This survey presents a comprehensive review of vari-ous methods and algorithms related to passing-through control of multi-robot systems in cluttered environments.Numerous studies have investigated this area,and we id...This survey presents a comprehensive review of vari-ous methods and algorithms related to passing-through control of multi-robot systems in cluttered environments.Numerous studies have investigated this area,and we identify several avenues for enhancing existing methods.This survey describes some models of robots and commonly considered control objec-tives,followed by an in-depth analysis of four types of algo-rithms that can be employed for passing-through control:leader-follower formation control,multi-robot trajectory planning,con-trol-based methods,and virtual tube planning and control.Fur-thermore,we conduct a comparative analysis of these tech-niques and provide some subjective and general evaluations.展开更多
The rapid advancement of Industry 4.0 has revolutionized manufacturing,shifting production from centralized control to decentralized,intelligent systems.Smart factories are now expected to achieve high adaptability an...The rapid advancement of Industry 4.0 has revolutionized manufacturing,shifting production from centralized control to decentralized,intelligent systems.Smart factories are now expected to achieve high adaptability and resource efficiency,particularly in mass customization scenarios where production schedules must accommodate dynamic and personalized demands.To address the challenges of dynamic task allocation,uncertainty,and realtime decision-making,this paper proposes Pathfinder,a deep reinforcement learning-based scheduling framework.Pathfinder models scheduling data through three key matrices:execution time(the time required for a job to complete),completion time(the actual time at which a job is finished),and efficiency(the performance of executing a single job).By leveraging neural networks,Pathfinder extracts essential features from these matrices,enabling intelligent decision-making in dynamic production environments.Unlike traditional approaches with fixed scheduling rules,Pathfinder dynamically selects from ten diverse scheduling rules,optimizing decisions based on real-time environmental conditions.To further enhance scheduling efficiency,a specialized reward function is designed to support dynamic task allocation and real-time adjustments.This function helps Pathfinder continuously refine its scheduling strategy,improving machine utilization and minimizing job completion times.Through reinforcement learning,Pathfinder adapts to evolving production demands,ensuring robust performance in real-world applications.Experimental results demonstrate that Pathfinder outperforms traditional scheduling approaches,offering improved coordination and efficiency in smart factories.By integrating deep reinforcement learning,adaptable scheduling strategies,and an innovative reward function,Pathfinder provides an effective solution to the growing challenges of multi-robot job scheduling in mass customization environments.展开更多
As a cross-cutting field between ocean development and multi-robot system(MRS),the underwater multi-robot system(UMRS)has gained increasing attention from researchers and engineers in recent decades.In this paper,we p...As a cross-cutting field between ocean development and multi-robot system(MRS),the underwater multi-robot system(UMRS)has gained increasing attention from researchers and engineers in recent decades.In this paper,we present a comprehensive survey of cooperation issues,one of the key components of UMRS,from the perspective of the emergence of new functions.More specifically,we categorize the cooperation in terms of task-space,motion-space,measurement-space,as well as their combination.Further,we analyze the architecture of UMRS from three aspects,i.e.,the performance of the individual underwater robot,the new functions of underwater robots,and the technical approaches of MRS.To conclude,we have discussed related promising directions for future research.This survey provides valuable insight into the reasonable utilization of UMRS to attain diverse underwater tasks in complex ocean application scenarios.展开更多
Nowadays, robots generally have a variety of capabilities, which often form a coalition replacing human to work in dangerous environment, such as rescue, exploration, etc. In these operating conditions, the energy sup...Nowadays, robots generally have a variety of capabilities, which often form a coalition replacing human to work in dangerous environment, such as rescue, exploration, etc. In these operating conditions, the energy supply of robots usually cannot be guaranteed. If the energy resources of some robots are consumed too fast, the number of the future tasks of the coalition will be affected. This paper will develop a novel task allocation method based on Gini coefficient to make full use of limited energy resources of multi-robot system to maximize the number of tasks. At the same time, considering resources consumption,we incorporate the market-based allocation mechanism into our Gini coefficient-based method and propose a hybrid method,which can flexibly optimize the task completion number and the resource consumption according to the application contexts.Experiments show that the multi-robot system with limited energy resources can accomplish more tasks by the proposed Gini coefficient-based method, and the hybrid method can be dynamically adaptive to changes of the work environment and realize the dual optimization goals.展开更多
In unstructured environments, dynamic resource assignment is required for effective cooperation of robot teams. In some scenarios, robots are in charge of executing multiple missions simultaneously. This creates risks...In unstructured environments, dynamic resource assignment is required for effective cooperation of robot teams. In some scenarios, robots are in charge of executing multiple missions simultaneously. This creates risks of deadlock due to the presence of shared resources among various missions. The main contribution of this paper is the development of a novel approach that combines the one-step look-ahead deadlock avoidance policy with dynamic resource assignment. The dynamicresource assignment is achieved using greedy resource assignment for multi-mission robot teams in the framework of a matrix-based discrete event controller. Simulation results are presented in MATLAB to discuss in detail the proposed control strategy. The paper also discusses the toolkit developed in LabVIEW which is used to implement this control framework using a suitable example.展开更多
