To investigate the distribution characteristics and influencing factors of bicycle detour behavior,this study ac-curately identified detour behavior using global positioning system(GPS)track data from shared bicycles....To investigate the distribution characteristics and influencing factors of bicycle detour behavior,this study ac-curately identified detour behavior using global positioning system(GPS)track data from shared bicycles.Factors such as travel time,road conditions,public transportation facilities,and land use types were considered in constructing a detour behavior influence model based on the CatBoost machine learning algorithm.The interpretability of the machine learning framework was enhanced via Shapley additive explanations(SHAP),enabling an analysis of the impact of each factor on detour behavior.The results indicated that the CatBoost model effectively recognized detour behavior with high accuracy.The frequency of detour behavior increased with higher road levels,greater distances to crossing facilities,wider bike lanes,and an increased number of bus stops,subway stations,and leisure and entertainment facilities,while it decreased with a higher number of office commuting facilities.In addition,detour behavior was more prevalent on weekends,during off-peak hours,and under conditions involving physical central lane separation and physical bike lane separation.These findings offer a novel approach for identifying bicycle riding behaviors and analyzing their influencing factors,providing effective technical support for non-motorized traffic management and infrastructure optimization.展开更多
Sharing of personal health records(PHR)in cloud computing is an essential functionality in the healthcare system.However,how to securely,efficiently and flexibly share PHRs data of the patient in a multi-receiver sett...Sharing of personal health records(PHR)in cloud computing is an essential functionality in the healthcare system.However,how to securely,efficiently and flexibly share PHRs data of the patient in a multi-receiver setting has not been well addressed.For instance,since the trust domain of the cloud server is not identical to the data owner or data user,the semi-trust cloud service provider may intentionally destroy or tamper shared PHRs data of user or only transform partial ciphertext of the shared PHRs or even return wrong computation results to save its storage and computation resource,to pursue maximum economic interest or other malicious purposes.Thus,the PHRs data storing or sharing via the cloud server should be performed with consistency and integrity verification.Fortunately,the emergence of blockchain technology provides new ideas and prospects for ensuring the consistency and integrity of shared PHRs data.To this end,in this work,we leverage the consortiumblockchain technology to enhance the trustworthiness of each participant and propose a blockchain-based patient-centric data sharing scheme for PHRs in cloud computing(BC-PC-Share).Different from the state-of-art schemes,our proposal can achieve the following desired properties:(1)Realizing patient-centric PHRs sharing with a public verification function,i.e.,which can ensure that the returned shared data is consistent with the requested shared data and the integrity of the shared data is not compromised.(2)Supporting scalable and fine-grained access control and sharing of PHRs data with multiple domain users,such as hospitals,medical research institutes,and medical insurance companies.(3)Achieving efficient user decryption by leveraging the transformation key technique and efficient user revocation by introducing time-controlled access.The security analysis and simulation experiment demonstrate that the proposed BC-PC-Share scheme is a feasible and promising solution for PHRs data sharing via consortium blockchain.展开更多
Clustering is the task of assigning a set of instances into groups in such a way that is dissimilarity of instances within each group is minimized. Clustering is widely used in several areas such as data mining, patte...Clustering is the task of assigning a set of instances into groups in such a way that is dissimilarity of instances within each group is minimized. Clustering is widely used in several areas such as data mining, pattern recognition, machine learning, image processing, computer vision and etc. K-means is a popular clustering algorithm which partitions instances into a fixed number clusters in an iterative fashion. Although k-means is considered to be a poor clustering algorithm in terms of result quality, due to its simplicity, speed on practical applications, and iterative nature it is selected as one of the top 10 algorithms in data mining [1]. Parallelization of k-means is also studied during the last 2 decades. Most of these work concentrate on shared-nothing architectures. With the advent of current technological advances on GPU technology, implementation of the k-means algorithm on shared memory architectures recently start to attract some attention. However, to the best of our knowledge, no in-depth analysis on the performance of k-means on shared memory multiprocessors is done in the literature. In this work, our aim is to fill this gap by providing theoretical analysis on the performance of k-means algorithm and presenting extensive tests on a shared memory architecture.展开更多
With the increasing popularity of blockchain applications, the security of data sources on the blockchain is gradually receiving attention. Providing reliable data for the blockchain safely and efficiently has become ...With the increasing popularity of blockchain applications, the security of data sources on the blockchain is gradually receiving attention. Providing reliable data for the blockchain safely and efficiently has become a research hotspot, and the security of the oracle responsible for providing reliable data has attracted much attention. The most widely used centralized oracles in blockchain, such as Provable and Town Crier, all rely on a single oracle to obtain data, which suffers from a single point of failure and limits the large-scale development of blockchain. To this end, the distributed oracle scheme is put forward, but the existing distributed oracle schemes such as Chainlink and Augur generally have low execution efficiency and high communication overhead, which leads to their poor applicability. To solve the above problems, this paper proposes a trusted distributed oracle scheme based on a share recovery