° to 30°, the cutting force increases linearly, and the MSE firstly decreases and then increases. The optimal cutting angle for breaking rock is approximately 20°. The Stinger PDC cutter breaks granite mainly by high concentrated point loading and tensile failure, which can observably improve the rock breaking efficiency. The key findings of this work will help to reveal the rock-breaking mechanisms and optimize the cutter arrangement for the Stinger PDC cutter.
基金support from the National Natural Science Foundation of China(Grant Nos.52175307)the Taishan Scholars Foundation of Shandong Province(No.tsqn201812128)+1 种基金the Natural Science Foundation of Shandong Province(No.ZR2023JQ021No.ZR2020QE175).
文摘Superalloy thin-walled structures are achieved mainly by brazing,but the deformation process of brazed joints is non-uniform,making it a challenging research task.This paper records a thorough investigation of the effect of brazing parameters on the microstructure of joints and its mechanical properties,which mainly inquires into the deformation and fracture mechanisms in the shearing process of GH99/BNi-5a/GH99 joints.The macroscopic-microscopic deformation mechanism of the brazing interface during shearing was studied by Crystal Plasticity(CP)and Molecular Dynamics(MD)on the basis of the optimal brazing parameters.The experimental results show that the brazing interface is mainly formed by(Ni,Cr,Co)(s,s)and possesses a shear strength of approximately 546 MPa.The shearing fracture of the brazed joint occurs along the brazing seam,displaying the characteristics of intergranular fracture.MD simulations show that dislocations disassociate and transform into fine twinning with increased strain.CP simulated the shear deformation process of the brazed joint.The multiscale simulation results are consistent with the experimental results.The mechanical properties of thin-walled materials for brazing are predicted using MD and CP methods.
基金co-supported by the Joint Fund of Advanced Aerospace Manufacturing Technology Research,China(No.U1937601)the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures+1 种基金China(No.MCMS-I-0221Y01)National Natural Science Foundation of China for Creative Research Groups(No.51921003).
文摘During long-term service in space,Gallium Arsenide(GaAs)solar cells are directly exposed to electron irradiation which usually causes a dramatic decrease in their performance.In the multilayer structure of solar cells,the germanium(Ge)layer occupies the majority of the thickness as the substrate.Due to the intrinsic brittleness of semiconductor material,there exist various defects during the preparation and assembly of solar cells,the influences of which tend to be intensified by the irradiation effect.In this work,first,Ge specimens for mechanical tests were prepared at scales from microscopic to macroscopic.Then,after different doses of electron irradiation,the mechanical properties of the Ge specimens were investigated.The experimental results demonstrate that electron irradiation has an obvious effect on the mechanical property variation of Ge in diverse scales.The four-point bending test indicates that the elastic modulus,fracture strength,and maximum displacement of the Ge specimens all increase,and reach the maximum value at the irradiation dose of 1×10^(15)e/cm^(2).The micrometer scale cantilever and nanoindentation tests present similar trends for Ge specimens after irradiation.Atomic Force Microscope(AFM)also observed the change in surface roughness.Finally,a fitting model was established to characterize the relation between modulus change and electron irradiation dose.
基金support of the National Natural Science Foundation of China(Grant Nos.12372133 and 12027901)supported by the Natural Science Foun-dation of Hunan Province(Grant No.2021JJ30085)+2 种基金the Science and Technology Innovation Program of Hunan Province(Grant No.2021RC30306)Open Research Fund of State Key Laboratory of Precision Manufacturing for Extreme Service Performance,Central South University(Grant No.Kfkt2021-01)the Fund of State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body(Grant No.52175012).
文摘Laser powder bed fusion(LPBF)is a potential additive manufacturing process to manufacture Invar 36 alloy components with complicated geometry.Whereas it inevitably introduces specific microstructures and pore defects,which will further influence the mechanical properties.Hence,aiming at exploring the LPBF process-related microstructures and pore defects,and especially their influences on the damage mechanism and mechanical properties,Invar 36 alloy was manufactured by LPBF under designed different laser scanning speeds.The microstructure observations reveal that higher scanning speeds lead to equiaxed and short columnar grains with higher dislocation density,while lower scanning speeds result in elongated columnar grains with lower dislocation density.The pore defects analyzed by X-ray computed tomography(XCT)suggest that the high laser scanning speed gives rise to numerous lamellar and large lack-of-fusion(LOF)pores,and the excessively low laser scanning speed produces relatively small keyhole pores with high sphericity.Moreover,the insitu XCT tensile tests were originally performed to evaluate the damage evolution and failure mechanism.Specifically,high laser scanning speed causes brittle fracture due to the rapid growth and coalescence of initial lamellar LOF pores along the scan-ning direction.Low laser scanning speed induces ductile fracture originating from unstable depressions in the surfaces,while metallurgical and keyhole pores have little impact on damage evolution.Eventually,the process-structure-property correlation is established.The presence of high volume fraction of lamel-lar LOF pores,resulting from high scanning speed,leads to inferior yield strength and ductility.Besides,specimens without LOF pores exhibit larger grain sizes and lower dislocation density at decreased scanning speeds,slightly reducing yield strength while slightly enhancing ductility.This understanding lays the foundation for widespread applications of LPBF-processed Invar 36 alloy.
