期刊文献+
共找到187篇文章
< 1 2 10 >
每页显示 20 50 100
Efficient Parameterization for Knowledge Graph Embedding Using Hierarchical Attention Network
1
作者 Zhen-Yu Chen Feng-Chi Liu +2 位作者 Xin Wang Cheng-Hsiung Lee Ching-Sheng Lin 《Computers, Materials & Continua》 2025年第3期4287-4300,共14页
In the domain of knowledge graph embedding,conventional approaches typically transform entities and relations into continuous vector spaces.However,parameter efficiency becomes increasingly crucial when dealing with l... In the domain of knowledge graph embedding,conventional approaches typically transform entities and relations into continuous vector spaces.However,parameter efficiency becomes increasingly crucial when dealing with large-scale knowledge graphs that contain vast numbers of entities and relations.In particular,resource-intensive embeddings often lead to increased computational costs,and may limit scalability and adaptability in practical environ-ments,such as in low-resource settings or real-world applications.This paper explores an approach to knowledge graph representation learning that leverages small,reserved entities and relation sets for parameter-efficient embedding.We introduce a hierarchical attention network designed to refine and maximize the representational quality of embeddings by selectively focusing on these reserved sets,thereby reducing model complexity.Empirical assessments validate that our model achieves high performance on the benchmark dataset with fewer parameters and smaller embedding dimensions.The ablation studies further highlight the impact and contribution of each component in the proposed hierarchical attention structure. 展开更多
关键词 Knowledge graph embedding parameter efficiency representation learning reserved entity and relation sets hierarchical attention network
在线阅读 下载PDF
Explanatory Multi-Scale Adversarial Semantic Embedding Space Learning for Zero-Shot Recognition
2
作者 Huiting Li 《Open Journal of Applied Sciences》 2022年第3期317-335,共19页
The goal of zero-shot recognition is to classify classes it has never seen before, which needs to build a bridge between seen and unseen classes through semantic embedding space. Therefore, semantic embedding space le... The goal of zero-shot recognition is to classify classes it has never seen before, which needs to build a bridge between seen and unseen classes through semantic embedding space. Therefore, semantic embedding space learning plays an important role in zero-shot recognition. Among existing works, semantic embedding space is mainly taken by user-defined attribute vectors. However, the discriminative information included in the user-defined attribute vector is limited. In this paper, we propose to learn an extra latent attribute space automatically to produce a more generalized and discriminative semantic embedded space. To prevent the bias problem, both user-defined attribute vector and latent attribute space are optimized by adversarial learning with auto-encoders. We also propose to reconstruct semantic patterns produced by explanatory graphs, which can make semantic embedding space more sensitive to usefully semantic information and less sensitive to useless information. The proposed method is evaluated on the AwA2 and CUB dataset. These results show that our proposed method achieves superior performance. 展开更多
关键词 Zero-Shot Recognition Semantic embedding Space Adversarial learning Explanatory graph
在线阅读 下载PDF
Future Event Prediction Based on Temporal Knowledge Graph Embedding 被引量:4
3
作者 Zhipeng Li Shanshan Feng +6 位作者 Jun Shi Yang Zhou Yong Liao Yangzhao Yang Yangyang Li Nenghai Yu Xun Shao 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期2411-2423,共13页