A new coordination scheme for multi-robot systems is proposed. A state space model of the multi- robot system is defined and constructed in which the system's initial and goal states are included along with the task ...A new coordination scheme for multi-robot systems is proposed. A state space model of the multi- robot system is defined and constructed in which the system's initial and goal states are included along with the task definition and the system's internal and external constraints. Task accomplishment is considered a transition of the system state in its state space (SS) under the system's constraints. Therefore, if there exists a connectable path within reachable area of the SS from the initial state to the goal state, the task is realizable. The optimal strategy for the task realization under constraints is investigated and reached by searching for the optimal state transition trajectory of the robot system in the SS. Moreover, if there is no connectable path, which means the task cannot be performed Successfully, the task could be transformed to be realizable by making the initial state and the goal state connectable and finding a path connecting them in the system's SS. This might be done via adjusting the system's configuration and/or task constraints. Experiments of multi-robot formation control with obstacles in the environment are conducted and simulation results show the validity of the proposed method.展开更多
This paper described a new method to plan out welding paths for multiple robots in virtual manufacturing environment. We first distribute welding tasks and priority for multi robots, and then apply corresponding behav...This paper described a new method to plan out welding paths for multiple robots in virtual manufacturing environment. We first distribute welding tasks and priority for multi robots, and then apply corresponding behavior rules to help to plan out welding paths for robots collision free, which is a base fixed problem. Finally, we testify the algorithm to be practical in virtual environment, and output robot programs to direct production process. This new way will help us to find a new development method for multiple robots path planning.展开更多
Analysis and design techniques for cooperative flocking of nonholonomic multi-robot systems with connectivity maintenance on directed graphs are presented. First, a set of bounded and smoothly distributed control prot...Analysis and design techniques for cooperative flocking of nonholonomic multi-robot systems with connectivity maintenance on directed graphs are presented. First, a set of bounded and smoothly distributed control protocols are devised via carefully designing a class of bounded artificial potential fields (APF) which could guarantee the connectivity maintenance, col ision avoidance and distance stabilization simultaneously during the system evolution. The connectivity of the underlying network can be preserved, and the desired stable flocking behavior can be achieved provided that the initial communication topology is strongly connected rather than undirected or balanced, which relaxes the constraints for group topology and extends the previous work to more generalized directed graphs. Furthermore, the proposed control algorithm is extended to solve the flocking problem with a virtual leader. In this case, it is shown that al robots can asymptotically move with the desired velocity and orientation even if there is only one informed robot in the team. Finally, nontrivial simulations and experiments are conducted to verify the effectiveness of the proposed algorithm.展开更多
A cooperative multi-robot system (CMRS) modeling method called fuzzy timed agent based Petri nets (FTAPN) is proposed in this paper, which has been extended from fuzzy timed object-oriented Petri net (FTOPN). The prop...A cooperative multi-robot system (CMRS) modeling method called fuzzy timed agent based Petri nets (FTAPN) is proposed in this paper, which has been extended from fuzzy timed object-oriented Petri net (FTOPN). The proposed FTAPN can be used to model and illustrate both the structural and dynamic aspects of CMRS, which is a typical multi-agent system (MAS). At the same time, supervised learning is supported in FTAPN. As a special type of high-level object, agent is introduced into FTAPN, which is used as a common modeling object in its model. The proposed FTAPN can not only be used to model CMRS and represent system aging effect, but also be refined into the object-oriented implementation easily. At the same time, it can also be regarded as a conceptual and practical artificial intelligence (AI) tool for multi-agent systems (MAS) into the mainstream practice of the software development.展开更多
Radiative cooling systems(RCSs)possess the distinctive capability to dissipate heat energy via solar and thermal radiation,making them suitable for thermal regulation and energy conservation applications,essential for...Radiative cooling systems(RCSs)possess the distinctive capability to dissipate heat energy via solar and thermal radiation,making them suitable for thermal regulation and energy conservation applications,essential for mitigating the energy crisis.A comprehensive review connecting the advancements in engineered radiative cooling systems(ERCSs),encompassing material and structural design as well as thermal and energy-related applications,is currently absent.Herein,this review begins with a concise summary of the essential concepts of ERCSs,followed by an introduction to engineered materials and structures,containing nature-inspired designs,chromatic materials,meta-structural configurations,and multilayered constructions.It subsequently encapsulates the primary applications,including thermal-regulating textiles and energy-saving devices.Next,it highlights the challenges of ERCSs,including maximized thermoregulatory effects,environmental adaptability,scalability and sustainability,and interdisciplinary integration.It seeks to offer direction for forthcoming fundamental research and industrial advancement of radiative cooling systems in real-world applications.展开更多