threshold signature. First, a data verification method of distributed oracles is designed based on threshold signature. By aggregating the signatures of oracles, data from different data sources can be mutually verified, leading to a more efficient data verification and aggregation process. Then, a credibility-based cluster head election algorithm is designed, which reduces the communication overhead by clarifying the function distribution and building a hierarchical structure. Considering the good performance of the BLS threshold signature in large-scale applications, this paper combines it with distributed oracle technology and proposes a BLS threshold signature algorithm that supports share recovery in distributed oracles. The share recovery mechanism enables the proposed scheme to solve the key loss issue, and the setting of the threshold value enables the proposed scheme to complete signature aggregation with only a threshold number of oracles, making the scheme more robust. Finally, experimental results indicate that, by using the threshold signature technology and the cluster head election algorithm, our scheme effectively improves the execution efficiency of oracles and solves the problem of a single point of failure, leading to higher scalability and robustness.展开更多
The accelerated advancement of the Internet of Things(IoT)has generated substantial data,including sensitive and private information.Consequently,it is imperative to guarantee the security of data sharing.While facili...The accelerated advancement of the Internet of Things(IoT)has generated substantial data,including sensitive and private information.Consequently,it is imperative to guarantee the security of data sharing.While facilitating fine-grained access control,Ciphertext Policy Attribute-Based Encryption(CP-ABE)can effectively ensure the confidentiality of shared data.Nevertheless,the conventional centralized CP-ABE scheme is plagued by the issues of keymisuse,key escrow,and large computation,which will result in security risks.This paper suggests a lightweight IoT data security sharing scheme that integrates blockchain technology and CP-ABE to address the abovementioned issues.The integrity and traceability of shared data are guaranteed by the use of blockchain technology to store and verify access transactions.The encryption and decryption operations of the CP-ABE algorithm have been implemented using elliptic curve scalarmultiplication to accommodate lightweight IoT devices,as opposed to themore arithmetic bilinear pairing found in the traditional CP-ABE algorithm.Additionally,a portion of the computation is delegated to the edge nodes to alleviate the computational burden on users.A distributed key management method is proposed to address the issues of key escrow andmisuse.Thismethod employs the edge blockchain to facilitate the storage and distribution of attribute private keys.Meanwhile,data security sharing is enhanced by combining off-chain and on-chain ciphertext storage.The security and performance analysis indicates that the proposed scheme is more efficient and secure.展开更多
Photonuclear data are increasingly used in fundamental nuclear research and technological applications.These data are generated using advanced γ-ray sources.The Shanghai laser electron gamma source(SLEGS)is a new las...Photonuclear data are increasingly used in fundamental nuclear research and technological applications.These data are generated using advanced γ-ray sources.The Shanghai laser electron gamma source(SLEGS)is a new laser Compton scattering γ-ray source at the Shanghai Synchrotron Radiation Facility.It delivers energy-tunable,quasi-monoenergetic gamma beams for high-precision photonuclear measurements.This paper presents the flat-efficiency detector(FED)array at SLEGS and its application in photoneutron cross-section measurements.Systematic uncertainties of the FED array were determined to be 3.02%through calibration with a ^(252)Cf neutron source.Using ^(197)Au and ^(159)Tb as representative nuclei,we demonstrate the format and processing methodology for raw photoneutron data.The results validate SLEGS’capability for high-precision photoneutron measurements.展开更多
【Objective】Medical imaging data has great value,but it contains a significant amount of sensitive information about patients.At present,laws and regulations regarding to the de-identification of medical imaging data...【Objective】Medical imaging data has great value,but it contains a significant amount of sensitive information about patients.At present,laws and regulations regarding to the de-identification of medical imaging data are not clearly defined around the world.This study aims to develop a tool that meets compliance-driven desensitization requirements tailored to diverse research needs.【Methods】To enhance the security of medical image data,we designed and implemented a DICOM format medical image de-identification system on the Windows operating system.【Results】Our custom de-identification system is adaptable to the legal standards of different countries and can accommodate specific research demands.The system offers both web-based online and desktop offline de-identification capabilities,enabling customization of de-identification rules and facilitating batch processing to improve efficiency.【Conclusions】This medical image de-identification system robustly strengthens the stewardship of sensitive medical data,aligning with data security protection requirements while facilitating the sharing and utilization of medical image data.This approach unlocks the intrinsic value inherent in such datasets.展开更多
Data space,as an innovative data management and sharing model,is emerging in the medical and health sectors.This study expounds on the conceptual connotation of data space and delineates its key technologies,including...Data space,as an innovative data management and sharing model,is emerging in the medical and health sectors.This study expounds on the conceptual connotation of data space and delineates its key technologies,including distributed data storage,standardization and interoperability of data sharing,data security and privacy protection,data analysis and mining,and data space assessment.By analyzing the real-world cases of data spaces within medicine and health,this study compares the similarities and differences across various dimensions such as purpose,architecture,data interoperability,and privacy protection.Meanwhile,data spaces in these fields are challenged by the limited computing resources,the complexities of data integration,and the need for optimized algorithms.Additionally,legal and ethical issues such as unclear data ownership,undefined usage rights,risks associated with privacy protection need to be addressed.The study notes organizational and management difficulties,calling for enhancements in governance framework,data sharing mechanisms,and value assessment systems.In the future,technological innovation,sound regulations,and optimized management will help the development of the medical and health data space.These developments will enable the secure and efficient utilization of data,propelling the medical industry into an era characterized by precision,intelligence,and personalization.展开更多