Accurate prediction of future events brings great benefits and reduces losses for society in many domains,such as civil unrest,pandemics,and crimes.Knowledge graph is a general language for describing and modeling com... Accurate prediction of future events brings great benefits and reduces losses for society in many domains,such as civil unrest,pandemics,and crimes.Knowledge graph is a general language for describing and modeling complex systems.Different types of events continually occur,which are often related to historical and concurrent events.In this paper,we formalize the future event prediction as a temporal knowledge graph reasoning problem.Most existing studies either conduct reasoning on static knowledge graphs or assume knowledges graphs of all timestamps are available during the training process.As a result,they cannot effectively reason over temporal knowledge graphs and predict events happening in the future.To address this problem,some recent works learn to infer future events based on historical eventbased temporal knowledge graphs.However,these methods do not comprehensively consider the latent patterns and influences behind historical events and concurrent events simultaneously.This paper proposes a new graph representation learning model,namely Recurrent Event Graph ATtention Network(RE-GAT),based on a novel historical and concurrent events attention-aware mechanism by modeling the event knowledge graph sequence recurrently.More specifically,our RE-GAT uses an attention-based historical events embedding module to encode past events,and employs an attention-based concurrent events embedding module to model the associations of events at the same timestamp.A translation-based decoder module and a learning objective are developed to optimize the embeddings of entities and relations.We evaluate our proposed method on four benchmark datasets.Extensive experimental results demonstrate the superiority of our RE-GAT model comparing to various base-lines,which proves that our method can more accurately predict what events are going to happen. 展开更多
关键词 Event prediction temporal knowledge graph graph representation learning knowledge embedding
在线阅读 下载PDF
Joint learning based on multi-shaped filters for knowledge graph completion 被引量:2
4
作者 Li Shaojie Chen Shudong +1 位作者 Ouyang Xiaoye Gong Lichen 《High Technology Letters》 EI CAS 2021年第1期43-52,共10页
To solve the problem of missing many valid triples in knowledge graphs(KGs),a novel model based on a convolutional neural network(CNN)called ConvKG is proposed,which employs a joint learning strategy for knowledge gra... To solve the problem of missing many valid triples in knowledge graphs(KGs),a novel model based on a convolutional neural network(CNN)called ConvKG is proposed,which employs a joint learning strategy for knowledge graph completion(KGC).Related research work has shown the superiority of convolutional neural networks(CNNs)in extracting semantic features of triple embeddings.However,these researches use only one single-shaped filter and fail to extract semantic features of different granularity.To solve this problem,ConvKG exploits multi-shaped filters to co-convolute on the triple embeddings,joint learning semantic features of different granularity.Different shaped filters cover different sizes on the triple embeddings and capture pairwise interactions of different granularity among triple elements.Experimental results confirm the strength of joint learning,and compared with state-of-the-art CNN-based KGC models,ConvKG achieves the better mean rank(MR)and Hits@10 metrics on dataset WN18 RR,and the better MR on dataset FB15k-237. 展开更多
关键词 knowledge graph embedding(KGE) knowledge graph completion(KGC) convolutional neural network(CNN) joint learning multi-shaped filter