The human retina,a complex and highly specialized structure,includes multiple cell types that work synergistically to generate and transmit visual signals.However,genetic predisposition or age-related degeneration can...The human retina,a complex and highly specialized structure,includes multiple cell types that work synergistically to generate and transmit visual signals.However,genetic predisposition or age-related degeneration can lead to retinal damage that severely impairs vision or causes blindness.Treatment options for retinal diseases are limited,and there is an urgent need for innovative therapeutic strategies.Cell and gene therapies are promising because of the efficacy of delivery systems that transport therapeutic genes to targeted retinal cells.Gene delivery systems hold great promise for treating retinal diseases by enabling the targeted delivery of therapeutic genes to affected cells or by converting endogenous cells into functional ones to facilitate nerve regeneration,potentially restoring vision.This review focuses on two principal categories of gene delivery vectors used in the treatment of retinal diseases:viral and non-viral systems.Viral vectors,including lentiviruses and adeno-associated viruses,exploit the innate ability of viruses to infiltrate cells,which is followed by the introduction of therapeutic genetic material into target cells for gene correction.Lentiviruses can accommodate exogenous genes up to 8 kb in length,but their mechanism of integration into the host genome presents insertion mutation risks.Conversely,adeno-associated viruses are safer,as they exist as episomes in the nucleus,yet their limited packaging capacity constrains their application to a narrower spectrum of diseases,which necessitates the exploration of alternative delivery methods.In parallel,progress has also occurred in the development of novel non-viral delivery systems,particularly those based on liposomal technology.Manipulation of the ratios of hydrophilic and hydrophobic molecules within liposomes and the development of new lipid formulations have led to the creation of advanced non-viral vectors.These innovative systems include solid lipid nanoparticles,polymer nanoparticles,dendrimers,polymeric micelles,and polymeric nanoparticles.Compared with their viral counterparts,non-viral delivery systems offer markedly enhanced loading capacities that enable the direct delivery of nucleic acids,mRNA,or protein molecules into cells.This bypasses the need for DNA transcription and processing,which significantly enhances therapeutic efficiency.Nevertheless,the immunogenic potential and accumulation toxicity associated with non-viral particulate systems necessitates continued optimization to reduce adverse effects in vivo.This review explores the various delivery systems for retinal therapies and retinal nerve regeneration,and details the characteristics,advantages,limitations,and clinical applications of each vector type.By systematically outlining these factors,our goal is to guide the selection of the optimal delivery tool for a specific retinal disease,which will enhance treatment efficacy and improve patient outcomes while paving the way for more effective and targeted therapeutic interventions.展开更多
This paper studies the problem of formation-containment for multi-robot systems with stochastic sampling.First,a stochastic sampling control protocol is proposed,in which information exchanging among robots only occur...This paper studies the problem of formation-containment for multi-robot systems with stochastic sampling.First,a stochastic sampling control protocol is proposed,in which information exchanging among robots only occurred at the sampling time and two different sampling periods randomly switch.Thus,both energy and controller updating frequencies can be reduced.Also,the protocol can be applied to the situation where the sampling period varies stochastically.Second,sufficient conditions guaranteeing mean square formation-containment are derived.Under stochastic sampling mechanism,the leaders reach a geometric formation shape and the followers are in the geometric formation shape formed by the leaders.Finally,an example is shown to demonstrate the results.展开更多
With the continuous advancement and maturation of technologies such as big data,artificial intelligence,virtual reality,robotics,human-machine collaboration,and augmented reality,many enterprises are finding new avenu...With the continuous advancement and maturation of technologies such as big data,artificial intelligence,virtual reality,robotics,human-machine collaboration,and augmented reality,many enterprises are finding new avenues for digital transformation and intelligent upgrading.Industry 5.0,a further extension and development of Industry 4.0,has become an important development trend in industry with more emphasis on human-centered sustainability and flexibility.Accordingly,both the industrial metaverse and digital twins have attracted much attention in this new era.However,the relationship between them is not clear enough.In this paper,a comparison between digital twins and the metaverse in industry is made firstly.Then,we propose the concept and framework of Digital Twin Systems Engineering(DTSE)to demonstrate how digital twins support the industrial metaverse in the era of Industry 5.0 by integrating systems engineering principles.Furthermore,we discuss the key technologies and challenges of DTSE,in particular how artificial intelligence enhances the application of DTSE.Finally,a specific application scenario in the aviation field is presented to illustrate the application prospects of DTSE.展开更多
Dual-function communication radar systems use common Radio Frequency(RF)signals are used for both communication and detection.For better compatibility with existing communication systems,we adopt Multiple-Input Multip...Dual-function communication radar systems use common Radio Frequency(RF)signals are used for both communication and detection.For better compatibility with existing communication systems,we adopt Multiple-Input Multiple-Output(MIMO)Orthogonal Frequency Division Multiplexing(OFDM)signals as integrated signals and investigate the estimation performance of MIMO-OFDM signals.First,we analyze the Cramer-Rao Lower Bound(CRLB)of parameter estimation.Then,the transmit powers over different subcarriers are optimized to achieve the best tradeoff between the transmission rate and the estimation performance.Finally,we propose a more accurate estimation method that uses Canonical Polyadic Decomposition(CPD)of the third-order tensor to obtain the parameter matrices.Due to the characteristic of the column structure of the parameter matrices,we only need to use DFT/IDFT to recover the parameters of multiple targets.The simulation results show that tensor-based estimation method can achieve a performance close to CRLB,and the estimation performance can be improved by optimizing the transmit powers.展开更多
Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectiv...Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectively deal with nonlinearities,constraints,and noises in the system,optimize the performance metric,and present an upper bound on the stable output of the system.展开更多
