Images taken in dim environments frequently exhibit issues like insufficient brightness,noise,color shifts,and loss of detail.These problems pose significant challenges to dark image enhancement tasks.Current approach...Images taken in dim environments frequently exhibit issues like insufficient brightness,noise,color shifts,and loss of detail.These problems pose significant challenges to dark image enhancement tasks.Current approaches,while effective in global illumination modeling,often struggle to simultaneously suppress noise and preserve structural details,especially under heterogeneous lighting.Furthermore,misalignment between luminance and color channels introduces additional challenges to accurate enhancement.In response to the aforementioned difficulties,we introduce a single-stage framework,M2ATNet,using the multi-scale multi-attention and Transformer architecture.First,to address the problems of texture blurring and residual noise,we design a multi-scale multi-attention denoising module(MMAD),which is applied separately to the luminance and color channels to enhance the structural and texture modeling capabilities.Secondly,to solve the non-alignment problem of the luminance and color channels,we introduce the multi-channel feature fusion Transformer(CFFT)module,which effectively recovers the dark details and corrects the color shifts through cross-channel alignment and deep feature interaction.To guide the model to learn more stably and efficiently,we also fuse multiple types of loss functions to form a hybrid loss term.We extensively evaluate the proposed method on various standard datasets,including LOL-v1,LOL-v2,DICM,LIME,and NPE.Evaluation in terms of numerical metrics and visual quality demonstrate that M2ATNet consistently outperforms existing advanced approaches.Ablation studies further confirm the critical roles played by the MMAD and CFFT modules to detail preservation and visual fidelity under challenging illumination-deficient environments.展开更多
Accurate and efficient detection of building changes in remote sensing imagery is crucial for urban planning,disaster emergency response,and resource management.However,existing methods face challenges such as spectra...Accurate and efficient detection of building changes in remote sensing imagery is crucial for urban planning,disaster emergency response,and resource management.However,existing methods face challenges such as spectral similarity between buildings and backgrounds,sensor variations,and insufficient computational efficiency.To address these challenges,this paper proposes a novel Multi-scale Efficient Wavelet-based Change Detection Network(MewCDNet),which integrates the advantages of Convolutional Neural Networks and Transformers,balances computational costs,and achieves high-performance building change detection.The network employs EfficientNet-B4 as the backbone for hierarchical feature extraction,integrates multi-level feature maps through a multi-scale fusion strategy,and incorporates two key modules:Cross-temporal Difference Detection(CTDD)and Cross-scale Wavelet Refinement(CSWR).CTDD adopts a dual-branch architecture that combines pixel-wise differencing with semanticaware Euclidean distance weighting to enhance the distinction between true changes and background noise.CSWR integrates Haar-based Discrete Wavelet Transform with multi-head cross-attention mechanisms,enabling cross-scale feature fusion while significantly improving edge localization and suppressing spurious changes.Extensive experiments on four benchmark datasets demonstrate MewCDNet’s superiority over comparison methods:achieving F1 scores of 91.54%on LEVIR,93.70%on WHUCD,and 64.96%on S2Looking for building change detection.Furthermore,MewCDNet exhibits optimal performance on the multi-class⋅SYSU dataset(F1:82.71%),highlighting its exceptional generalization capability.展开更多
With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods ...With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods face numerous challenges in practical deployment,including scale variation handling,feature degradation,and complex backgrounds.To address these issues,we propose Edge-enhanced and Detail-Capturing You Only Look Once(EHDC-YOLO),a novel framework for object detection in Unmanned Aerial Vehicle(UAV)imagery.Based on the You Only Look Once version 11 nano(YOLOv11n)baseline,EHDC-YOLO systematically introduces several architectural enhancements:(1)a Multi-Scale Edge Enhancement(MSEE)module that leverages multi-scale pooling and edge information to enhance boundary feature extraction;(2)an Enhanced Feature Pyramid Network(EFPN)that integrates P2-level features with Cross Stage Partial(CSP)structures and OmniKernel convolutions for better fine-grained representation;and(3)Dynamic Head(DyHead)with multi-dimensional attention mechanisms for enhanced cross-scale modeling and perspective adaptability.Comprehensive experiments on the Vision meets Drones for Detection(VisDrone-DET)2019 dataset demonstrate that EHDC-YOLO achieves significant improvements,increasing mean Average Precision(mAP)@0.5 from 33.2%to 46.1%(an absolute improvement of 12.9 percentage points)and mAP@0.5:0.95 from 19.5%to 28.0%(an absolute improvement of 8.5 percentage points)compared with the YOLOv11n baseline,while maintaining a reasonable parameter count(2.81 M vs the baseline’s 2.58 M).Further ablation studies confirm the effectiveness of each proposed component,while visualization results highlight EHDC-YOLO’s superior performance in detecting objects and handling occlusions in complex drone scenarios.展开更多
Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious an...Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious and they are numerous,resulting in low detection accuracy by deep learning models.Therefore,we proposed a new multi-scale fusion crater detection algorithm(MSF-CDA)based on the YOLO11 to improve the accuracy of lunar impact crater detection,especially for small craters with a diameter of<1 km.Using the images taken by the LROC(Lunar Reconnaissance Orbiter Camera)at the Chang’e-4(CE-4)landing area,we constructed three separate datasets for craters with diameters of 0-70 m,70-140 m,and>140 m.We then trained three submodels separately with these three datasets.Additionally,we designed a slicing-amplifying-slicing strategy to enhance the ability to extract features from small craters.To handle redundant predictions,we proposed a new Non-Maximum Suppression with Area Filtering method to fuse the results in overlapping targets within the multi-scale submodels.Finally,our new MSF-CDA method achieved high detection performance,with the Precision,Recall,and F1 score having values of 0.991,0.987,and 0.989,respectively,perfectly addressing the problems induced by the lesser features and sample imbalance of small craters.Our MSF-CDA can provide strong data support for more in-depth study of the geological evolution of the lunar surface and finer geological age estimations.This strategy can also be used to detect other small objects with lesser features and sample imbalance problems.We detected approximately 500,000 impact craters in an area of approximately 214 km2 around the CE-4 landing area.By statistically analyzing the new data,we updated the distribution function of the number and diameter of impact craters.Finally,we identified the most suitable lighting conditions for detecting impact crater targets by analyzing the effect of different lighting conditions on the detection accuracy.展开更多