To reconstruct vehicle accidents,data from the time of the incident—such as pre-collision speed and collision point—is essential.This data is collected and generated through various sensors installed in the vehicle....To reconstruct vehicle accidents,data from the time of the incident—such as pre-collision speed and collision point—is essential.This data is collected and generated through various sensors installed in the vehicle.However,it may contain sensitive information about the vehicle owner.Consequently,vehicle owners tend to be reluctant to provide their vehicle data due to concerns about personal information exposure.Therefore,extensive research has been conducted on secure vehicle data trading models.Existing models primarily utilize centralized approaches,leading to issues such as single points of failure,data leakage,and manipulation.To address these problems,this paper proposes ORTHRUS,a blockchain-based vehicle data trading marketplace that ensures transparency,traceability,and decentralization.The proposed model accommodates two categories of output data:the original data and the computed result from the function.Additionally,in the proposed model,data owners retain control over their data,enabling them to directly choose which types of data to provide.By employing Multi-party computation(MPC)technique,MOZAIK architecture,and the random leader selection technique,the proposed scheme,ORTHRUS,guarantees the input privacy and resistance to pre-collusion attacks.Furthermore,the proposed model promotes fairness by identifying dishonest behavior among participants by enforcing penalties and rewards through the implementation of smart contracts.展开更多
This article introduces the methodologies and instrumentation for data measurement and propagation at the Back-n white neutron facility of the China Spallation Neutron Source.The Back-n facility employs backscattering...This article introduces the methodologies and instrumentation for data measurement and propagation at the Back-n white neutron facility of the China Spallation Neutron Source.The Back-n facility employs backscattering techniques to generate a broad spectrum of white neutrons.Equipped with advanced detectors such as the light particle detector array and the fission ionization chamber detector,the facility achieves high-precision data acquisition through a general-purpose electronics system.Data were managed and stored in a hierarchical system supported by the National High Energy Physics Science Data Center,ensuring long-term preservation and efficient access.The data from the Back-n experiments significantly contribute to nuclear physics,reactor design,astrophysics,and medical physics,enhancing the understanding of nuclear processes and supporting interdisciplinary research.展开更多
In the BESⅢdetector at Beijing electron-positron collider,billions of events from e^(+)e^(-)collisions were recorded.These events passing through the trigger system were saved in raw data format files.They play an im...In the BESⅢdetector at Beijing electron-positron collider,billions of events from e^(+)e^(-)collisions were recorded.These events passing through the trigger system were saved in raw data format files.They play an important role in the study of physics inτ-charm energy region.Here,we published an e^(+)e^(-)collision dataset containing both Monte Carlo simulation samples and real data collected by the BESⅢdetector.The data pass through the detector trigger system,file format conversion,and physics information extraction and finally save the physics information and detector response in text format files.This dataset is publicly available and is intended to provide interested scientists and those outside of the BESⅢcollaboration with event information from BESⅢ,which can be used to understand physics research in e^(+)e^(-)collisions,developing visualization projects for physics education,public outreach,and science advocacy.展开更多
As the integration of medical big data and artificial intelligence advances,the secure sharing of medical data has become a key driving force for advancing disease research and clinical diagnosis.Federated learning,a ...As the integration of medical big data and artificial intelligence advances,the secure sharing of medical data has become a key driving force for advancing disease research and clinical diagnosis.Federated learning,a distributed approach enabling collaborative data processing without sharing raw data,offers promising solutions to challenges in multi-center medical data sharing.This review summarizes the progress of federated learning in multi-center medical data processing,analyzed from four perspectives:system architectures,data distribution strategies,clinical tasks,and algorithmic models.At the same time,this paper explores the challenges in practical applications,such as data heterogeneity,communication overhead,and privacy concerns.It proposes driving future research development by optimizing algorithms,strengthening privacy protection mechanisms,and enhancing computational efficiency.展开更多
With increasing demand for data circulation,ensuring data security and privacy is paramount,specifically protecting privacy while maximizing utility.Blockchain,while decentralized and transparent,faces challenges in p...With increasing demand for data circulation,ensuring data security and privacy is paramount,specifically protecting privacy while maximizing utility.Blockchain,while decentralized and transparent,faces challenges in privacy protection and data verification,especially for sensitive data.Existing schemes often suffer from inefficiency and high overhead.We propose a privacy protection scheme using BGV homomorphic encryption and Pedersen Secret Sharing.This scheme enables secure computation on encrypted data,with Pedersen sharding and verifying the private key,ensuring data consistency and immutability.The blockchain framework manages key shards,verifies secrets,and aids security auditing.This approach allows for trusted computation without revealing the underlying data.Preliminary results demonstrate the scheme's feasibility in ensuring data privacy and security,making data available but not visible.This study provides an effective solution for data sharing and privacy protection in blockchain applications.展开更多