Food systems are deeply affected by climate change and air pollution,while being key contributors to these environmental challenges.Understanding the complex interactions among food systems,climate change,and air poll...Food systems are deeply affected by climate change and air pollution,while being key contributors to these environmental challenges.Understanding the complex interactions among food systems,climate change,and air pollution is crucial for mitigating climate change,improving air quality,and promoting the sustainable development of food systems.However,the literature lacks a comprehensive review of these interactions,particularly in the current phase of rapid development in the field.To address this gap,this study systematically reviews recent research on the impacts of climate change and air pollution on food systems,as well as the greenhouse gas and air pollutant emissions from agri-food systems and their contribution to global climate change and air pollution.In addition,this study summarizes various strategies for mitigation and adaptation,including adjustments in agricultural practices and food supply chains.Profound changes in food systems are urgently needed to enhance adaptability and reduce emissions.This review offers a critical overview of current research on the interactions among food systems,climate change,and air pollution and highlights future research directions to support the transition to sustainable food systems.展开更多
In this paper,we investigate the distributed Nash equilibrium(NE)seeking problem for aggregative games with multiple uncertain Euler–Lagrange(EL)systems over jointly connected and weight-balanced switching networks.T...In this paper,we investigate the distributed Nash equilibrium(NE)seeking problem for aggregative games with multiple uncertain Euler–Lagrange(EL)systems over jointly connected and weight-balanced switching networks.The designed distributed controller consists of two parts:a dynamic average consensus part that asymptotically reproduces the unknown NE,and an adaptive reference-tracking module responsible for steering EL systems’positions to track a desired trajectory.The generalized Barbalat’s Lemma is used to overcome the discontinuity of the closed-loop system caused by the switching networks.The proposed algorithm is illustrated by a sensor network deployment problem.展开更多
This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method...This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method is employed to achieve secure control by estimating the system's state in real time.Secondly,by combining a memory-based adaptive eventtriggered mechanism with neural networks,the paper aims to approximate the nonlinear terms in the networked system and efficiently conserve system resources.Finally,based on a two-degree-of-freedom model of a vehicle affected by crosswinds,this paper constructs a multi-unmanned ground vehicle(Multi-UGV)system to validate the effectiveness of the proposed method.Simulation results show that the proposed control strategy can effectively handle external disturbances such as crosswinds in practical applications,ensuring the stability and reliable operation of the Multi-UGV system.展开更多
Traditional Chinese medicine(TCM)represents a paradigmatic approach to personalized medicine,developed through the systematic accumulation and refinement of clinical empirical data over more than 2000 years,and now en...Traditional Chinese medicine(TCM)represents a paradigmatic approach to personalized medicine,developed through the systematic accumulation and refinement of clinical empirical data over more than 2000 years,and now encompasses large-scale electronic medical records(EMR)and experimental molecular data.Artificial intelligence(AI)has demonstrated its utility in medicine through the development of various expert systems(e.g.,MYCIN)since the 1970s.With the emergence of deep learning and large language models(LLMs),AI’s potential in medicine shows considerable promise.Consequently,the integration of AI and TCM from both clinical and scientific perspectives presents a fundamental and promising research direction.This survey provides an insightful overview of TCM AI research,summarizing related research tasks from three perspectives:systems-level biological mechanism elucidation,real-world clinical evidence inference,and personalized clinical decision support.The review highlights representative AI methodologies alongside their applications in both TCM scientific inquiry and clinical practice.To critically assess the current state of the field,this work identifies major challenges and opportunities that constrain the development of robust research capabilities—particularly in the mechanistic understanding of TCM syndromes and herbal formulations,novel drug discovery,and the delivery of high-quality,patient-centered clinical care.The findings underscore that future advancements in AI-driven TCM research will rely on the development of high-quality,large-scale data repositories;the construction of comprehensive and domain-specific knowledge graphs(KGs);deeper insights into the biological mechanisms underpinning clinical efficacy;rigorous causal inference frameworks;and intelligent,personalized decision support systems.展开更多
A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source di...A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source disturbances are addressed according to their specific characteristics as follows:(A)an MTN data-driven model,which is used for uncertainty description,is designed accompanied with the mechanism model to represent the unmanned systems;(B)an adaptive MTN filter is used to remove the influence of the internal disturbance;(C)an MTN disturbance observer is constructed to estimate and compensate for the influence of the external disturbance;(D)the Extended Kalman Filter(EKF)algorithm is utilized as the learning mechanism for MTNs.Second,to address the time-delay effect,a recursiveτstep-ahead MTN predictive model is designed utilizing recursive technology,aiming to mitigate the impact of time-delay,and the EKF algorithm is employed as its learning mechanism.Then,the MTN predictive control law is designed based on the quadratic performance index.By implementing the proposed composite controller to unmanned systems,simultaneous feedforward compensation and feedback suppression to the multi-source disturbances are conducted.Finally,the convergence of the MTN and the stability of the closed-loop system are established utilizing the Lyapunov theorem.Two exemplary applications of unmanned systems involving unmanned vehicle and rigid spacecraft are presented to validate the effectiveness of the proposed approach.展开更多
文摘This survey presents a comprehensive review of vari-ous methods and algorithms related to passing-through control of multi-robot systems in cluttered environments.Numerous studies have investigated this area,and we identify several avenues for enhancing existing methods.This survey describes some models of robots and commonly considered control objec-tives,followed by an in-depth analysis of four types of algo-rithms that can be employed for passing-through control:leader-follower formation control,multi-robot trajectory planning,con-trol-based methods,and virtual tube planning and control.Fur-thermore,we conduct a comparative analysis of these tech-niques and provide some subjective and general evaluations.
基金supported by National Natural Science Foundation of China under Grant No.62372110Fujian Provincial Natural Science of Foundation under Grants 2023J02008,2024H0009.