Tajikistan represents a core region of the biodiversity hotspot in Central Asian mountains and has exceptional vascular plant diversity.However,the species diversity of the country faces urgent conservation challenges...Tajikistan represents a core region of the biodiversity hotspot in Central Asian mountains and has exceptional vascular plant diversity.However,the species diversity of the country faces urgent conservation challenges.There has been a lack of a comprehensive and multidimensional assessment to inform strategic conservation planning.Therefore,this study integrated 4 key biodiversity indices including species richness(SR),phylogenetic diversity(PD),threatened species richness(TSR),and endemic species richness(ESR)to map species diversity distribution patterns,identify conservation gaps,and elucidate their effects of climatic factors.This study revealed that species diversity shows a clear trend of decreasing from the western region to the eastern region of Tajikistan.The central–western mountains(specifically the Gissar-Darvasian and Zeravshanian regions)emerge as irreplaceable biodiversity hotspots.However,we found a severe spatial mismatch between these priority areas and the existing protected areas(PAs).Protection coverage for all hotspots was alarmingly low,ranging from 31.00%to 38.00%.Consequently,a critical 64.80%of integrated priority areas fall outside of the current PAs,representing a major conservation gap.This study identified precipitation seasonality and isothermality as the principal drivers,collectively explaining over 50.00%of the diversity variation and suggesting high vulnerability to hydrological shifts.Furthermore,we detected significant geographic sampling bias in the public biodiversity databases,with the most critical hotspot being systematically under-sampled.This study provides a robust scientific basis for conservation action,highlighting the urgent need to strategically expand PAs in the under-protected southwestern region and to mitigate critical sampling gaps through targeted data digitization and field surveys.These measures are indispensable for securing Tajikistan’s unique biodiversity and achieving the Kunming-Montreal Global Biodiversity Framework Target 3(“30×30 Protection”).展开更多
Nitrogen(N)and phosphorus(P)are essential nutrients and can significantly impact primary productivity of the ecosystem causing water environmental problems.However,their cycling mechanisms are not well understood in a...Nitrogen(N)and phosphorus(P)are essential nutrients and can significantly impact primary productivity of the ecosystem causing water environmental problems.However,their cycling mechanisms are not well understood in alpine mountains with climate change.Hence,94 samples of river water were collected from 2018 to 2020 in the headwaters of the Shule River Basin to assess the nutrients spatiotemporal distribution and combined ap-proach of water quality index to assess water quality and potential sources.The findings depict that high nutrient concentrations were found to coincide with snowmelt and glacial meltwater and rainfall recharge periods,while total flux peaked from June to September due to increased runoff.Notably,total nitrogen(TN)concentrations were significantly higher near the town,primarily attributed to the replenishment of nitrate(NO_(3)^(‒)-N)from live-stock manure.The high total P(TP)was near the glacier,which was attributed to the transportation of glacial sediments into the river,and pH was another critical factor.N was the primary nutrient limiting factor for the growth of phytoplankton in river water.Although the migration and transport of nutrients have altered with climate change,river water quality is good in alpine mountains based on an overall evaluation.These findings contribute to enriching nutrient datasets and highlight the importance of water resource management and water quality assessment in sensitive and fragile alpine mountains.展开更多
Ensuring reliable power supply in urban distribution networks is a complex and critical task.To address the increased demand during extreme scenarios,this paper proposes an optimal dispatch strategy that considers the...Ensuring reliable power supply in urban distribution networks is a complex and critical task.To address the increased demand during extreme scenarios,this paper proposes an optimal dispatch strategy that considers the coordination with virtual power plants(VPPs).The proposed strategy improves systemflexibility and responsiveness by optimizing the power adjustment of flexible resources.In the proposed strategy,theGaussian Process Regression(GPR)is firstly employed to determine the adjustable range of aggregated power within the VPP,facilitating an assessment of its potential contribution to power supply support.Then,an optimal dispatch model based on a leader-follower game is developed to maximize the benefits of the VPP and flexible resources while guaranteeing the power balance at the same time.To solve the proposed optimal dispatch model efficiently,the constraints of the problem are reformulated and resolved using the Karush-Kuhn-Tucker(KKT)optimality conditions and linear programming duality theorem.The effectiveness of the strategy is illustrated through a detailed case study.展开更多
Particle size distribution(PSD) is an important parameter in the process of fluidization,and it always plays a crucial role in a gas-solid fluidized system.A PSD model for on-line PSD determination based on acoustic e...Particle size distribution(PSD) is an important parameter in the process of fluidization,and it always plays a crucial role in a gas-solid fluidized system.A PSD model for on-line PSD determination based on acoustic emission(AE) measurement was developed according to the mechanism of particle collision with the inner wall of the cylinder and multi-scale wavelet decomposition analysis.This PSD model illuminates the quantitative relationship between the energy percentage of AE signals for different scales and the PSD,which indicates the feasibility of the application of the PSD model.Experiments were undertaken both in lab and plant gas-solid fluidized setup with polyethylene particles,and the parameters of the PSD model were calibrated and revised.The experimental conditions and results proved that the PSD model was suitable for on-line measurement and was sufficiently sensible and accurate.Concerning agglomeration,the PSD model also showed exact serviceability on detecting the onset of agglomeration by abnormal PSD,and the result agreed with that from the radiation method.Ultimately,AE measurement was found to be a reliable and credible means for understanding the PSD information that affects the behavior of a system,which can provide valuable guidance for practical applications.展开更多
The vast majority of in vitro studies have demonstrated that PINK1 phosphorylates Parkin to work together in mitophagy to protect against neuronal degeneration.However,it remains largely unclear how PINK1 and Parkin a...The vast majority of in vitro studies have demonstrated that PINK1 phosphorylates Parkin to work together in mitophagy to protect against neuronal degeneration.However,it remains largely unclear how PINK1 and Parkin are expressed in mammalian brains.This has been difficult to address because of the intrinsically low levels of PINK1 and undetectable levels of phosphorylated Parkin in small animals.Understanding this issue is critical for elucidating the in vivo roles of PINK1 and Parkin.Recently,we showed that the PINK1 kinase is selectively expressed as a truncated form(PINK1–55)in the primate brain.In the present study,we used multiple antibodies,including our recently developed monoclonal anti-PINK1,to validate the selective expression of PINK1 in the primate brain.We found that PINK1 was stably expressed in the monkey brain at postnatal and adulthood stages,which is consistent with the findings that depleting PINK1 can cause neuronal loss in developing and adult monkey brains.PINK1 was enriched in the membrane-bound fractionations,whereas Parkin was soluble with a distinguishable distribution.Immunofluorescent double staining experiments showed that PINK1 and Parkin did not colocalize under physiological conditions in cultured monkey astrocytes,though they did colocalize on mitochondria when the cells were exposed to mitochondrial stress.These findings suggest that PINK1 and Parkin may have distinct roles beyond their well-known function in mitophagy during mitochondrial damage.展开更多
Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer ...Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.展开更多