With the rapid development of web3.0 applications,the volume of data sharing is increasing,the inefficiency of big data file sharing and the problem of data privacy leakage are becoming more and more prominent,and the...With the rapid development of web3.0 applications,the volume of data sharing is increasing,the inefficiency of big data file sharing and the problem of data privacy leakage are becoming more and more prominent,and the existing data sharing schemes have been difficult to meet the growing demand for data sharing,this paper aims at exploring a secure,efficient and privacy-protecting data sharing scheme under web3.0 applications.Specifically,this paper adopts interplanetary file system(IPFS)technology to realize the storage of large data files to solve the problem of blockchain storage capacity limitation,and utilizes ciphertext policy attribute-based encryption(CP-ABE)and proxy re-encryption(PRE)technology to realize secure multi-party sharing and finegrained access control of data.This paper provides the detailed algorithm design and implementation of data sharing phases and processes,and analyzes the algorithms from the perspectives of security,privacy protection,and performance.展开更多
With the rapid development of medical data sharing,issues of privacy and ownership have become prominent,which have limited the scale of data sharing.To address the above challenges,we propose a blockchainbased data-s...With the rapid development of medical data sharing,issues of privacy and ownership have become prominent,which have limited the scale of data sharing.To address the above challenges,we propose a blockchainbased data-sharing framework to ensure data security and encourage data owners to actively participate in sharing.We introduce a reliable attribute-based searchable encryption scheme that enables fine-grained access control of encrypted data and ensures secure and efficient data sharing.The revenue distribution model is constructed based on Shapley value to motivate participants.Additionally,by integrating the smart contract technology of blockchain,the search operation and incentive mechanism are automatically executed.Through revenue distribution analysis,the incentive effect and rationality of the proposed scheme are verified.Performance evaluation shows that,compared with traditional data-sharing models,our proposed framework not only meets data security requirements but also incentivizes more participants to actively participate in data sharing.展开更多
The advent of the digital age has consistently provided impetus for facilitating global trade,as evidenced by the numerous customs clearance documents and participants involved in the international trade process,inclu...The advent of the digital age has consistently provided impetus for facilitating global trade,as evidenced by the numerous customs clearance documents and participants involved in the international trade process,including enterprises,agents,and government departments.However,the urgent issue that requires immediate attention is how to achieve secure and efficient cross-border data sharing among these government departments and enterprises in complex trade processes.In addressing this need,this paper proposes a data exchange architecture employing Multi-Authority Attribute-Based Encryption(MA-ABE)in combination with blockchain technology.This scheme supports proxy decryption,attribute revocation,and policy update,while allowing each participating entity to manage their keys autonomously,ensuring system security and enhancing trust among participants.In order to enhance system decentralization,a mechanism has been designed in the architecture where multiple institutions interact with smart contracts and jointly participate in the generation of public parameters.Integration with the multi-party process execution engine Caterpillar has been shown to boost the transparency of cross-border information flow and cooperation between different organizations.The scheme ensures the auditability of data access control information and the visualization of on-chain data sharing.The MA-ABE scheme is statically secure under the q-Decisional Parallel Bilinear Diffie-Hellman Exponent(q-DPBDHE2)assumption in the random oracle model,and can resist ciphertext rollback attacks to achieve true backward and forward security.Theoretical analysis and experimental results demonstrate the appropriateness of the scheme for cross-border data collaboration between different institutions.展开更多
基金The National Natural Science Foundation of China(No.52072012)。
文摘To investigate the distribution characteristics and influencing factors of bicycle detour behavior,this study ac-curately identified detour behavior using global positioning system(GPS)track data from shared bicycles.Factors such as travel time,road conditions,public transportation facilities,and land use types were considered in constructing a detour behavior influence model based on the CatBoost machine learning algorithm.The interpretability of the machine learning framework was enhanced via Shapley additive explanations(SHAP),enabling an analysis of the impact of each factor on detour behavior.The results indicated that the CatBoost model effectively recognized detour behavior with high accuracy.The frequency of detour behavior increased with higher road levels,greater distances to crossing facilities,wider bike lanes,and an increased number of bus stops,subway stations,and leisure and entertainment facilities,while it decreased with a higher number of office commuting facilities.In addition,detour behavior was more prevalent on weekends,during off-peak hours,and under conditions involving physical central lane separation and physical bike lane separation.These findings offer a novel approach for identifying bicycle riding behaviors and analyzing their influencing factors,providing effective technical support for non-motorized traffic management and infrastructure optimization.