文摘The rapid advancement of Industry 4.0 has revolutionized manufacturing,shifting production from centralized control to decentralized,intelligent systems.Smart factories are now expected to achieve high adaptability and resource efficiency,particularly in mass customization scenarios where production schedules must accommodate dynamic and personalized demands.To address the challenges of dynamic task allocation,uncertainty,and realtime decision-making,this paper proposes Pathfinder,a deep reinforcement learning-based scheduling framework.Pathfinder models scheduling data through three key matrices:execution time(the time required for a job to complete),completion time(the actual time at which a job is finished),and efficiency(the performance of executing a single job).By leveraging neural networks,Pathfinder extracts essential features from these matrices,enabling intelligent decision-making in dynamic production environments.Unlike traditional approaches with fixed scheduling rules,Pathfinder dynamically selects from ten diverse scheduling rules,optimizing decisions based on real-time environmental conditions.To further enhance scheduling efficiency,a specialized reward function is designed to support dynamic task allocation and real-time adjustments.This function helps Pathfinder continuously refine its scheduling strategy,improving machine utilization and minimizing job completion times.Through reinforcement learning,Pathfinder adapts to evolving production demands,ensuring robust performance in real-world applications.Experimental results demonstrate that Pathfinder outperforms traditional scheduling approaches,offering improved coordination and efficiency in smart factories.By integrating deep reinforcement learning,adaptable scheduling strategies,and an innovative reward function,Pathfinder provides an effective solution to the growing challenges of multi-robot job scheduling in mass customization environments.
基金This work was supported in part by the National Natural Science Foundation of China(U1909206,61725305,61903007,62073196)in part by the S&T Program of Hebei(F2020203037).
文摘As a cross-cutting field between ocean development and multi-robot system(MRS),the underwater multi-robot system(UMRS)has gained increasing attention from researchers and engineers in recent decades.In this paper,we present a comprehensive survey of cooperation issues,one of the key components of UMRS,from the perspective of the emergence of new functions.More specifically,we categorize the cooperation in terms of task-space,motion-space,measurement-space,as well as their combination.Further,we analyze the architecture of UMRS from three aspects,i.e.,the performance of the individual underwater robot,the new functions of underwater robots,and the technical approaches of MRS.To conclude,we have discussed related promising directions for future research.This survey provides valuable insight into the reasonable utilization of UMRS to attain diverse underwater tasks in complex ocean application scenarios.
基金supported by the National High Technology Research and Development Program of China(863 Program)(2015AA015403)the National Natural Science Foundation of China(61404069,61401185)the Project of Education Department of Liaoning Province(LJYL052)
文摘Nowadays, robots generally have a variety of capabilities, which often form a coalition replacing human to work in dangerous environment, such as rescue, exploration, etc. In these operating conditions, the energy supply of robots usually cannot be guaranteed. If the energy resources of some robots are consumed too fast, the number of the future tasks of the coalition will be affected. This paper will develop a novel task allocation method based on Gini coefficient to make full use of limited energy resources of multi-robot system to maximize the number of tasks. At the same time, considering resources consumption,we incorporate the market-based allocation mechanism into our Gini coefficient-based method and propose a hybrid method,which can flexibly optimize the task completion number and the resource consumption according to the application contexts.Experiments show that the multi-robot system with limited energy resources can accomplish more tasks by the proposed Gini coefficient-based method, and the hybrid method can be dynamically adaptive to changes of the work environment and realize the dual optimization goals.
基金supported by the Army Research Office(ARO)(DAAD 19-02-1-0366,ARO W91NF-05-1-0314)the National Science Foundation(IIS-0326505,CNS-0421282)+1 种基金the Singapore SERC TSRP(0421120028)the NI Lead User grant,and the Texas Advanced Research Program(ARP)(14-748779)
文摘In unstructured environments, dynamic resource assignment is required for effective cooperation of robot teams. In some scenarios, robots are in charge of executing multiple missions simultaneously. This creates risks of deadlock due to the presence of shared resources among various missions. The main contribution of this paper is the development of a novel approach that combines the one-step look-ahead deadlock avoidance policy with dynamic resource assignment. The dynamicresource assignment is achieved using greedy resource assignment for multi-mission robot teams in the framework of a matrix-based discrete event controller. Simulation results are presented in MATLAB to discuss in detail the proposed control strategy. The paper also discusses the toolkit developed in LabVIEW which is used to implement this control framework using a suitable example.
基金the National Natural Science Foundation of China (60428303).
文摘A new coordination scheme for multi-robot systems is proposed. A state space model of the multi- robot system is defined and constructed in which the system's initial and goal states are included along with the task definition and the system's internal and external constraints. Task accomplishment is considered a transition of the system state in its state space (SS) under the system's constraints. Therefore, if there exists a connectable path within reachable area of the SS from the initial state to the goal state, the task is realizable. The optimal strategy for the task realization under constraints is investigated and reached by searching for the optimal state transition trajectory of the robot system in the SS. Moreover, if there is no connectable path, which means the task cannot be performed Successfully, the task could be transformed to be realizable by making the initial state and the goal state connectable and finding a path connecting them in the system's SS. This might be done via adjusting the system's configuration and/or task constraints. Experiments of multi-robot formation control with obstacles in the environment are conducted and simulation results show the validity of the proposed method.
基金Natural Science Foundation of China (No.5 98895 0 5 )
文摘This paper described a new method to plan out welding paths for multiple robots in virtual manufacturing environment. We first distribute welding tasks and priority for multi robots, and then apply corresponding behavior rules to help to plan out welding paths for robots collision free, which is a base fixed problem. Finally, we testify the algorithm to be practical in virtual environment, and output robot programs to direct production process. This new way will help us to find a new development method for multiple robots path planning.
