针对设备背景噪声影响机械故障检测的问题,提出一种融合自适应噪声完全集成局部均值分解(Complete Ensemble Local Mean Decomposition with Adaptive Noise,CELMDAN)与改进的多点最优最小熵去卷积调整(Improved Multipoint Optimal Min...针对设备背景噪声影响机械故障检测的问题,提出一种融合自适应噪声完全集成局部均值分解(Complete Ensemble Local Mean Decomposition with Adaptive Noise,CELMDAN)与改进的多点最优最小熵去卷积调整(Improved Multipoint Optimal Minimum Entropy Deconvolution Adjusted,IMOMEDA)的微弱机械特征增强方法。该方法首先利用CELMDAN方法把复杂振动信号分解为多个单模态的乘积函数(Product Functions,PFs),解决了集成局部均值分解(Ensemble Local Mean Decomposition,ELMD)对信号施加噪声幅值和试错次数难以确定的问题。其次,提出一种具有鲁棒性较强、物理意义明确以及尺度不变性的周期调制强度(Periodic Modulation Intensity,PMI),以筛选出有效的PFs。接着,针对所选PFs中的噪声,提出IMOMEDA方法进行消除,该方法通过迭代估计最优模型参数,自适应地提取振动信号中的周期性故障瞬态特征,能够在频域中定位瞬态的谱峭度,从而抽取被背景噪声淹没的微弱故障特征。最后,以煤矿提升机为研究对象,设计了多种振动信号特征增强方法对比实验、机械运行状态诊断性能实验以及信号特征增强算法性能对比实验,多角度验证了本文方法的有效性。展开更多
文摘针对设备背景噪声影响机械故障检测的问题,提出一种融合自适应噪声完全集成局部均值分解(Complete Ensemble Local Mean Decomposition with Adaptive Noise,CELMDAN)与改进的多点最优最小熵去卷积调整(Improved Multipoint Optimal Minimum Entropy Deconvolution Adjusted,IMOMEDA)的微弱机械特征增强方法。该方法首先利用CELMDAN方法把复杂振动信号分解为多个单模态的乘积函数(Product Functions,PFs),解决了集成局部均值分解(Ensemble Local Mean Decomposition,ELMD)对信号施加噪声幅值和试错次数难以确定的问题。其次,提出一种具有鲁棒性较强、物理意义明确以及尺度不变性的周期调制强度(Periodic Modulation Intensity,PMI),以筛选出有效的PFs。接着,针对所选PFs中的噪声,提出IMOMEDA方法进行消除,该方法通过迭代估计最优模型参数,自适应地提取振动信号中的周期性故障瞬态特征,能够在频域中定位瞬态的谱峭度,从而抽取被背景噪声淹没的微弱故障特征。最后,以煤矿提升机为研究对象,设计了多种振动信号特征增强方法对比实验、机械运行状态诊断性能实验以及信号特征增强算法性能对比实验,多角度验证了本文方法的有效性。