Improving the volumetric energy density of supercapacitors is essential for practical applications,which highly relies on the dense storage of ions in carbon-based electrodes.The functional units of carbon-based elect...Improving the volumetric energy density of supercapacitors is essential for practical applications,which highly relies on the dense storage of ions in carbon-based electrodes.The functional units of carbon-based electrode exhibit multi-scale structural characteristics including macroscopic electrode morphologies,mesoscopic microcrystals and pores,and microscopic defects and dopants in the carbon basal plane.Therefore,the ordered combination of multi-scale structures of carbon electrode is crucial for achieving dense energy storage and high volumetric performance by leveraging the functions of various scale structu re.Considering that previous reviews have focused more on the discussion of specific scale structu re of carbon electrodes,this review takes a multi-scale perspective in which recent progresses regarding the structureperformance relationship,underlying mechanism and directional design of carbon-based multi-scale structures including carbon morphology,pore structure,carbon basal plane micro-environment and electrode technology on dense energy storage and volumetric property of supercapacitors are systematically discussed.We analyzed in detail the effects of the morphology,pore,and micro-environment of carbon electrode materials on ion dense storage,summarized the specific effects of different scale structures on volumetric property and recent research progress,and proposed the mutual influence and trade-off relationship between various scale structures.In addition,the challenges and outlooks for improving the dense storage and volumetric performance of carbon-based supercapacitors are analyzed,which can provide feasible technical reference and guidance for the design and manufacture of dense carbon-based electrode materials.展开更多
Convolutional neural networks(CNNs)-based medical image segmentation technologies have been widely used in medical image segmentation because of their strong representation and generalization abilities.However,due to ...Convolutional neural networks(CNNs)-based medical image segmentation technologies have been widely used in medical image segmentation because of their strong representation and generalization abilities.However,due to the inability to effectively capture global information from images,CNNs can easily lead to loss of contours and textures in segmentation results.Notice that the transformer model can effectively capture the properties of long-range dependencies in the image,and furthermore,combining the CNN and the transformer can effectively extract local details and global contextual features of the image.Motivated by this,we propose a multi-branch and multi-scale attention network(M2ANet)for medical image segmentation,whose architecture consists of three components.Specifically,in the first component,we construct an adaptive multi-branch patch module for parallel extraction of image features to reduce information loss caused by downsampling.In the second component,we apply residual block to the well-known convolutional block attention module to enhance the network’s ability to recognize important features of images and alleviate the phenomenon of gradient vanishing.In the third component,we design a multi-scale feature fusion module,in which we adopt adaptive average pooling and position encoding to enhance contextual features,and then multi-head attention is introduced to further enrich feature representation.Finally,we validate the effectiveness and feasibility of the proposed M2ANet method through comparative experiments on four benchmark medical image segmentation datasets,particularly in the context of preserving contours and textures.展开更多
Prediction of production decline and evaluation of the adsorbed/free gas ratio are critical for determining the lifespan and production status of shale gas wells.Traditional production prediction methods have some sho...Prediction of production decline and evaluation of the adsorbed/free gas ratio are critical for determining the lifespan and production status of shale gas wells.Traditional production prediction methods have some shortcomings because of the low permeability and tightness of shale,complex gas flow behavior of multi-scale gas transport regions and multiple gas transport mechanism superpositions,and complex and variable production regimes of shale gas wells.Recent research has demonstrated the existence of a multi-stage isotope fractionation phenomenon during shale gas production,with the fractionation characteristics of each stage associated with the pore structure,gas in place(GIP),adsorption/desorption,and gas production process.This study presents a new approach for estimating shale gas well production and evaluating the adsorbed/free gas ratio throughout production using isotope fractionation techniques.A reservoir-scale carbon isotope fractionation(CIF)model applicable to the production process of shale gas wells was developed for the first time in this research.In contrast to the traditional model,this model improves production prediction accuracy by simultaneously fitting the gas production rate and δ^(13)C_(1) data and provides a new evaluation method of the adsorbed/free gas ratio during shale gas production.The results indicate that the diffusion and adsorption/desorption properties of rock,bottom-hole flowing pressure(BHP)of gas well,and multi-scale gas transport regions of the reservoir all affect isotope fractionation,with the diffusion and adsorption/desorption parameters of rock having the greatest effect on isotope fractionation being D∗/D,PL,VL,α,and others in that order.We effectively tested the universality of the four-stage isotope fractionation feature and revealed a unique isotope fractionation mechanism caused by the superimposed coupling of multi-scale gas transport regions during shale gas well production.Finally,we applied the established CIF model to a shale gas well in the Sichuan Basin,China,and calculated the estimated ultimate recovery(EUR)of the well to be 3.33×10^(8) m^(3);the adsorbed gas ratio during shale gas production was 1.65%,10.03%,and 23.44%in the first,fifth,and tenth years,respectively.The findings are significant for understanding the isotope fractionation mechanism during natural gas transport in complex systems and for formulating and optimizing unconventional natural gas development strategies.展开更多
The dominated contradiction in optimizing the performance of magnesium-air battery anode lies in the difficulty of achieving a good balance between activation and passivation during discharge process.To further reconci...The dominated contradiction in optimizing the performance of magnesium-air battery anode lies in the difficulty of achieving a good balance between activation and passivation during discharge process.To further reconcile this contradiction,two Mg-0.1Sc-0.1Y-0.1Ag anodes with different residual strain distribution through extrusion with/without annealing are fabricated.The results indicate that annealing can significantly lessen the“pseudo-anode”regions,thereby changing the dissolution mode of the matrix and achieving an effective dissolution during discharge.Additionally,p-type semiconductor characteristic of discharge productfilm could suppress the self-corrosion reaction without reducing the polarization of anode.The magnesium-air battery utilizing annealed Mg-0.1Sc-0.1Y-0.1Ag as anode achieves a synergistic improvement in specific capacity(1388.89 mA h g^(-1))and energy density(1960.42 mW h g^(-1)).This anode modification method accelerates the advancement of high efficiency and long lifespan magnesium-air batteries,offering renewable and cost-effective energy solutions for electronics and emergency equipment.展开更多
In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accurac...In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accuracy significantly declines when the data is occluded.To enhance the accuracy of gait emotion recognition under occlusion,this paper proposes a Multi-scale Suppression Graph ConvolutionalNetwork(MS-GCN).TheMS-GCN consists of three main components:Joint Interpolation Module(JI Moudle),Multi-scale Temporal Convolution Network(MS-TCN),and Suppression Graph Convolutional Network(SGCN).The JI Module completes the spatially occluded skeletal joints using the(K-Nearest Neighbors)KNN interpolation method.The MS-TCN employs convolutional kernels of various sizes to comprehensively capture the emotional information embedded in the gait,compensating for the temporal occlusion of gait information.The SGCN extracts more non-prominent human gait features by suppressing the extraction of key body part features,thereby reducing the negative impact of occlusion on emotion recognition results.The proposed method is evaluated on two comprehensive datasets:Emotion-Gait,containing 4227 real gaits from sources like BML,ICT-Pollick,and ELMD,and 1000 synthetic gaits generated using STEP-Gen technology,and ELMB,consisting of 3924 gaits,with 1835 labeled with emotions such as“Happy,”“Sad,”“Angry,”and“Neutral.”On the standard datasets Emotion-Gait and ELMB,the proposed method achieved accuracies of 0.900 and 0.896,respectively,attaining performance comparable to other state-ofthe-artmethods.Furthermore,on occlusion datasets,the proposedmethod significantly mitigates the performance degradation caused by occlusion compared to other methods,the accuracy is significantly higher than that of other methods.展开更多