基金supported by the National Natural Science Foundation of China(61175112)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(G61321002)+3 种基金the Projects of Major International(Regional)Joint Research Program(61120106010)the Beijing Education Committee Cooperation Building Foundationthe Program for Changjiang Scholars and Innovative Research Team in University(IRT1208)the ChangJiang Scholars Program and the Beijing Outstanding Ph.D.Program Mentor Grant(20131000704)
文摘Analysis and design techniques for cooperative flocking of nonholonomic multi-robot systems with connectivity maintenance on directed graphs are presented. First, a set of bounded and smoothly distributed control protocols are devised via carefully designing a class of bounded artificial potential fields (APF) which could guarantee the connectivity maintenance, col ision avoidance and distance stabilization simultaneously during the system evolution. The connectivity of the underlying network can be preserved, and the desired stable flocking behavior can be achieved provided that the initial communication topology is strongly connected rather than undirected or balanced, which relaxes the constraints for group topology and extends the previous work to more generalized directed graphs. Furthermore, the proposed control algorithm is extended to solve the flocking problem with a virtual leader. In this case, it is shown that al robots can asymptotically move with the desired velocity and orientation even if there is only one informed robot in the team. Finally, nontrivial simulations and experiments are conducted to verify the effectiveness of the proposed algorithm.
文摘A cooperative multi-robot system (CMRS) modeling method called fuzzy timed agent based Petri nets (FTAPN) is proposed in this paper, which has been extended from fuzzy timed object-oriented Petri net (FTOPN). The proposed FTAPN can be used to model and illustrate both the structural and dynamic aspects of CMRS, which is a typical multi-agent system (MAS). At the same time, supervised learning is supported in FTAPN. As a special type of high-level object, agent is introduced into FTAPN, which is used as a common modeling object in its model. The proposed FTAPN can not only be used to model CMRS and represent system aging effect, but also be refined into the object-oriented implementation easily. At the same time, it can also be regarded as a conceptual and practical artificial intelligence (AI) tool for multi-agent systems (MAS) into the mainstream practice of the software development.
基金support from the Contract Research(“Development of Breathable Fabrics with Nano-Electrospun Membrane”,CityU ref.:9231419“Research and application of antibacterial and healing-promoting smart nanofiber dressing for children’s burn wounds”,CityU ref:PJ9240111)+1 种基金the National Natural Science Foundation of China(“Study of Multi-Responsive Shape Memory Polyurethane Nanocomposites Inspired by Natural Fibers”,Grant No.51673162)Startup Grant of CityU(“Laboratory of Wearable Materials for Healthcare”,Grant No.9380116).
文摘Radiative cooling systems(RCSs)possess the distinctive capability to dissipate heat energy via solar and thermal radiation,making them suitable for thermal regulation and energy conservation applications,essential for mitigating the energy crisis.A comprehensive review connecting the advancements in engineered radiative cooling systems(ERCSs),encompassing material and structural design as well as thermal and energy-related applications,is currently absent.Herein,this review begins with a concise summary of the essential concepts of ERCSs,followed by an introduction to engineered materials and structures,containing nature-inspired designs,chromatic materials,meta-structural configurations,and multilayered constructions.It subsequently encapsulates the primary applications,including thermal-regulating textiles and energy-saving devices.Next,it highlights the challenges of ERCSs,including maximized thermoregulatory effects,environmental adaptability,scalability and sustainability,and interdisciplinary integration.It seeks to offer direction for forthcoming fundamental research and industrial advancement of radiative cooling systems in real-world applications.
基金Hongguang Wu,Both authors contributed equally to this work and share first authorshipLing Dong,Both authors contributed equally to this work and share first authorship。
文摘The human retina,a complex and highly specialized structure,includes multiple cell types that work synergistically to generate and transmit visual signals.However,genetic predisposition or age-related degeneration can lead to retinal damage that severely impairs vision or causes blindness.Treatment options for retinal diseases are limited,and there is an urgent need for innovative therapeutic strategies.Cell and gene therapies are promising because of the efficacy of delivery systems that transport therapeutic genes to targeted retinal cells.Gene delivery systems hold great promise for treating retinal diseases by enabling the targeted delivery of therapeutic genes to affected cells or by converting endogenous cells into functional ones to facilitate nerve regeneration,potentially restoring vision.This review focuses on two principal categories of gene delivery vectors used in the treatment of retinal diseases:viral and non-viral systems.Viral vectors,including lentiviruses and adeno-associated viruses,exploit the innate ability of viruses to infiltrate cells,which is followed by the introduction of therapeutic genetic material into target cells for gene correction.Lentiviruses can accommodate exogenous genes up to 8 kb in length,but their mechanism of integration into the host genome presents insertion mutation risks.Conversely,adeno-associated viruses are safer,as they exist as episomes in the nucleus,yet their limited packaging capacity constrains their application to a narrower spectrum of diseases,which necessitates the exploration of alternative delivery methods.In parallel,progress has also occurred in the development of novel non-viral delivery systems,particularly those based on liposomal technology.Manipulation of the ratios of hydrophilic and hydrophobic molecules within liposomes and the development of new lipid formulations have led to the creation of advanced non-viral vectors.These innovative systems include solid lipid nanoparticles,polymer nanoparticles,dendrimers,polymeric micelles,and polymeric nanoparticles.Compared with their viral counterparts,non-viral delivery systems offer markedly enhanced loading capacities that enable the direct delivery of nucleic acids,mRNA,or protein molecules into cells.This bypasses the need for DNA transcription and processing,which significantly enhances therapeutic efficiency.Nevertheless,the immunogenic potential and accumulation toxicity associated with non-viral particulate systems necessitates continued optimization to reduce adverse effects in vivo.This review explores the various delivery systems for retinal therapies and retinal nerve regeneration,and details the characteristics,advantages,limitations,and clinical applications of each vector type.By systematically outlining these factors,our goal is to guide the selection of the optimal delivery tool for a specific retinal disease,which will enhance treatment efficacy and improve patient outcomes while paving the way for more effective and targeted therapeutic interventions.