在线阅读 下载PDF
Graph-Based Feature Learning for Cross-Project Software Defect Prediction 被引量:1
5
作者 Ahmed Abdu Zhengjun Zhai +2 位作者 Hakim A.Abdo Redhwan Algabri Sungon Lee 《Computers, Materials & Continua》 SCIE EI 2023年第10期161-180,共20页
Cross-project software defect prediction(CPDP)aims to enhance defect prediction in target projects with limited or no historical data by leveraging information from related source projects.The existing CPDP approaches... Cross-project software defect prediction(CPDP)aims to enhance defect prediction in target projects with limited or no historical data by leveraging information from related source projects.The existing CPDP approaches rely on static metrics or dynamic syntactic features,which have shown limited effectiveness in CPDP due to their inability to capture higher-level system properties,such as complex design patterns,relationships between multiple functions,and dependencies in different software projects,that are important for CPDP.This paper introduces a novel approach,a graph-based feature learning model for CPDP(GB-CPDP),that utilizes NetworkX to extract features and learn representations of program entities from control flow graphs(CFGs)and data dependency graphs(DDGs).These graphs capture the structural and data dependencies within the source code.The proposed approach employs Node2Vec to transform CFGs and DDGs into numerical vectors and leverages Long Short-Term Memory(LSTM)networks to learn predictive models.The process involves graph construction,feature learning through graph embedding and LSTM,and defect prediction.Experimental evaluation using nine open-source Java projects from the PROMISE dataset demonstrates that GB-CPDP outperforms state-of-the-art CPDP methods in terms of F1-measure and Area Under the Curve(AUC).The results showcase the effectiveness of GB-CPDP in improving the performance of cross-project defect prediction. 展开更多
关键词 Cross-project defect prediction graphs features deep learning graph embedding
在线阅读 下载PDF
基于Graph Embedding的话单分析
6
作者 韩文轻 彭艳兵 《计算机与数字工程》 2020年第2期393-397,共5页
现阶段大多是利用社交网络理论进行分析,发现话单数据中的潜在人员。社交网络理论是将数据中的实体用节点表示,节点间的关系用线表示。大数据时代很多传统的算法在针对多特征的数据时,分析结果的理想性越来越差。而机器学习这几年在数... 现阶段大多是利用社交网络理论进行分析,发现话单数据中的潜在人员。社交网络理论是将数据中的实体用节点表示,节点间的关系用线表示。大数据时代很多传统的算法在针对多特征的数据时,分析结果的理想性越来越差。而机器学习这几年在数据分析工作中大放异彩,为很多经典问题提供了一种新的解决思路。论文正是基于这样的背景,提出了一种新的推荐算法,用图嵌入的方法研究话单数据,将通话网络中的点和关系向量化,使机器学习算法用于话单分析成为可能。 展开更多
关键词 话单分析 机器学习 图嵌入
在线阅读 下载PDF
Research Progress of Knowledge Graph Based on Knowledge Base Embedding
7
作者 Tang Caifang Rao Yuan +1 位作者 Yu Hualei Cheng Jiamin 《国际计算机前沿大会会议论文集》 2018年第2期16-16,共1页
关键词 KNOWLEDGE graph KNOWLEDGE representationKnowledge embedding DEEP learning
在线阅读 下载PDF
Intent-Aware Graph-Level Embedding Learning Based Recommendation
8
作者 Peng-Yi Hao Si-Hao Liu Cong Bai 《Journal of Computer Science & Technology》 SCIE EI CSCD 2024年第5期1138-1152,共15页
Recommendation has been widely used in business scenarios to provide users with personalized and accurate item lists by efficiently analyzing complex user-item interactions.However,existing recommendation methods have... Recommendation has been widely used in business scenarios to provide users with personalized and accurate item lists by efficiently analyzing complex user-item interactions.However,existing recommendation methods have significant shortcomings in capturing the dynamic preference changes of users and discovering their true potential intents.To address these problems,a novel framework named Intent-Aware Graph-Level Embedding Learning(IaGEL)is proposed for recommendation.In this framework,the potential user interest is explored by capturing the co-occurrence of items in different periods,and then user interest is further improved based on an adaptive aggregation algorithm,forming generic intents and specific intents.In addition,for better representing the intents,graph-level embedding learning is designed based on the mutual information comparison among positive intents and negative intents.Finally,an intent-based recommendation strategy is designed to further mine the dynamic changes in user preferences.Experiments on three public and industrial datasets demonstrate the effectiveness of the proposed IaGEL in the task of recommendation. 展开更多