基金supported by the Youth Doctoral Foundation of Gansu Education Committee under Grant No.2022QB-176.
文摘Sharing of personal health records(PHR)in cloud computing is an essential functionality in the healthcare system.However,how to securely,efficiently and flexibly share PHRs data of the patient in a multi-receiver setting has not been well addressed.For instance,since the trust domain of the cloud server is not identical to the data owner or data user,the semi-trust cloud service provider may intentionally destroy or tamper shared PHRs data of user or only transform partial ciphertext of the shared PHRs or even return wrong computation results to save its storage and computation resource,to pursue maximum economic interest or other malicious purposes.Thus,the PHRs data storing or sharing via the cloud server should be performed with consistency and integrity verification.Fortunately,the emergence of blockchain technology provides new ideas and prospects for ensuring the consistency and integrity of shared PHRs data.To this end,in this work,we leverage the consortiumblockchain technology to enhance the trustworthiness of each participant and propose a blockchain-based patient-centric data sharing scheme for PHRs in cloud computing(BC-PC-Share).Different from the state-of-art schemes,our proposal can achieve the following desired properties:(1)Realizing patient-centric PHRs sharing with a public verification function,i.e.,which can ensure that the returned shared data is consistent with the requested shared data and the integrity of the shared data is not compromised.(2)Supporting scalable and fine-grained access control and sharing of PHRs data with multiple domain users,such as hospitals,medical research institutes,and medical insurance companies.(3)Achieving efficient user decryption by leveraging the transformation key technique and efficient user revocation by introducing time-controlled access.The security analysis and simulation experiment demonstrate that the proposed BC-PC-Share scheme is a feasible and promising solution for PHRs data sharing via consortium blockchain.
文摘Clustering is the task of assigning a set of instances into groups in such a way that is dissimilarity of instances within each group is minimized. Clustering is widely used in several areas such as data mining, pattern recognition, machine learning, image processing, computer vision and etc. K-means is a popular clustering algorithm which partitions instances into a fixed number clusters in an iterative fashion. Although k-means is considered to be a poor clustering algorithm in terms of result quality, due to its simplicity, speed on practical applications, and iterative nature it is selected as one of the top 10 algorithms in data mining [1]. Parallelization of k-means is also studied during the last 2 decades. Most of these work concentrate on shared-nothing architectures. With the advent of current technological advances on GPU technology, implementation of the k-means algorithm on shared memory architectures recently start to attract some attention. However, to the best of our knowledge, no in-depth analysis on the performance of k-means on shared memory multiprocessors is done in the literature. In this work, our aim is to fill this gap by providing theoretical analysis on the performance of k-means algorithm and presenting extensive tests on a shared memory architecture.
基金supported by the National Natural Science Foundation of China(Grant No.62102449)the Central Plains Talent Program under Grant No.224200510003.