Coral reef limestone(CRL)constitutes a distinctive marine carbonate formation with complex mechanical properties.This study investigates the multiscale damage and fracture mechanisms of CRL through integrated experime...Coral reef limestone(CRL)constitutes a distinctive marine carbonate formation with complex mechanical properties.This study investigates the multiscale damage and fracture mechanisms of CRL through integrated experimental testing,digital core technology,and theoretical modelling.Two CRL types with contrasting mesostructures were characterized across three scales.Macroscopically,CRL-I and CRL-II exhibited mean compressive strengths of 8.46 and 5.17 MPa,respectively.Mesoscopically,CRL-I featured small-scale highly interconnected pores,whilst CRL-II developed larger stratified pores with diminished connectivity.Microscopically,both CRL matrices demonstrated remarkable similarity in mineral composition and mechanical properties.A novel voxel average-based digital core scaling methodology was developed to facilitate numerical simulation of cross-scale damage processes,revealing network-progressive failure in CRL-I versus directional-brittle failure in CRL-II.Furthermore,a damage statistical constitutive model based on digital core technology and mesoscopic homogenisation theory established quantitative relationships between microelement strength distribution and macroscopic mechanical behavior.These findings illuminate the fundamental mechanisms through which mesoscopic structure governs the macroscopic mechanical properties of CRL.展开更多
The electrochemical corrosion of ductile pipes(DPs)in drinking water distribution systems(DWDS)has a crucial impact on cement-mortar lining(CML)failure and metal release,potentially leading to drinking water quality d...The electrochemical corrosion of ductile pipes(DPs)in drinking water distribution systems(DWDS)has a crucial impact on cement-mortar lining(CML)failure and metal release,potentially leading to drinking water quality deterioration and posing a risk to public health.An in-situ scanning vibrating electrode technique(SVET)with micron-scale resolution,microscopic scale detection and water quality analysis were used to investigate the corrosion behavior and metal release from DPs throughout the whole CML failure process.Metal pollutants release occurred at three different stages of CML failure process,and there are potential risks of water quality deterioration exceeding the maximum allowable levels set by national standards in the partial failure stage and lining peeling stage.Furthermore,the effects of water chemistry(Cl^(−),SO_(4)^(2−),NO_(3)−,and Ca^(2+))on corrosion scale growth and iron release activity,were investigated during the CML partial failure stage.Results showed that the CML failure process in DPs was accelerated by the autocatalysis of localized corrosion.Cl^(−)was found to damage the uncorroded metal surface,while SO_(4)^(2−)mainly dissolved the corrosion scale surface,increasing iron release.Both the oxidation of NO_(3)−and selective sedimentation of Ca2+were found to enhance the stability of corrosion scales and inhibit iron release.展开更多
This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key de...This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions.The paper details the finite element analysis for fragmentation,the characterizations of the dynamic hardening and fracture models,the generation of comprehensive datasets,and the training of the ANN model.The results show the influence of casing dimensions on fragment velocity distributions,with the tendencies indicating increased resultant velocity with reduced thickness,increased length and diameter.The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets,showing its potential for the real-time prediction of fragmentation performance.展开更多
The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method f...The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception.展开更多
BACKGROUND As red blood cell distribution width(RDW)and albumin have been shown to be independent predictors of mortality from various diseases,this study aimed to investigate the effect of the RDW to albumin ratio(RA...BACKGROUND As red blood cell distribution width(RDW)and albumin have been shown to be independent predictors of mortality from various diseases,this study aimed to investigate the effect of the RDW to albumin ratio(RA)as an independent predictor of the prognosis of patients admitted to the coronary care unit(CCU).AIM To use the RDW and albumin level to predict the prognosis of patients in the CCU.METHODS Data were obtained from the Medical Information Mart Intensive Care III database.The primary outcome was 365-day all-cause mortality,whereas the secondary outcomes were 30-and 90-day all-cause mortality,hospital length of stay(LOS),and CCU LOS.Cox proportional hazards regression model,propen-sity score matching,and receiver operating characteristic curve analyses were used.RESULTS The hazard ratio(95%confidence interval)of the upper tertile(RA>4.66)was 1.62(1.29 to 2.03)when compared with the reference(RA<3.84)in 365-day all-cause mortality.This trend persisted after adjusting for demographic and clinical variables in the propensity score-matching analysis.Similar trends were observed for the secondary outcomes of hospital and CCU LOS.Receiver operating characteristic curve analysis was performed by combining the RA and sequential organ failure assessment(SOFA)scores,and the C-statistic was higher than that of the SOFA scores(0.733 vs 0.702,P<0.001).CONCLUSION RA is an independent prognostic factor in patients admitted to the CCU.RA combined with the SOFA score can improve the predictive ability of the SOFA score.However,our results should be verified in future prospective studies.展开更多
基金funded by the National Natural Science Foundation of China,grant numbers 52374156 and 62476005。
文摘Images taken in dim environments frequently exhibit issues like insufficient brightness,noise,color shifts,and loss of detail.These problems pose significant challenges to dark image enhancement tasks.Current approaches,while effective in global illumination modeling,often struggle to simultaneously suppress noise and preserve structural details,especially under heterogeneous lighting.Furthermore,misalignment between luminance and color channels introduces additional challenges to accurate enhancement.In response to the aforementioned difficulties,we introduce a single-stage framework,M2ATNet,using the multi-scale multi-attention and Transformer architecture.First,to address the problems of texture blurring and residual noise,we design a multi-scale multi-attention denoising module(MMAD),which is applied separately to the luminance and color channels to enhance the structural and texture modeling capabilities.Secondly,to solve the non-alignment problem of the luminance and color channels,we introduce the multi-channel feature fusion Transformer(CFFT)module,which effectively recovers the dark details and corrects the color shifts through cross-channel alignment and deep feature interaction.To guide the model to learn more stably and efficiently,we also fuse multiple types of loss functions to form a hybrid loss term.We extensively evaluate the proposed method on various standard datasets,including LOL-v1,LOL-v2,DICM,LIME,and NPE.Evaluation in terms of numerical metrics and visual quality demonstrate that M2ATNet consistently outperforms existing advanced approaches.Ablation studies further confirm the critical roles played by the MMAD and CFFT modules to detail preservation and visual fidelity under challenging illumination-deficient environments.