关键词 recommendation system graph embedding learning graph neural network intent-aware
原文传递
Topology design and graph embedding for decentralized federated learning
9
作者 Yubin Duan Xiuqi Li Jie Wu 《Intelligent and Converged Networks》 EI 2024年第2期100-115,共16页
Federated learning has been widely employed in many applications to protect the data privacy of participating clients.Although the dataset is decentralized among training devices in federated learning,the model parame... Federated learning has been widely employed in many applications to protect the data privacy of participating clients.Although the dataset is decentralized among training devices in federated learning,the model parameters are usually stored in a centralized manner.Centralized federated learning is easy to implement;however,a centralized scheme causes a communication bottleneck at the central server,which may significantly slow down the training process.To improve training efficiency,we investigate the decentralized federated learning scheme.The decentralized scheme has become feasible with the rapid development of device-to-device communication techniques under 5G.Nevertheless,the convergence rate of learning models in the decentralized scheme depends on the network topology design.We propose optimizing the topology design to improve training efficiency for decentralized federated learning,which is a non-trivial problem,especially when considering data heterogeneity.In this paper,we first demonstrate the advantage of hypercube topology and present a hypercube graph construction method to reduce data heterogeneity by carefully selecting neighbors of each training device—a process that resembles classic graph embedding.In addition,we propose a heuristic method for generating torus graphs.Moreover,we have explored the communication patterns in hypercube topology and propose a sequential synchronization scheme to reduce communication cost during training.A batch synchronization scheme is presented to fine-tune the communication pattern for hypercube topology.Experiments on real-world datasets show that our proposed graph construction methods can accelerate the training process,and our sequential synchronization scheme can significantly reduce the overall communication traffic during training. 展开更多
关键词 data heterogeneity decentralized federated learning graph embedding network topology
原文传递
Multiple Object Tracking through Background Learning 被引量:1
10
作者 Deependra Sharma Zainul Abdin Jaffery 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期191-204,共14页
This paper discusses about the new approach of multiple object track-ing relative to background information.The concept of multiple object tracking through background learning is based upon the theory of relativity,th... This paper discusses about the new approach of multiple object track-ing relative to background information.The concept of multiple object tracking through background learning is based upon the theory of relativity,that involves a frame of reference in spatial domain to localize and/or track any object.Thefield of multiple object tracking has seen a lot of research,but researchers have considered the background