基金supported by the National Natural Science Foundation of China(Grant No.61873318)the Frontier Research Funds of Applied Foundation of Wuhan(Grant No.2019010701011421)+1 种基金the National Defense Scienceof China(Grant No.JCKY2017207B005)the Program for HUST(Huazhong University of Science and Technology)Academic Frontier Youth Team(Grant No.2018QYTD07)。
文摘This paper studies the problem of formation-containment for multi-robot systems with stochastic sampling.First,a stochastic sampling control protocol is proposed,in which information exchanging among robots only occurred at the sampling time and two different sampling periods randomly switch.Thus,both energy and controller updating frequencies can be reduced.Also,the protocol can be applied to the situation where the sampling period varies stochastically.Second,sufficient conditions guaranteeing mean square formation-containment are derived.Under stochastic sampling mechanism,the leaders reach a geometric formation shape and the followers are in the geometric formation shape formed by the leaders.Finally,an example is shown to demonstrate the results.
基金Supported by Beijing Municipal Natural Science Foundation of China(Grant No.24JL002)China Postdoctoral Science Foundation(Grant No.2024M754054)+2 种基金National Natural Science Foundation of China(Grant No.52120105008)Beijing Municipal Outstanding Young Scientis Program of Chinathe New Cornerstone Science Foundation through the XPLORER PRIZE。
文摘With the continuous advancement and maturation of technologies such as big data,artificial intelligence,virtual reality,robotics,human-machine collaboration,and augmented reality,many enterprises are finding new avenues for digital transformation and intelligent upgrading.Industry 5.0,a further extension and development of Industry 4.0,has become an important development trend in industry with more emphasis on human-centered sustainability and flexibility.Accordingly,both the industrial metaverse and digital twins have attracted much attention in this new era.However,the relationship between them is not clear enough.In this paper,a comparison between digital twins and the metaverse in industry is made firstly.Then,we propose the concept and framework of Digital Twin Systems Engineering(DTSE)to demonstrate how digital twins support the industrial metaverse in the era of Industry 5.0 by integrating systems engineering principles.Furthermore,we discuss the key technologies and challenges of DTSE,in particular how artificial intelligence enhances the application of DTSE.Finally,a specific application scenario in the aviation field is presented to illustrate the application prospects of DTSE.
基金supported by the National Natural Science Foundation of China under grants 62072229,U1936201,62071220,61976113joint project of China Mobile Research Institute&X-NET。
文摘Dual-function communication radar systems use common Radio Frequency(RF)signals are used for both communication and detection.For better compatibility with existing communication systems,we adopt Multiple-Input Multiple-Output(MIMO)Orthogonal Frequency Division Multiplexing(OFDM)signals as integrated signals and investigate the estimation performance of MIMO-OFDM signals.First,we analyze the Cramer-Rao Lower Bound(CRLB)of parameter estimation.Then,the transmit powers over different subcarriers are optimized to achieve the best tradeoff between the transmission rate and the estimation performance.Finally,we propose a more accurate estimation method that uses Canonical Polyadic Decomposition(CPD)of the third-order tensor to obtain the parameter matrices.Due to the characteristic of the column structure of the parameter matrices,we only need to use DFT/IDFT to recover the parameters of multiple targets.The simulation results show that tensor-based estimation method can achieve a performance close to CRLB,and the estimation performance can be improved by optimizing the transmit powers.
基金supported in part by the National Natural Science Foundation of China(62173255,62188101)Shenzhen Key Laboratory of Control Theory and Intelligent Systems(ZDSYS20220330161800001)
文摘Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectively deal with nonlinearities,constraints,and noises in the system,optimize the performance metric,and present an upper bound on the stable output of the system.
基金supported by the National Natural Science Foundation of China(42277087,42130708,42471021,42277482,and 42361144876)the Natural Science Foundation of Guangdong Province(2024A1515012550)+3 种基金the Hainan Institute of National Park grant(KY-23ZK01)the Tsinghua Shenzhen International Graduate School Cross-disciplinary Research and Innovation Fund Research Plan(JC2022011)the Shenzhen Science and Technology Program(JCYJ20240813112106009 and ZDSYS20220606100806014)the Scientific Research Start-up Funds(QD2021030C)from Tsinghua Shenzhen International Graduate School。
文摘Food systems are deeply affected by climate change and air pollution,while being key contributors to these environmental challenges.Understanding the complex interactions among food systems,climate change,and air pollution is crucial for mitigating climate change,improving air quality,and promoting the sustainable development of food systems.However,the literature lacks a comprehensive review of these interactions,particularly in the current phase of rapid development in the field.To address this gap,this study systematically reviews recent research on the impacts of climate change and air pollution on food systems,as well as the greenhouse gas and air pollutant emissions from agri-food systems and their contribution to global climate change and air pollution.In addition,this study summarizes various strategies for mitigation and adaptation,including adjustments in agricultural practices and food supply chains.Profound changes in food systems are urgently needed to enhance adaptability and reduce emissions.This review offers a critical overview of current research on the interactions among food systems,climate change,and air pollution and highlights future research directions to support the transition to sustainable food systems.