基金supported by the Henan Province Key R&D Project under Grant 241111210400the Henan Provincial Science and Technology Research Project under Grants 252102211047,252102211062,252102211055 and 232102210069+2 种基金the Jiangsu Provincial Scheme Double Initiative Plan JSS-CBS20230474,the XJTLU RDF-21-02-008the Science and Technology Innovation Project of Zhengzhou University of Light Industry under Grant 23XNKJTD0205the Higher Education Teaching Reform Research and Practice Project of Henan Province under Grant 2024SJGLX0126。
文摘Accurate and efficient detection of building changes in remote sensing imagery is crucial for urban planning,disaster emergency response,and resource management.However,existing methods face challenges such as spectral similarity between buildings and backgrounds,sensor variations,and insufficient computational efficiency.To address these challenges,this paper proposes a novel Multi-scale Efficient Wavelet-based Change Detection Network(MewCDNet),which integrates the advantages of Convolutional Neural Networks and Transformers,balances computational costs,and achieves high-performance building change detection.The network employs EfficientNet-B4 as the backbone for hierarchical feature extraction,integrates multi-level feature maps through a multi-scale fusion strategy,and incorporates two key modules:Cross-temporal Difference Detection(CTDD)and Cross-scale Wavelet Refinement(CSWR).CTDD adopts a dual-branch architecture that combines pixel-wise differencing with semanticaware Euclidean distance weighting to enhance the distinction between true changes and background noise.CSWR integrates Haar-based Discrete Wavelet Transform with multi-head cross-attention mechanisms,enabling cross-scale feature fusion while significantly improving edge localization and suppressing spurious changes.Extensive experiments on four benchmark datasets demonstrate MewCDNet’s superiority over comparison methods:achieving F1 scores of 91.54%on LEVIR,93.70%on WHUCD,and 64.96%on S2Looking for building change detection.Furthermore,MewCDNet exhibits optimal performance on the multi-class⋅SYSU dataset(F1:82.71%),highlighting its exceptional generalization capability.
文摘With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods face numerous challenges in practical deployment,including scale variation handling,feature degradation,and complex backgrounds.To address these issues,we propose Edge-enhanced and Detail-Capturing You Only Look Once(EHDC-YOLO),a novel framework for object detection in Unmanned Aerial Vehicle(UAV)imagery.Based on the You Only Look Once version 11 nano(YOLOv11n)baseline,EHDC-YOLO systematically introduces several architectural enhancements:(1)a Multi-Scale Edge Enhancement(MSEE)module that leverages multi-scale pooling and edge information to enhance boundary feature extraction;(2)an Enhanced Feature Pyramid Network(EFPN)that integrates P2-level features with Cross Stage Partial(CSP)structures and OmniKernel convolutions for better fine-grained representation;and(3)Dynamic Head(DyHead)with multi-dimensional attention mechanisms for enhanced cross-scale modeling and perspective adaptability.Comprehensive experiments on the Vision meets Drones for Detection(VisDrone-DET)2019 dataset demonstrate that EHDC-YOLO achieves significant improvements,increasing mean Average Precision(mAP)@0.5 from 33.2%to 46.1%(an absolute improvement of 12.9 percentage points)and mAP@0.5:0.95 from 19.5%to 28.0%(an absolute improvement of 8.5 percentage points)compared with the YOLOv11n baseline,while maintaining a reasonable parameter count(2.81 M vs the baseline’s 2.58 M).Further ablation studies confirm the effectiveness of each proposed component,while visualization results highlight EHDC-YOLO’s superior performance in detecting objects and handling occlusions in complex drone scenarios.
基金the National Key Research and Development Program of China(Grant No.2022YFF0711400)which provided valuable financial support and resources for my research and made it possible for me to deeply explore the unknown mysteries in the field of lunar geologythe National Space Science Data Center Youth Open Project(Grant No.NSSDC2302001),which has not only facilitated the smooth progress of my research,but has also built a platform for me to communicate and cooperate with experts in the field.
文摘Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious and they are numerous,resulting in low detection accuracy by deep learning models.Therefore,we proposed a new multi-scale fusion crater detection algorithm(MSF-CDA)based on the YOLO11 to improve the accuracy of lunar impact crater detection,especially for small craters with a diameter of<1 km.Using the images taken by the LROC(Lunar Reconnaissance Orbiter Camera)at the Chang’e-4(CE-4)landing area,we constructed three separate datasets for craters with diameters of 0-70 m,70-140 m,and>140 m.We then trained three submodels separately with these three datasets.Additionally,we designed a slicing-amplifying-slicing strategy to enhance the ability to extract features from small craters.To handle redundant predictions,we proposed a new Non-Maximum Suppression with Area Filtering method to fuse the results in overlapping targets within the multi-scale submodels.Finally,our new MSF-CDA method achieved high detection performance,with the Precision,Recall,and F1 score having values of 0.991,0.987,and 0.989,respectively,perfectly addressing the problems induced by the lesser features and sample imbalance of small craters.Our MSF-CDA can provide strong data support for more in-depth study of the geological evolution of the lunar surface and finer geological age estimations.This strategy can also be used to detect other small objects with lesser features and sample imbalance problems.We detected approximately 500,000 impact craters in an area of approximately 214 km2 around the CE-4 landing area.By statistically analyzing the new data,we updated the distribution function of the number and diameter of impact craters.Finally,we identified the most suitable lighting conditions for detecting impact crater targets by analyzing the effect of different lighting conditions on the detection accuracy.
基金the Chinese Academy of Sciences Research Center for Ecology and Environment of Central Asia(RCEECA),the construction and joint research for the China-Tajikistan“Belt and Road”Joint Laboratory on Biodiversity Conservation and Sustainable Use(2024YFE0214200)the Shanghai Cooperation Organization Partnership and International Technology Cooperation Plan of Science and Technology Projects(2023E01018,2025E01056)the Chinese Academy of Sciences President’s International Fellowship Initiative(PIFI)(2024VBC0006).
文摘Tajikistan represents a core region of the biodiversity hotspot in Central Asian mountains and has exceptional vascular plant diversity.However,the species diversity of the country faces urgent conservation challenges.There has been a lack of a comprehensive and multidimensional assessment to inform strategic conservation planning.Therefore,this study integrated 4 key biodiversity indices including species richness(SR),phylogenetic diversity(PD),threatened species richness(TSR),and endemic species richness(ESR)to map species diversity distribution patterns,identify conservation gaps,and elucidate their effects of climatic factors.This study revealed that species diversity shows a clear trend of decreasing from the western region to the eastern region of Tajikistan.The central–western mountains(specifically the Gissar-Darvasian and Zeravshanian regions)emerge as irreplaceable biodiversity hotspots.However,we found a severe spatial mismatch between these priority areas and the existing protected areas(PAs).Protection coverage for all hotspots was alarmingly low,ranging from 31.00%to 38.00%.Consequently,a critical 64.80%of integrated priority areas fall outside of the current PAs,representing a major conservation gap.This study identified precipitation seasonality and isothermality as the principal drivers,collectively explaining over 50.00%of the diversity variation and suggesting high vulnerability to hydrological shifts.Furthermore,we detected significant geographic sampling bias in the public biodiversity databases,with the most critical hotspot being systematically under-sampled.This study provides a robust scientific basis for conservation action,highlighting the urgent need to strategically expand PAs in the under-protected southwestern region and to mitigate critical sampling gaps through targeted data digitization and field surveys.These measures are indispensable for securing Tajikistan’s unique biodiversity and achieving the Kunming-Montreal Global Biodiversity Framework Target 3(“30×30 Protection”).