as redundant.However,in object tracking,the back-ground plays a vital role and leads to definite improvement in the overall process of tracking.In the present work an algorithm is proposed for the multiple object tracking through background learning.The learning framework is based on graph embedding approach for localizing multiple objects.The graph utilizes the inher-ent capabilities of depth modelling that assist in prior to track occlusion avoidance among multiple objects.The proposed algorithm has been compared with the recent work available in literature on numerous performance evaluation measures.It is observed that our proposed algorithm gives better performance. 展开更多
关键词 Object tracking image processing background learning graph embedding algorithm computer vision
在线阅读 下载PDF
Heterogeneous Network Embedding: A Survey
11
作者 Sufen Zhao Rong Peng +1 位作者 Po Hu Liansheng Tan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第10期83-130,共48页
Real-world complex networks are inherently heterogeneous;they have different types of nodes,attributes,and relationships.In recent years,various methods have been proposed to automatically learn how to encode the stru... Real-world complex networks are inherently heterogeneous;they have different types of nodes,attributes,and relationships.In recent years,various methods have been proposed to automatically learn how to encode the structural and semantic information contained in heterogeneous information networks(HINs)into low-dimensional embeddings;this task is called heterogeneous network embedding(HNE).Efficient HNE techniques can benefit various HIN-based machine learning tasks such as node classification,recommender systems,and information retrieval.Here,we provide a comprehensive survey of key advancements in the area of HNE.First,we define an encoder-decoder-based HNE model taxonomy.Then,we systematically overview,compare,and summarize various state-of-the-art HNE models and analyze the advantages and disadvantages of various model categories to identify more potentially competitive HNE frameworks.We also summarize the application fields,benchmark datasets,open source tools,andperformance evaluation in theHNEarea.Finally,wediscuss open issues and suggest promising future directions.We anticipate that this survey will provide deep insights into research in the field of HNE. 展开更多
关键词 Heterogeneous information networks representation learning heterogeneous network embedding graph neural networks machine learning
在线阅读 下载PDF
DeepWalk Based Influence Maximization (DWIM): Influence Maximization Using Deep Learning
12
作者 Sonia Kapil Sharma Monika Bajaj 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期1087-1101,共15页
Big Data and artificial intelligence are used to transform businesses.Social networking sites have given a new dimension to online data.Social media platforms help gather massive amounts of data to reach a wide variet... Big Data and artificial intelligence are used to transform businesses.Social networking sites have given a new dimension to online data.Social media platforms help gather massive amounts of data to reach a wide variety of customers using influence maximization technique for innovative ideas,products and services.This paper aims to develop a deep learning method that can identify the influential users in a network.This method combines the various aspects of a user into a single graph.In a social network,the most influential user is the most trusted user.These significant users are used for viral marketing as the seeds to influence other users in the network.The proposed method combines both topical and topological aspects of a user in the network using collaborativefiltering.The proposed method