基金supported by the Research Grants Council of the Hong Kong Special Administration Region under the Grant No.14201621。
文摘In this paper,we investigate the distributed Nash equilibrium(NE)seeking problem for aggregative games with multiple uncertain Euler–Lagrange(EL)systems over jointly connected and weight-balanced switching networks.The designed distributed controller consists of two parts:a dynamic average consensus part that asymptotically reproduces the unknown NE,and an adaptive reference-tracking module responsible for steering EL systems’positions to track a desired trajectory.The generalized Barbalat’s Lemma is used to overcome the discontinuity of the closed-loop system caused by the switching networks.The proposed algorithm is illustrated by a sensor network deployment problem.
基金The National Natural Science Foundation of China(W2431048)The Science and Technology Research Program of Chongqing Municipal Education Commission,China(KJZDK202300807)The Chongqing Natural Science Foundation,China(CSTB2024NSCQQCXMX0052).
文摘This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method is employed to achieve secure control by estimating the system's state in real time.Secondly,by combining a memory-based adaptive eventtriggered mechanism with neural networks,the paper aims to approximate the nonlinear terms in the networked system and efficiently conserve system resources.Finally,based on a two-degree-of-freedom model of a vehicle affected by crosswinds,this paper constructs a multi-unmanned ground vehicle(Multi-UGV)system to validate the effectiveness of the proposed method.Simulation results show that the proposed control strategy can effectively handle external disturbances such as crosswinds in practical applications,ensuring the stability and reliable operation of the Multi-UGV system.
基金supported by the National Key Research and Development Program (No.2023YFC3502604)the National Natural Science Foundation of China (Nos.U23B2062, 82274352,82174533, 82374302, 82204941)+3 种基金the Noncommunicable Chronic Diseases-National Science and Technology Major Project (No.2023ZD0505700)the Beijing-Tianjin-Hebei Basic Research Cooperation Project (No.22JCZXJC00070)the State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture (No.SKL2024Z0102)Key R&D project of Ningxia Autonomous Region (No.2022BEG02036).
文摘Traditional Chinese medicine(TCM)represents a paradigmatic approach to personalized medicine,developed through the systematic accumulation and refinement of clinical empirical data over more than 2000 years,and now encompasses large-scale electronic medical records(EMR)and experimental molecular data.Artificial intelligence(AI)has demonstrated its utility in medicine through the development of various expert systems(e.g.,MYCIN)since the 1970s.With the emergence of deep learning and large language models(LLMs),AI’s potential in medicine shows considerable promise.Consequently,the integration of AI and TCM from both clinical and scientific perspectives presents a fundamental and promising research direction.This survey provides an insightful overview of TCM AI research,summarizing related research tasks from three perspectives:systems-level biological mechanism elucidation,real-world clinical evidence inference,and personalized clinical decision support.The review highlights representative AI methodologies alongside their applications in both TCM scientific inquiry and clinical practice.To critically assess the current state of the field,this work identifies major challenges and opportunities that constrain the development of robust research capabilities—particularly in the mechanistic understanding of TCM syndromes and herbal formulations,novel drug discovery,and the delivery of high-quality,patient-centered clinical care.The findings underscore that future advancements in AI-driven TCM research will rely on the development of high-quality,large-scale data repositories;the construction of comprehensive and domain-specific knowledge graphs(KGs);deeper insights into the biological mechanisms underpinning clinical efficacy;rigorous causal inference frameworks;and intelligent,personalized decision support systems.
基金co-supported by the National Key R&D Program of China(No.2023YFB4704400)the Zhejiang Provincial Natural Science Foundation of China(No.LQ24F030012)the National Natural Science Foundation of China General Project(No.62373033)。
文摘A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source disturbances are addressed according to their specific characteristics as follows:(A)an MTN data-driven model,which is used for uncertainty description,is designed accompanied with the mechanism model to represent the unmanned systems;(B)an adaptive MTN filter is used to remove the influence of the internal disturbance;(C)an MTN disturbance observer is constructed to estimate and compensate for the influence of the external disturbance;(D)the Extended Kalman Filter(EKF)algorithm is utilized as the learning mechanism for MTNs.Second,to address the time-delay effect,a recursiveτstep-ahead MTN predictive model is designed utilizing recursive technology,aiming to mitigate the impact of time-delay,and the EKF algorithm is employed as its learning mechanism.Then,the MTN predictive control law is designed based on the quadratic performance index.By implementing the proposed composite controller to unmanned systems,simultaneous feedforward compensation and feedback suppression to the multi-source disturbances are conducted.Finally,the convergence of the MTN and the stability of the closed-loop system are established utilizing the Lyapunov theorem.Two exemplary applications of unmanned systems involving unmanned vehicle and rigid spacecraft are presented to validate the effectiveness of the proposed approach.