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(No.2019QZKK0208)the National Natural Science Foundation of China(Nos.42171148 and 42330512)the Key R&D Project from the Science and Technology Department of Tibet(No.XZ202501ZY0030).
文摘Nitrogen(N)and phosphorus(P)are essential nutrients and can significantly impact primary productivity of the ecosystem causing water environmental problems.However,their cycling mechanisms are not well understood in alpine mountains with climate change.Hence,94 samples of river water were collected from 2018 to 2020 in the headwaters of the Shule River Basin to assess the nutrients spatiotemporal distribution and combined ap-proach of water quality index to assess water quality and potential sources.The findings depict that high nutrient concentrations were found to coincide with snowmelt and glacial meltwater and rainfall recharge periods,while total flux peaked from June to September due to increased runoff.Notably,total nitrogen(TN)concentrations were significantly higher near the town,primarily attributed to the replenishment of nitrate(NO_(3)^(‒)-N)from live-stock manure.The high total P(TP)was near the glacier,which was attributed to the transportation of glacial sediments into the river,and pH was another critical factor.N was the primary nutrient limiting factor for the growth of phytoplankton in river water.Although the migration and transport of nutrients have altered with climate change,river water quality is good in alpine mountains based on an overall evaluation.These findings contribute to enriching nutrient datasets and highlight the importance of water resource management and water quality assessment in sensitive and fragile alpine mountains.
基金supported by the Science and Technology Project of Sichuan Electric Power Company“Power Supply Guarantee Strategy for Urban Distribution Networks Considering Coordination with Virtual Power Plant during Extreme Weather Event”(No.521920230003).
文摘Ensuring reliable power supply in urban distribution networks is a complex and critical task.To address the increased demand during extreme scenarios,this paper proposes an optimal dispatch strategy that considers the coordination with virtual power plants(VPPs).The proposed strategy improves systemflexibility and responsiveness by optimizing the power adjustment of flexible resources.In the proposed strategy,theGaussian Process Regression(GPR)is firstly employed to determine the adjustable range of aggregated power within the VPP,facilitating an assessment of its potential contribution to power supply support.Then,an optimal dispatch model based on a leader-follower game is developed to maximize the benefits of the VPP and flexible resources while guaranteeing the power balance at the same time.To solve the proposed optimal dispatch model efficiently,the constraints of the problem are reformulated and resolved using the Karush-Kuhn-Tucker(KKT)optimality conditions and linear programming duality theorem.The effectiveness of the strategy is illustrated through a detailed case study.
基金Project supported by the National Natural Science Foundation of China(Nos.21076180and20736011)the National High-Tech R&D Program(863)of China(No.2007AA04Z182)
文摘Particle size distribution(PSD) is an important parameter in the process of fluidization,and it always plays a crucial role in a gas-solid fluidized system.A PSD model for on-line PSD determination based on acoustic emission(AE) measurement was developed according to the mechanism of particle collision with the inner wall of the cylinder and multi-scale wavelet decomposition analysis.This PSD model illuminates the quantitative relationship between the energy percentage of AE signals for different scales and the PSD,which indicates the feasibility of the application of the PSD model.Experiments were undertaken both in lab and plant gas-solid fluidized setup with polyethylene particles,and the parameters of the PSD model were calibrated and revised.The experimental conditions and results proved that the PSD model was suitable for on-line measurement and was sufficiently sensible and accurate.Concerning agglomeration,the PSD model also showed exact serviceability on detecting the onset of agglomeration by abnormal PSD,and the result agreed with that from the radiation method.Ultimately,AE measurement was found to be a reliable and credible means for understanding the PSD information that affects the behavior of a system,which can provide valuable guidance for practical applications.
基金supported by the National Natural Science Foundation of China,Nos.32070534(to WY),32370567(to WY),82371874(to XL),81830032(to XL),82071421(to SL)Key Field Research and Development Program of Guangdong Province,No.2018B030337001(to XL)+2 种基金Guangzhou Key Research Program on Brain Science,No.202007030008(to XL)Department of Science and Technology of Guangdong Province,Nos.2021ZT09Y007,2020B121201006(to XL)Guangdong Basic and Applied Basic Research Foundation,Nos.2022A1515012301(to WY),2023B1515020031(to WY).
文摘The vast majority of in vitro studies have demonstrated that PINK1 phosphorylates Parkin to work together in mitophagy to protect against neuronal degeneration.However,it remains largely unclear how PINK1 and Parkin are expressed in mammalian brains.This has been difficult to address because of the intrinsically low levels of PINK1 and undetectable levels of phosphorylated Parkin in small animals.Understanding this issue is critical for elucidating the in vivo roles of PINK1 and Parkin.Recently,we showed that the PINK1 kinase is selectively expressed as a truncated form(PINK1–55)in the primate brain.In the present study,we used multiple antibodies,including our recently developed monoclonal anti-PINK1,to validate the selective expression of PINK1 in the primate brain.We found that PINK1 was stably expressed in the monkey brain at postnatal and adulthood stages,which is consistent with the findings that depleting PINK1 can cause neuronal loss in developing and adult monkey brains.PINK1 was enriched in the membrane-bound fractionations,whereas Parkin was soluble with a distinguishable distribution.Immunofluorescent double staining experiments showed that PINK1 and Parkin did not colocalize under physiological conditions in cultured monkey astrocytes,though they did colocalize on mitochondria when the cells were exposed to mitochondrial stress.These findings suggest that PINK1 and Parkin may have distinct roles beyond their well-known function in mitophagy during mitochondrial damage.
基金Opening Foundation of Key Laboratory of Explosive Energy Utilization and Control,Anhui Province(BP20240104)Graduate Innovation Program of China University of Mining and Technology(2024WLJCRCZL049)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX24_2701)。
文摘Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.