is DeepWalk based Influence Maximization(DWIM).The proposed method was able tofind k influential nodes with computable time using the algorithm.The experiments are performed to assess the proposed algorithm,and centrality measures are used to compare the results.The results reveal its performance that the proposed method canfind k influential nodes in computable time.DWIM can identify influential users,which helps viral marketing,outlier detection,and recommendations for different products and services.After applying the proposed methodology,the set of seed nodes gives maximum influence measured with respect to different centrality measures in an increased computable time. 展开更多
关键词 Deep learning influence maximization graph embedding deepwalk
在线阅读 下载PDF
基于二部图和一致图学习的多视图聚类算法
13
作者 李顺勇 刘坤 +1 位作者 曹利娜 赵兴旺 《计算机应用》 北大核心 2025年第11期3583-3592,共10页
目前大多数多视图聚类算法存在融合机制不够完善、对多视图协同关系挖掘不足以及鲁棒性较弱等问题,导致聚类结果一致性偏低,且在噪声和冗余信息下的性能不够稳健。针对上述问题,提出一种基于二部图和一致图学习的多视图聚类算法(BGC-MV... 目前大多数多视图聚类算法存在融合机制不够完善、对多视图协同关系挖掘不足以及鲁棒性较弱等问题,导致聚类结果一致性偏低,且在噪声和冗余信息下的性能不够稳健。针对上述问题,提出一种基于二部图和一致图学习的多视图聚类算法(BGC-MVC),旨在通过融合各视图信息来提升聚类的一致性和互补性。该算法通过构造二部图以捕获不同视图之间的邻域关系,并通过学习一致性图强化视图间的相似性。它将原始多视图数据的嵌入整合进一个统一的框架中,结合了图学习与聚类过程,从而能提高聚类的整体效果。实验结果表明,BGC-MVC在满足收敛性条件下的准确度、F-score、归一化互信息(NMI)和纯度均有明显的提升。其中,在MSRC_v1数据集上的F-score比LMVSC(Large-scale Multi-View Subspace Clustering)算法提高了19.48个百分点,并且表现出更强的鲁棒性与准确度。 展开更多
关键词 多视图聚类 二部图 一致图 图融合 嵌入学习
在线阅读 下载PDF
基于多视图表示学习的语义感知异质图注意力网络
14
作者 王静红 吴芝冰 +1 位作者 王熙照 李昊康 《计算机科学》 北大核心 2025年第6期167-178,共12页
近年来,图神经网络因能够高效处理异质图中的复杂结构和丰富语义信息而受到了广泛的关注。学习异质图的低维节点嵌入,同时为节点分类、节点聚类等下游任务保留异质结构和语义,是一个关键且具有挑战性的问题。现有研究主要基于元路径来... 近年来,图神经网络因能够高效处理异质图中的复杂结构和丰富语义信息而受到了广泛的关注。学习异质图的低维节点嵌入,同时为节点分类、节点聚类等下游任务保留异质结构和语义,是一个关键且具有挑战性的问题。现有研究主要基于元路径来设计模型,但这种方法至少存在两方面的局限性:1)合适元路径的选择通常需要专家知识或额外的标注信息;2)该方法限制了模型按预定义的模式学习,从而难以充分捕获网络的复杂性。针对这些问题,提出了一种多视图和语义感知的异质图注意力网络(Multi-view and Semantic-aware Heterogeneous Graph Attention Network,MS-HGANN)。该网络无需人工设计元路径,即可融合节点和关系中的丰富语义信息。MS-HGANN主要包括3个部分:特征映射、二阶特定视图自我图融合和语义感知。特征映射将特征映射到统一的节点特征空间;二阶特定视图自我图融合设计了特定关系的编码器和节点注意力学习节点在局部结构上的表示;语义感知设计了两种相互协调的注意力机制来评估节点和关系的重要性,从而得到最终的节点表示。在3个公开数据集上进行实验,结果表明,所提模型在节点分类和聚类任务上达到了先进水平。 展开更多
关键词 图神经网络 异质图 图表示学习 异质图嵌入 异质网络
在线阅读 下载PDF
RESCAL-DLP:融合动态学习二元组的图谱嵌入模型
15
作者 冯勇 闫寒 +2 位作者 徐红艳 徐涵琪 贾永鑫 《中文信息学报》 北大核心 2025年第7期17-26,共10页
知识图谱现有数据集大多因不够完整导致嵌入表示不准确,目前主要是通过添加信息来保证嵌入准确性,但存在过多依赖添加三元组以外的附加信息、忽略挖掘三元组自身的有效信息等问题。二元组是由三元组中的关系与头实体或尾实体组成的实体... 知识图谱现有数据集大多因不够完整导致嵌入表示不准确,目前主要是通过添加信息来保证嵌入准确性,但存在过多依赖添加三元组以外的附加信息、忽略挖掘三元组自身的有效信息等问题。二元组是由三元组中的关系与头实体或尾实体组成的实体关系对,当前研究较少考虑利用二元组潜在的语义信息来提升嵌入的效果。为此,该文提出了一种融合动态学习二元组的图谱嵌入模型(RESCAL-DLP)。首先,使用正负实例构建策略进行数据扩充,使数据集包含更丰富的二元组的特征信息;其次,通过对比学习二元组的语义相似度来加强模型的学习能力,提升嵌入效果;最后,动态调整二元组学习权重进行模型训练。在两个公开标准数据集WN18RR、FB15K-237上进行链接预测实验以评估所提模型的效果。实验结果表明,所提模型相较于当前主流模型在各项指标上均有一定的提升,并在最小化计算资源和模型训练时间的前提下,取得了令人满意的结果。 展开更多
关键词 知识图谱 嵌入表示 数据扩充 二元组 对比学习
在线阅读 下载PDF
基于异构信息网络的多模态食谱表示学习方法
16
作者 张霄雁 江诗琪 孟祥福 《计算机科学与探索》 北大核心 2025年第10期2803-2814,共12页
当前食谱表示学习方法主要依赖于通过将食谱文本与图像进行对齐,或利用邻接矩阵捕捉食谱与其用料之间关系的方式,学习食谱的嵌入表示。然而,这些方法在信息融合处理上较为粗糙,未能深入挖掘不同模态之间的交叉信息,且难以有效地动态评... 当前食谱表示学习方法主要依赖于通过将食谱文本与图像进行对齐,或利用邻接矩阵捕捉食谱与其用料之间关系的方式,学习食谱的嵌入表示。然而,这些方法在信息融合处理上较为粗糙,未能深入挖掘不同模态之间的交叉信息,且难以有效地动态评估食谱组成要素之间的关联强度,导致模型的表示能力受限。针对上述问题,提出一种基于异构信息网络的多模态食谱表示学习模型(CookRec2vec)。将视觉、文本和关系信息集成到食谱嵌入中,通过自适应的邻接关系更加充分挖掘和量化食谱组成要素之间的关联信息及其强度,同时基于高阶共现矩阵的显式建模方法提供了互补信息且保留了原有特性,显著提高了食谱特征表达能力。实验结果表明,所提模型在食谱分类性能上优于现有主流方法,并在创新菜嵌入预测方面取得了显著进展。 展开更多
关键词 表示学习 图嵌入 异构信息网络 跨模态融合 对抗攻击 节点分类
在线阅读 下载PDF
基于图谱嵌入的知识图谱数据精度优化与去噪算法
17
作者 彭商濂 刘星宇 +3 位作者 陆帆 蒋佳利 王文博 纪怡 《印刷与数字媒体技术研究》 北大核心 2025年第5期91-100,共10页
知识图谱中常含有结构冗余、不一致性和噪声信息,这会影响推理与决策效果。随着大规模知识图谱的广泛应用,提升其数据精度与质量已成为课题研究重点。为此,本研究提出一种基于图谱嵌入与置信度加权机制的知识图谱精度优化与去噪算法。首... 知识图谱中常含有结构冗余、不一致性和噪声信息,这会影响推理与决策效果。随着大规模知识图谱的广泛应用,提升其数据精度与质量已成为课题研究重点。为此,本研究提出一种基于图谱嵌入与置信度加权机制的知识图谱精度优化与去噪算法。首先,该方法通过TransE模型学习实体和关系的低维表示。然后,结合实体相似度聚类与关系置信度计算实现噪声识别与三元组剔除。最后,在此基础上构建加权嵌入优化函数,提升嵌入的语义表示能力。在FB15K-237与WN18RR等数据集上进行了对比实验,结果显示本研究方法在嵌入质量、去噪能力与计算效率等方面均优于现有主流方法,表明其在知识图谱构建与清洗场景中具有良好的实用价值。 展开更多