文摘With the increasing popularity of blockchain applications, the security of data sources on the blockchain is gradually receiving attention. Providing reliable data for the blockchain safely and efficiently has become a research hotspot, and the security of the oracle responsible for providing reliable data has attracted much attention. The most widely used centralized oracles in blockchain, such as Provable and Town Crier, all rely on a single oracle to obtain data, which suffers from a single point of failure and limits the large-scale development of blockchain. To this end, the distributed oracle scheme is put forward, but the existing distributed oracle schemes such as Chainlink and Augur generally have low execution efficiency and high communication overhead, which leads to their poor applicability. To solve the above problems, this paper proposes a trusted distributed oracle scheme based on a share recovery threshold signature. First, a data verification method of distributed oracles is designed based on threshold signature. By aggregating the signatures of oracles, data from different data sources can be mutually verified, leading to a more efficient data verification and aggregation process. Then, a credibility-based cluster head election algorithm is designed, which reduces the communication overhead by clarifying the function distribution and building a hierarchical structure. Considering the good performance of the BLS threshold signature in large-scale applications, this paper combines it with distributed oracle technology and proposes a BLS threshold signature algorithm that supports share recovery in distributed oracles. The share recovery mechanism enables the proposed scheme to solve the key loss issue, and the setting of the threshold value enables the proposed scheme to complete signature aggregation with only a threshold number of oracles, making the scheme more robust. Finally, experimental results indicate that, by using the threshold signature technology and the cluster head election algorithm, our scheme effectively improves the execution efficiency of oracles and solves the problem of a single point of failure, leading to higher scalability and robustness.
文摘The accelerated advancement of the Internet of Things(IoT)has generated substantial data,including sensitive and private information.Consequently,it is imperative to guarantee the security of data sharing.While facilitating fine-grained access control,Ciphertext Policy Attribute-Based Encryption(CP-ABE)can effectively ensure the confidentiality of shared data.Nevertheless,the conventional centralized CP-ABE scheme is plagued by the issues of keymisuse,key escrow,and large computation,which will result in security risks.This paper suggests a lightweight IoT data security sharing scheme that integrates blockchain technology and CP-ABE to address the abovementioned issues.The integrity and traceability of shared data are guaranteed by the use of blockchain technology to store and verify access transactions.The encryption and decryption operations of the CP-ABE algorithm have been implemented using elliptic curve scalarmultiplication to accommodate lightweight IoT devices,as opposed to themore arithmetic bilinear pairing found in the traditional CP-ABE algorithm.Additionally,a portion of the computation is delegated to the edge nodes to alleviate the computational burden on users.A distributed key management method is proposed to address the issues of key escrow andmisuse.Thismethod employs the edge blockchain to facilitate the storage and distribution of attribute private keys.Meanwhile,data security sharing is enhanced by combining off-chain and on-chain ciphertext storage.The security and performance analysis indicates that the proposed scheme is more efficient and secure.
基金supported by National Key Research and Development Program of China(Nos.2022YFA1602404 and 2023YFA1606901)the National Natural Science Foundation of China(Nos.12275338,12388102,and U2441221)the Key Laboratory of Nuclear Data Foundation(JCKY2022201C152).
文摘Photonuclear data are increasingly used in fundamental nuclear research and technological applications.These data are generated using advanced γ-ray sources.The Shanghai laser electron gamma source(SLEGS)is a new laser Compton scattering γ-ray source at the Shanghai Synchrotron Radiation Facility.It delivers energy-tunable,quasi-monoenergetic gamma beams for high-precision photonuclear measurements.This paper presents the flat-efficiency detector(FED)array at SLEGS and its application in photoneutron cross-section measurements.Systematic uncertainties of the FED array were determined to be 3.02%through calibration with a ^(252)Cf neutron source.Using ^(197)Au and ^(159)Tb as representative nuclei,we demonstrate the format and processing methodology for raw photoneutron data.The results validate SLEGS’capability for high-precision photoneutron measurements.
基金CAMS Innovation Fund for Medical Sciences(CIFMS):“Construction of an Intelligent Management and Efficient Utilization Technology System for Big Data in Population Health Science.”(2021-I2M-1-057)Key Projects of the Innovation Fund of the National Clinical Research Center for Orthopedics and Sports Rehabilitation:“National Orthopedics and Sports Rehabilitation Real-World Research Platform System Construction”(23-NCRC-CXJJ-ZD4)。
文摘【Objective】Medical imaging data has great value,but it contains a significant amount of sensitive information about patients.At present,laws and regulations regarding to the de-identification of medical imaging data are not clearly defined around the world.This study aims to develop a tool that meets compliance-driven desensitization requirements tailored to diverse research needs.【Methods】To enhance the security of medical image data,we designed and implemented a DICOM format medical image de-identification system on the Windows operating system.【Results】Our custom de-identification system is adaptable to the legal standards of different countries and can accommodate specific research demands.The system offers both web-based online and desktop offline de-identification capabilities,enabling customization of de-identification rules and facilitating batch processing to improve efficiency.【Conclusions】This medical image de-identification system robustly strengthens the stewardship of sensitive medical data,aligning with data security protection requirements while facilitating the sharing and utilization of medical image data.This approach unlocks the intrinsic value inherent in such datasets.