基金funded by the Joint Fund for Regional Innovation and Development of National Natural Science Foundation of China(U21A20143)the National Science Fund for Excellent Young Scholars(52322607)the Excellent Youth Foundation of Heilongjiang Scientific Committee(YQ2022E028)。
文摘Improving the volumetric energy density of supercapacitors is essential for practical applications,which highly relies on the dense storage of ions in carbon-based electrodes.The functional units of carbon-based electrode exhibit multi-scale structural characteristics including macroscopic electrode morphologies,mesoscopic microcrystals and pores,and microscopic defects and dopants in the carbon basal plane.Therefore,the ordered combination of multi-scale structures of carbon electrode is crucial for achieving dense energy storage and high volumetric performance by leveraging the functions of various scale structu re.Considering that previous reviews have focused more on the discussion of specific scale structu re of carbon electrodes,this review takes a multi-scale perspective in which recent progresses regarding the structureperformance relationship,underlying mechanism and directional design of carbon-based multi-scale structures including carbon morphology,pore structure,carbon basal plane micro-environment and electrode technology on dense energy storage and volumetric property of supercapacitors are systematically discussed.We analyzed in detail the effects of the morphology,pore,and micro-environment of carbon electrode materials on ion dense storage,summarized the specific effects of different scale structures on volumetric property and recent research progress,and proposed the mutual influence and trade-off relationship between various scale structures.In addition,the challenges and outlooks for improving the dense storage and volumetric performance of carbon-based supercapacitors are analyzed,which can provide feasible technical reference and guidance for the design and manufacture of dense carbon-based electrode materials.
基金supported by the Natural Science Foundation of the Anhui Higher Education Institutions of China(Grant Nos.2023AH040149 and 2024AH051915)the Anhui Provincial Natural Science Foundation(Grant No.2208085MF168)+1 种基金the Science and Technology Innovation Tackle Plan Project of Maanshan(Grant No.2024RGZN001)the Scientific Research Fund Project of Anhui Medical University(Grant No.2023xkj122).
文摘Convolutional neural networks(CNNs)-based medical image segmentation technologies have been widely used in medical image segmentation because of their strong representation and generalization abilities.However,due to the inability to effectively capture global information from images,CNNs can easily lead to loss of contours and textures in segmentation results.Notice that the transformer model can effectively capture the properties of long-range dependencies in the image,and furthermore,combining the CNN and the transformer can effectively extract local details and global contextual features of the image.Motivated by this,we propose a multi-branch and multi-scale attention network(M2ANet)for medical image segmentation,whose architecture consists of three components.Specifically,in the first component,we construct an adaptive multi-branch patch module for parallel extraction of image features to reduce information loss caused by downsampling.In the second component,we apply residual block to the well-known convolutional block attention module to enhance the network’s ability to recognize important features of images and alleviate the phenomenon of gradient vanishing.In the third component,we design a multi-scale feature fusion module,in which we adopt adaptive average pooling and position encoding to enhance contextual features,and then multi-head attention is introduced to further enrich feature representation.Finally,we validate the effectiveness and feasibility of the proposed M2ANet method through comparative experiments on four benchmark medical image segmentation datasets,particularly in the context of preserving contours and textures.
基金supported by the Natural Science Foundation of China(Grant No.42302170)National Postdoctoral Innovative Talent Support Program(Grant No.BX20220062)+3 种基金CNPC Innovation Found(Grant No.2022DQ02-0104)National Science Foundation of Heilongjiang Province of China(Grant No.YQ2023D001)Postdoctoral Science Foundation of Heilongjiang Province of China(Grant No.LBH-Z22091)the Natural Science Foundation of Shandong Province(Grant No.ZR2022YQ30).
文摘Prediction of production decline and evaluation of the adsorbed/free gas ratio are critical for determining the lifespan and production status of shale gas wells.Traditional production prediction methods have some shortcomings because of the low permeability and tightness of shale,complex gas flow behavior of multi-scale gas transport regions and multiple gas transport mechanism superpositions,and complex and variable production regimes of shale gas wells.Recent research has demonstrated the existence of a multi-stage isotope fractionation phenomenon during shale gas production,with the fractionation characteristics of each stage associated with the pore structure,gas in place(GIP),adsorption/desorption,and gas production process.This study presents a new approach for estimating shale gas well production and evaluating the adsorbed/free gas ratio throughout production using isotope fractionation techniques.A reservoir-scale carbon isotope fractionation(CIF)model applicable to the production process of shale gas wells was developed for the first time in this research.In contrast to the traditional model,this model improves production prediction accuracy by simultaneously fitting the gas production rate and δ^(13)C_(1) data and provides a new evaluation method of the adsorbed/free gas ratio during shale gas production.The results indicate that the diffusion and adsorption/desorption properties of rock,bottom-hole flowing pressure(BHP)of gas well,and multi-scale gas transport regions of the reservoir all affect isotope fractionation,with the diffusion and adsorption/desorption parameters of rock having the greatest effect on isotope fractionation being D∗/D,PL,VL,α,and others in that order.We effectively tested the universality of the four-stage isotope fractionation feature and revealed a unique isotope fractionation mechanism caused by the superimposed coupling of multi-scale gas transport regions during shale gas well production.Finally,we applied the established CIF model to a shale gas well in the Sichuan Basin,China,and calculated the estimated ultimate recovery(EUR)of the well to be 3.33×10^(8) m^(3);the adsorbed gas ratio during shale gas production was 1.65%,10.03%,and 23.44%in the first,fifth,and tenth years,respectively.The findings are significant for understanding the isotope fractionation mechanism during natural gas transport in complex systems and for formulating and optimizing unconventional natural gas development strategies.
基金the National Natural Science:Foundation of China(52375370)the Open Project of Salt Lake Chemical Engineering Research Complex,Qinghai University(2023-DXSSKF-Z02)+2 种基金the Nat-ural Science Foundation of Shanxi(202103021224049)GDAS Projects of International cooperation platform of Sci-ence and Technology(2022GDASZH-2022010203-003)Guangdong province Science and Technology Plan Projects(2023B1212060045).
文摘The dominated contradiction in optimizing the performance of magnesium-air battery anode lies in the difficulty of achieving a good balance between activation and passivation during discharge process.To further reconcile this contradiction,two Mg-0.1Sc-0.1Y-0.1Ag anodes with different residual strain distribution through extrusion with/without annealing are fabricated.The results indicate that annealing can significantly lessen the“pseudo-anode”regions,thereby changing the dissolution mode of the matrix and achieving an effective dissolution during discharge.Additionally,p-type semiconductor characteristic of discharge productfilm could suppress the self-corrosion reaction without reducing the polarization of anode.The magnesium-air battery utilizing annealed Mg-0.1Sc-0.1Y-0.1Ag as anode achieves a synergistic improvement in specific capacity(1388.89 mA h g^(-1))and energy density(1960.42 mW h g^(-1)).This anode modification method accelerates the advancement of high efficiency and long lifespan magnesium-air batteries,offering renewable and cost-effective energy solutions for electronics and emergency equipment.