关键词 图谱嵌入 知识图谱 去噪 精度优化 图结构学习
在线阅读 下载PDF
Link-Privacy Preserving Graph Embedding Data Publication with Adversarial Learning 被引量:5
18
作者 Kainan Zhang Zhi Tian +1 位作者 Zhipeng Cai Daehee Seo 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2022年第2期244-256,共13页
The inefficient utilization of ubiquitous graph data with combinatorial structures necessitates graph embedding methods,aiming at learning a continuous vector space for the graph,which is amenable to be adopted in tra... The inefficient utilization of ubiquitous graph data with combinatorial structures necessitates graph embedding methods,aiming at learning a continuous vector space for the graph,which is amenable to be adopted in traditional machine learning algorithms in favor of vector representations.Graph embedding methods build an important bridge between social network analysis and data analytics,as social networks naturally generate an unprecedented volume of graph data continuously.Publishing social network data not only brings benefit for public health,disaster response,commercial promotion,and many other applications,but also gives birth to threats that jeopardize each individual’s privacy and security.Unfortunately,most existing works in publishing social graph embedding data only focus on preserving social graph structure with less attention paid to the privacy issues inherited from social networks.To be specific,attackers can infer the presence of a sensitive relationship between two individuals by training a predictive model with the exposed social network embedding.In this paper,we propose a novel link-privacy preserved graph embedding framework using adversarial learning,which can reduce adversary’s prediction accuracy on sensitive links,while persevering sufficient non-sensitive information,such as graph topology and node attributes in graph embedding.Extensive experiments are conducted to evaluate the proposed framework using ground truth social network datasets. 展开更多
关键词 graph embedding privacy preservation adversarial learning
原文传递
基于SER-GNN的小样本遥感影像分类研究
19
作者 葛小三 郑猛猛 《河南理工大学学报(自然科学版)》 北大核心 2025年第5期144-151,共8页
目的为解决基于度量学习的遥感影像分类中小样本学习特征空间图像特征分布不明显问题,提出一种适用于小样本模型的遥感影像分类模型SER-GNN(SENet attention residual neural network and graph neural networks)。方法该模型首先通过SE... 目的为解决基于度量学习的遥感影像分类中小样本学习特征空间图像特征分布不明显问题,提出一种适用于小样本模型的遥感影像分类模型SER-GNN(SENet attention residual neural network and graph neural networks)。方法该模型首先通过SER-GNN卷积层(融合基础网络ResNet-12和SENet组成)进行遥感影像图像特征提取,增强模型对关键区域的关注能力;然后将图像信息和类别标签编码嵌入到SER-GNN模型的GNN层;最后以消息传递推理算法的模式计算影像类别之间的隐含关系,构建邻接网络并完成分类任务。结果结果表明,该模型在UC Merced Land-Use数据集、AID遥感数据集、NWPU-RESISC45数据集上,在5-way 1-shot中,精度分别提高1.35%,2.15%,1.3%;在5-way 5-shot中精度分别提高2.15%,5.65%,3.85%。此外,通过迁移学习策略,在NWPU-RESISC45上训练的模型在AID和UC Merced Land-Use数据集上展现出更优的泛化性能。结论综上,本文提出的SER-GNN模型有效融合卷积神经网络与图神经网络的结构优势,在遥感影像小样本分类任务中表现出更高的准确率的同时,在模型迁移上取得了更强的迁移适应能力。该模型在新的学习环境中获得了更好的适应性,为遥感影像智能分类提供了具有潜力的技术路径与方法参考。 展开更多
关键词 影像分类 小样本学习 ResNet-12 图神经网络 节点嵌入
在线阅读 下载PDF
隐形社群检测结合节点意识形态在多层网络影响力最大化中的研究
20
作者 曹春萍 廖泽南 杨亿騄 《小型微型计算机系统》 北大核心 2025年第9期2283-2290,共8页
当前多层网络影响力最大化研究在识别隐形社群方面存在局限,因其依赖拓扑结构而忽视了现实因素,导致影响力节点识别不全.针对上述问题,基于网络嵌入和启发式排序算法,提出一种基于隐形社群检测的多层网络影响力最大化模型.首先,对节点... 当前多层网络影响力最大化研究在识别隐形社群方面存在局限,因其依赖拓扑结构而忽视了现实因素,导致影响力节点识别不全.针对上述问题,基于网络嵌入和启发式排序算法,提出一种基于隐形社群检测的多层网络影响力最大化模型.首先,对节点内在意识形态采用语义分析得到属性信息,利用图增强技术获取网络全局信息,并设计层对比学习方法提升嵌入向量质量,提高隐形社群识别的准确性.其次,针对节点间意识形态差异,为社群内邻居节点设计不同奖励点数改进启发式算法;为社群间潜在节点设计影响力识别算法,全面地提升多层网络的影响力最大化效果.根据研究结果显示,本文模型在现实数据集上F1值分别提升了8.38%和7.64%,且算法传播效果提升了139.89,均优于现有的先进方法. 展开更多
关键词 网络嵌入 图增强层对比学习 社群检测 影响力最大化 多层网络
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部