文摘Data space,as an innovative data management and sharing model,is emerging in the medical and health sectors.This study expounds on the conceptual connotation of data space and delineates its key technologies,including distributed data storage,standardization and interoperability of data sharing,data security and privacy protection,data analysis and mining,and data space assessment.By analyzing the real-world cases of data spaces within medicine and health,this study compares the similarities and differences across various dimensions such as purpose,architecture,data interoperability,and privacy protection.Meanwhile,data spaces in these fields are challenged by the limited computing resources,the complexities of data integration,and the need for optimized algorithms.Additionally,legal and ethical issues such as unclear data ownership,undefined usage rights,risks associated with privacy protection need to be addressed.The study notes organizational and management difficulties,calling for enhancements in governance framework,data sharing mechanisms,and value assessment systems.In the future,technological innovation,sound regulations,and optimized management will help the development of the medical and health data space.These developments will enable the secure and efficient utilization of data,propelling the medical industry into an era characterized by precision,intelligence,and personalization.
基金supported by the IITP(Institute of Information&communications Technology Planning&Evaluation)-ITRC(Information Technology Research Center)grant funded by the Korea government(Ministry of Science and ICT)(IITP-2025-RS-2020-II201797)was supported as a‘Technology Commercialization Collaboration Platform Construction’project of the INNOPOLIS FOUNDATION(Project Number:1711202494).
文摘To reconstruct vehicle accidents,data from the time of the incident—such as pre-collision speed and collision point—is essential.This data is collected and generated through various sensors installed in the vehicle.However,it may contain sensitive information about the vehicle owner.Consequently,vehicle owners tend to be reluctant to provide their vehicle data due to concerns about personal information exposure.Therefore,extensive research has been conducted on secure vehicle data trading models.Existing models primarily utilize centralized approaches,leading to issues such as single points of failure,data leakage,and manipulation.To address these problems,this paper proposes ORTHRUS,a blockchain-based vehicle data trading marketplace that ensures transparency,traceability,and decentralization.The proposed model accommodates two categories of output data:the original data and the computed result from the function.Additionally,in the proposed model,data owners retain control over their data,enabling them to directly choose which types of data to provide.By employing Multi-party computation(MPC)technique,MOZAIK architecture,and the random leader selection technique,the proposed scheme,ORTHRUS,guarantees the input privacy and resistance to pre-collusion attacks.Furthermore,the proposed model promotes fairness by identifying dishonest behavior among participants by enforcing penalties and rewards through the implementation of smart contracts.
基金supported by the National Key Research and Development Plan(No.2023YFA1606602)。
文摘This article introduces the methodologies and instrumentation for data measurement and propagation at the Back-n white neutron facility of the China Spallation Neutron Source.The Back-n facility employs backscattering techniques to generate a broad spectrum of white neutrons.Equipped with advanced detectors such as the light particle detector array and the fission ionization chamber detector,the facility achieves high-precision data acquisition through a general-purpose electronics system.Data were managed and stored in a hierarchical system supported by the National High Energy Physics Science Data Center,ensuring long-term preservation and efficient access.The data from the Back-n experiments significantly contribute to nuclear physics,reactor design,astrophysics,and medical physics,enhancing the understanding of nuclear processes and supporting interdisciplinary research.
基金supported by the National Key Research and Development Program of China(No.2023YFA1606000)National Natural Science Foundation of China(Nos.12175321,11975021,and U1932101)National College Students Science and Technology Innovation Project of Sun Yat-sen University。
文摘In the BESⅢdetector at Beijing electron-positron collider,billions of events from e^(+)e^(-)collisions were recorded.These events passing through the trigger system were saved in raw data format files.They play an important role in the study of physics inτ-charm energy region.Here,we published an e^(+)e^(-)collision dataset containing both Monte Carlo simulation samples and real data collected by the BESⅢdetector.The data pass through the detector trigger system,file format conversion,and physics information extraction and finally save the physics information and detector response in text format files.This dataset is publicly available and is intended to provide interested scientists and those outside of the BESⅢcollaboration with event information from BESⅢ,which can be used to understand physics research in e^(+)e^(-)collisions,developing visualization projects for physics education,public outreach,and science advocacy.
基金supported and funded by the National Natural Science Foundation of China(82101079)the Key R&D Program of Jiangsu Province(BE2023836)the National Key Research and Development Program of China(SQ2023YFC2400025).