基金supported by the National Natural Science Foundation of China(62272049,62236006,62172045)the Key Projects of Beijing Union University(ZKZD202301).
文摘In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accuracy significantly declines when the data is occluded.To enhance the accuracy of gait emotion recognition under occlusion,this paper proposes a Multi-scale Suppression Graph ConvolutionalNetwork(MS-GCN).TheMS-GCN consists of three main components:Joint Interpolation Module(JI Moudle),Multi-scale Temporal Convolution Network(MS-TCN),and Suppression Graph Convolutional Network(SGCN).The JI Module completes the spatially occluded skeletal joints using the(K-Nearest Neighbors)KNN interpolation method.The MS-TCN employs convolutional kernels of various sizes to comprehensively capture the emotional information embedded in the gait,compensating for the temporal occlusion of gait information.The SGCN extracts more non-prominent human gait features by suppressing the extraction of key body part features,thereby reducing the negative impact of occlusion on emotion recognition results.The proposed method is evaluated on two comprehensive datasets:Emotion-Gait,containing 4227 real gaits from sources like BML,ICT-Pollick,and ELMD,and 1000 synthetic gaits generated using STEP-Gen technology,and ELMB,consisting of 3924 gaits,with 1835 labeled with emotions such as“Happy,”“Sad,”“Angry,”and“Neutral.”On the standard datasets Emotion-Gait and ELMB,the proposed method achieved accuracies of 0.900 and 0.896,respectively,attaining performance comparable to other state-ofthe-artmethods.Furthermore,on occlusion datasets,the proposedmethod significantly mitigates the performance degradation caused by occlusion compared to other methods,the accuracy is significantly higher than that of other methods.
基金National Key Research and Development Program of China (No.2021YFC3100800)the National Natural Science Foundation of China (Nos.42407235 and 42271026)+1 种基金the Project of Sanya Yazhou Bay Science and Technology City (No.SCKJ-JYRC-2023-54)supported by the Hefei advanced computing center
文摘Coral reef limestone(CRL)constitutes a distinctive marine carbonate formation with complex mechanical properties.This study investigates the multiscale damage and fracture mechanisms of CRL through integrated experimental testing,digital core technology,and theoretical modelling.Two CRL types with contrasting mesostructures were characterized across three scales.Macroscopically,CRL-I and CRL-II exhibited mean compressive strengths of 8.46 and 5.17 MPa,respectively.Mesoscopically,CRL-I featured small-scale highly interconnected pores,whilst CRL-II developed larger stratified pores with diminished connectivity.Microscopically,both CRL matrices demonstrated remarkable similarity in mineral composition and mechanical properties.A novel voxel average-based digital core scaling methodology was developed to facilitate numerical simulation of cross-scale damage processes,revealing network-progressive failure in CRL-I versus directional-brittle failure in CRL-II.Furthermore,a damage statistical constitutive model based on digital core technology and mesoscopic homogenisation theory established quantitative relationships between microelement strength distribution and macroscopic mechanical behavior.These findings illuminate the fundamental mechanisms through which mesoscopic structure governs the macroscopic mechanical properties of CRL.
基金supported by the National Natural Science Foundation of China(Nos.51808158,52170101,and 52200116)Tianjin Natural Science Foundation(No.23JCYBJC00640).
文摘The electrochemical corrosion of ductile pipes(DPs)in drinking water distribution systems(DWDS)has a crucial impact on cement-mortar lining(CML)failure and metal release,potentially leading to drinking water quality deterioration and posing a risk to public health.An in-situ scanning vibrating electrode technique(SVET)with micron-scale resolution,microscopic scale detection and water quality analysis were used to investigate the corrosion behavior and metal release from DPs throughout the whole CML failure process.Metal pollutants release occurred at three different stages of CML failure process,and there are potential risks of water quality deterioration exceeding the maximum allowable levels set by national standards in the partial failure stage and lining peeling stage.Furthermore,the effects of water chemistry(Cl^(−),SO_(4)^(2−),NO_(3)−,and Ca^(2+))on corrosion scale growth and iron release activity,were investigated during the CML partial failure stage.Results showed that the CML failure process in DPs was accelerated by the autocatalysis of localized corrosion.Cl^(−)was found to damage the uncorroded metal surface,while SO_(4)^(2−)mainly dissolved the corrosion scale surface,increasing iron release.Both the oxidation of NO_(3)−and selective sedimentation of Ca2+were found to enhance the stability of corrosion scales and inhibit iron release.
基金supported by Poongsan-KAIST Future Research Center Projectthe fund support provided by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(Grant No.2023R1A2C2005661)。
文摘This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions.The paper details the finite element analysis for fragmentation,the characterizations of the dynamic hardening and fracture models,the generation of comprehensive datasets,and the training of the ANN model.The results show the influence of casing dimensions on fragment velocity distributions,with the tendencies indicating increased resultant velocity with reduced thickness,increased length and diameter.The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets,showing its potential for the real-time prediction of fragmentation performance.
基金Supported by the Henan Province Key Research and Development Project(231111211300)the Central Government of Henan Province Guides Local Science and Technology Development Funds(Z20231811005)+2 种基金Henan Province Key Research and Development Project(231111110100)Henan Provincial Outstanding Foreign Scientist Studio(GZS2024006)Henan Provincial Joint Fund for Scientific and Technological Research and Development Plan(Application and Overcoming Technical Barriers)(242103810028)。
文摘The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception.
文摘BACKGROUND As red blood cell distribution width(RDW)and albumin have been shown to be independent predictors of mortality from various diseases,this study aimed to investigate the effect of the RDW to albumin ratio(RA)as an independent predictor of the prognosis of patients admitted to the coronary care unit(CCU).AIM To use the RDW and albumin level to predict the prognosis of patients in the CCU.METHODS Data were obtained from the Medical Information Mart Intensive Care III database.The primary outcome was 365-day all-cause mortality,whereas the secondary outcomes were 30-and 90-day all-cause mortality,hospital length of stay(LOS),and CCU LOS.Cox proportional hazards regression model,propen-sity score matching,and receiver operating characteristic curve analyses were used.RESULTS The hazard ratio(95%confidence interval)of the upper tertile(RA>4.66)was 1.62(1.29 to 2.03)when compared with the reference(RA<3.84)in 365-day all-cause mortality.This trend persisted after adjusting for demographic and clinical variables in the propensity score-matching analysis.Similar trends were observed for the secondary outcomes of hospital and CCU LOS.Receiver operating characteristic curve analysis was performed by combining the RA and sequential organ failure assessment(SOFA)scores,and the C-statistic was higher than that of the SOFA scores(0.733 vs 0.702,P<0.001).CONCLUSION RA is an independent prognostic factor in patients admitted to the CCU.RA combined with the SOFA score can improve the predictive ability of the SOFA score.However,our results should be verified in future prospective studies.