基金the National Natural Science Foundation of China(Nos.52469019,52109119,and 52274145)the Chinese Postdoctoral Science Fund Project(No.2022M723408)+1 种基金the Major Project of Guangxi Science and Technology(No.AA23023016)the Technology Project of China Power Engineering Consulting Group Co.,Ltd.(No.DG2-T01-2023)。
文摘The redistribution of three-dimensional(3D)geostress during underground tunnel excavation can easily induce to shear failure along rockmass structural plane,potentially resulting in engineering disasters.However,the current understanding of rockmass shear behavior is mainly based on shear tests under2D stress without lateral stress,the shear fracture under 3D stress is unclear,and the relevant 3D shear fracture theory research is deficient.Therefore,this study conducted true triaxial cyclic loading and unloading shear tests on intact and bedded limestone under different normal stress σ_(n) and lateral stressσ_(p)to investigate the shear strength,deformation,and failure characteristics.The results indicate that under differentσ_(n)and σ_(p),the stress–strain hysteresis loop area gradually increases from nearly zero in the pre-peak stage,becomes most significant in the post-peak stage,and then becomes very small in the residual stage as the number of shear test cycles increases.The shear peak strength and failure surface roughness almost linearly increase with the increase inσ_(n),while they first increase and then gradually decrease asσ_(p)increases,with the maximum increases of 12.9%for strength and 15.1%for roughness.The shear residual strength almost linearly increases withσ_(n),but shows no significant change withσ_(p).Based on the acoustic emission characteristic parameters during the test process,the shear fracture process and microscopic failure mechanism were analyzed.As the shear stressτincreases,the acoustic emission activity,main frequency,and amplitude gradually increase,showing a significant rise during the cycle near the peak strength,while remaining almost unchanged in the residual stage.The true triaxial shear fracture process presents tensile-shear mixture failure characteristics dominated by microscopic tensile failure.Based on the test results,a 3D shear strength criterion considering the lateral stress effect was proposed,and the determination methods and evolution of the shear modulus G,cohesion c_(jp),friction angleφ_(jp),and dilation angleψjpduring rockmass shear fracture process were studied.Under differentσ_(n)andσ_(p),G first rapidly decreases and then tends to stabilize;cjp,φ_(jp),andψjpfirst increase rapidly to the maximum value,then decrease slowly,and finally remain basically unchanged.A 3D shear mechanics model considering the effects of lateral stress and shear parameter degradation was further established,and a corresponding numerical calculation program was developed based on3D discrete element software.The proposed model effectively simulates the shear failure evolution process of rockmass under true triaxial shear test,and is further applied to successfully reveal the failure characteristics of surrounding rocks with structural planes under different combinations of tunnel axis and geostress direction.
文摘The mechanical properties of the SiC fiber-reinforced Mg-Al metal matrix composite materials have been studied on internal microstructure by (scanning electron microscopy) SEM in-situ tensile test. The emergence and propagation of the crack, and the fracture behavior in materials have been observed and studied. It is found that in the case of the tensile test, the crack emerged in SiC fiber initially. In the case of the strong cohesion of the fiber-metal interface, the crack propagated in the fiber, meanwhile the fibers in the neighborhood of the cracked fiber began to crack and the Mg-Al metal deformed plastically, and at last the material fractured. Otherwise the toughness of the materials grows in the case of the lower cohesion of the fiber-metal matrix interface.
基金Project(11172258)supported by the National Natural Science Foundation of China
文摘The effect of a variety of geometrics, initial conditions and material properties on the deformation behavior of thin films in the plane-strain bulge test was systematically scrutinized by performing the finite element analysis, and then the accuracy of the plane-strain bulge test in determining the mechanical properties of thin films in terms of our finite element results was analyzed. The results indicate that although the determination of the plane-strain modulus in the light of the plane-strain bulge equation is fairly accurate, the calculation of the residual stress is not satisfied as expected, especially for low residual stress. Finally, an approach is proposed for analyzing bulge test data, which will improve the accuracy and reliability of this bulge test technique.