文摘As the integration of medical big data and artificial intelligence advances,the secure sharing of medical data has become a key driving force for advancing disease research and clinical diagnosis.Federated learning,a distributed approach enabling collaborative data processing without sharing raw data,offers promising solutions to challenges in multi-center medical data sharing.This review summarizes the progress of federated learning in multi-center medical data processing,analyzed from four perspectives:system architectures,data distribution strategies,clinical tasks,and algorithmic models.At the same time,this paper explores the challenges in practical applications,such as data heterogeneity,communication overhead,and privacy concerns.It proposes driving future research development by optimizing algorithms,strengthening privacy protection mechanisms,and enhancing computational efficiency.
基金supported by the National Key Research and Development Plan in China(Grant No.2020YFB1005500)。
文摘With increasing demand for data circulation,ensuring data security and privacy is paramount,specifically protecting privacy while maximizing utility.Blockchain,while decentralized and transparent,faces challenges in privacy protection and data verification,especially for sensitive data.Existing schemes often suffer from inefficiency and high overhead.We propose a privacy protection scheme using BGV homomorphic encryption and Pedersen Secret Sharing.This scheme enables secure computation on encrypted data,with Pedersen sharding and verifying the private key,ensuring data consistency and immutability.The blockchain framework manages key shards,verifies secrets,and aids security auditing.This approach allows for trusted computation without revealing the underlying data.Preliminary results demonstrate the scheme's feasibility in ensuring data privacy and security,making data available but not visible.This study provides an effective solution for data sharing and privacy protection in blockchain applications.
基金supported by the National Natural Science Foundation of China(Grant No.U24B20146)the National Key Research and Development Plan in China(Grant No.2020YFB1005500)Beijing Natural Science Foundation Project(No.M21034).
文摘With the rapid development of web3.0 applications,the volume of data sharing is increasing,the inefficiency of big data file sharing and the problem of data privacy leakage are becoming more and more prominent,and the existing data sharing schemes have been difficult to meet the growing demand for data sharing,this paper aims at exploring a secure,efficient and privacy-protecting data sharing scheme under web3.0 applications.Specifically,this paper adopts interplanetary file system(IPFS)technology to realize the storage of large data files to solve the problem of blockchain storage capacity limitation,and utilizes ciphertext policy attribute-based encryption(CP-ABE)and proxy re-encryption(PRE)technology to realize secure multi-party sharing and finegrained access control of data.This paper provides the detailed algorithm design and implementation of data sharing phases and processes,and analyzes the algorithms from the perspectives of security,privacy protection,and performance.
基金supported by the Natural Science Foundation of Hebei Province of China(F2021201052).
文摘With the rapid development of medical data sharing,issues of privacy and ownership have become prominent,which have limited the scale of data sharing.To address the above challenges,we propose a blockchainbased data-sharing framework to ensure data security and encourage data owners to actively participate in sharing.We introduce a reliable attribute-based searchable encryption scheme that enables fine-grained access control of encrypted data and ensures secure and efficient data sharing.The revenue distribution model is constructed based on Shapley value to motivate participants.Additionally,by integrating the smart contract technology of blockchain,the search operation and incentive mechanism are automatically executed.Through revenue distribution analysis,the incentive effect and rationality of the proposed scheme are verified.Performance evaluation shows that,compared with traditional data-sharing models,our proposed framework not only meets data security requirements but also incentivizes more participants to actively participate in data sharing.
基金supported by Hainan Provincial Natural Science Foundation of China Nos.622RC617,624RC485Open Foundation of State Key Laboratory of Networking and Switching Technology(Beijing University of Posts and Telecommunications)(SKLNST-2023-1-07).
文摘The advent of the digital age has consistently provided impetus for facilitating global trade,as evidenced by the numerous customs clearance documents and participants involved in the international trade process,including enterprises,agents,and government departments.However,the urgent issue that requires immediate attention is how to achieve secure and efficient cross-border data sharing among these government departments and enterprises in complex trade processes.In addressing this need,this paper proposes a data exchange architecture employing Multi-Authority Attribute-Based Encryption(MA-ABE)in combination with blockchain technology.This scheme supports proxy decryption,attribute revocation,and policy update,while allowing each participating entity to manage their keys autonomously,ensuring system security and enhancing trust among participants.In order to enhance system decentralization,a mechanism has been designed in the architecture where multiple institutions interact with smart contracts and jointly participate in the generation of public parameters.Integration with the multi-party process execution engine Caterpillar has been shown to boost the transparency of cross-border information flow and cooperation between different organizations.The scheme ensures the auditability of data access control information and the visualization of on-chain data sharing.The MA-ABE scheme is statically secure under the q-Decisional Parallel Bilinear Diffie-Hellman Exponent(q-DPBDHE2)assumption in the random oracle model,and can resist ciphertext rollback attacks to achieve true backward and forward security.Theoretical analysis and experimental results demonstrate the appropriateness of the scheme for cross-border data collaboration between different institutions.