基金supported by National Key Research and Development Program(2016YFC0600901)the National Natural Science Foundation of China(Grant Nos.51374214,51134005 and 51574248)+1 种基金the Special Fund of Basic Research and Operating of China University of Mining&Technology,Beijing(Grant Nos.2009QL03)the State Scholarship Fund of China
文摘A device for supporting soft rock masses combined with a constant resistance structure characterized by constant resistance and large deformation at the end of a steel bar, known as the constant resistance and large deformation(CRLD) bolt, has recently been developed to counteract soft rock swelling that often occurs during deep mining. In order to further study the mechanical properties of the CRLD bolt, we investigated its mechanical properties by comparison with the conventional strength bolt(rebar) using static pull tests on many aspects, including supporting capacity, elongation, radial deformation, and energy absorption. The tests verified that the mechanical defects of the rebar, which include the decrease of bolt diameter, reduction of supporting capacity, and emergence and evolution of fracture until failure during the whole pull process, were caused by the Poisson's ratio effect. Due to the special structure set on the CRLD bolt, the bolt presents a seemingly unusual phenomenon of the negative Poisson's ratio effect, i.e., the diameter of the constant resistance structure increases while under-pulling. It is the very effect that ensures the extraordinary mechanical properties, including high resistance, large elongation, and strong energy absorption. According to the comparison and analysis of numerical simulation and field test, we can conclude that the CRLD bolt works better than the rebar bolt.
基金funded by the Scholarship for Visiting Scholars of the Key Laboratory of New Technology for Construction of Cities in Mountain Areas, Chongqing University (Grant No. 0902071812102/011)the Major Project of the Provincial Science Foundation of Inner Mongolia, China (Grant No. 2012ZD0602)+1 种基金Ordos UEGE, China (Grant No. 18-8)the National Natural Science Foundation of China (Grant No. 51622803)
文摘When transparent soil technology is used to study the displacement of a slope, the internal deformation of the slope can be visualized. We studied the sliding mechanism of the soil-rock slope by using transparent soil technology and considering the influence of the rock mass Barton joint roughness coefficient, angle of the soil mass, angle of the rock mass and soil thickness factors on slope stability. We obtained the deformation characteristics of the soil and rock slope with particle image velocimetry and the laser speckle technique. The test analysis shows that the slope sliding can be divided into three parts: displacements at the top, the middle, and the bottom of the slope; the decrease in the rock mass Barton joint roughness coefficient, and the increase in soil thickness, angles of the rock mass and soil mass lead to larger sliding displacements. Furthermore, we analyzed the different angles between the rock mass and soil thickness. The test result shows that the displacement of slope increases with larger angle of the rock mass. Conclusively, all these results can help to explain the soil-rock interfacial sliding mechanism.
基金Supported by National Natural Science Foundation of China(Grant No.51275444)Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20121333110003)Natural Science Foundation-Steel and Iron Foundation of Hebei Province,China(Grant No.E2014203271)
文摘The elastoplastic mechanical properties of the weld and heat affected zone metals have comparatively major impact on the forming process of tailor-welded blanks. A few scholars investigated the elastoplastic mechanical properties of the weld and heat affected zone, but they only simply assumed that it was a uniform distribution elastoplastic material different from the base materials. Four types of tailor-welded blanks which consist of ST12 and 304 stainless steel plates are selected as the research objects, the elastoplastic mechanical properties of the tailor-welded blanks weld and heat affected zone metals are obtained based on the nanoindentation tests, and the Erichsen cupping tests are conducted by combining numerical simulation with physical experiment. The nanoindentation tests results demonstrate that the elastoplastic mechanical properties of the weld and heat affected zone metals are not only different from the base materials, but also varying between the weld metals and the heat affected zone metals. Comparing the Erichsen cupping test resulted from numerical with that from experimental method, it is found that the numerical value of Erichsen cupping test which consider the elastoplastic mechanical properties of the weld and heat affected zone metals have a good agreement with the experimental result, and the relative error is only 4.8%. The proposed research provides good solutions for the inhomogeneous elastoplastic mechanical properties of the tailor-welded blanks weld and heat affected zone metals, and improves the control performance of tailor-welded blanks forming accuracy.
文摘The high-temperature mechanical properties of 95W-3.5Ni-1.5Fe and 95W-4.5Ni-0.5Co alloys were investigated in the temperature range of room temperature to1100℃. The yield strength and tensile strengths declined gradually, and the ductility of both alloys increased as the testing temperature was increased to 300℃. All the three properties reached a plateau at temperatures between 300 and 500℃ in the case of 95W-3.5Ni-l.5Fe and at temperatures between 350 and 700℃ in the case of 95W-4.5Ni-0.5Co. Thereafter, the ductility as well as yield and tensile strengths decreased considerably.