期刊文献+
共找到253,354篇文章
< 1 2 250 >
每页显示 20 50 100
Batch Secret Sharing for Secure Multi-party Computation in Asynchronous Network
1
作者 黄征 龚征 李强 《Journal of Shanghai Jiaotong university(Science)》 EI 2009年第1期112-116,共5页
This paper proposes an efficient batch secret sharing protocol among n players resilient to t 〈 n/4 players in asynchronous network. The construction of our protocol is along the line of Hirt's protocol which works ... This paper proposes an efficient batch secret sharing protocol among n players resilient to t 〈 n/4 players in asynchronous network. The construction of our protocol is along the line of Hirt's protocol which works in synchronous model. Compared with the method of using secret share protocol m times to share m secrets, our protocol is quite efficient. The protocol can be used to improve the efficiency of secure multi-party computation (MPC) greatly in asynchronous network. 展开更多
关键词 secret share secure multi-party computation asynchronous network
原文传递
On Privacy-Preserved Machine Learning Using Secure Multi-Party Computing:Techniques and Trends
2
作者 Oshan Mudannayake Amila Indika +2 位作者 Upul Jayasinghe Gyu MyoungLee Janaka Alawatugoda 《Computers, Materials & Continua》 2025年第11期2527-2578,共52页
The rapid adoption of machine learning in sensitive domains,such as healthcare,finance,and government services,has heightened the need for robust,privacy-preserving techniques.Traditional machine learning approaches l... The rapid adoption of machine learning in sensitive domains,such as healthcare,finance,and government services,has heightened the need for robust,privacy-preserving techniques.Traditional machine learning approaches lack built-in privacy mechanisms,exposing sensitive data to risks,which motivates the development of Privacy-Preserving Machine Learning(PPML)methods.Despite significant advances in PPML,a comprehensive and focused exploration of Secure Multi-Party Computing(SMPC)within this context remains underdeveloped.This review aims to bridge this knowledge gap by systematically analyzing the role of SMPC in PPML,offering a structured overviewof current techniques,challenges,and future directions.Using a semi-systematicmapping studymethodology,this paper surveys recent literature spanning SMPC protocols,PPML frameworks,implementation approaches,threat models,and performance metrics.Emphasis is placed on identifying trends,technical limitations,and comparative strengths of leading SMPC-based methods.Our findings reveal thatwhile SMPCoffers strong cryptographic guarantees for privacy,challenges such as computational overhead,communication costs,and scalability persist.The paper also discusses critical vulnerabilities,practical deployment issues,and variations in protocol efficiency across use cases. 展开更多
关键词 CRYPTOGRAPHY data privacy machine learning multi-party computation PRIVACY SMPC PPML
在线阅读 下载PDF
A survey on federated learning:a perspective from multi-party computation 被引量:2
3
作者 Fengxia LIU Zhiming ZHENG +2 位作者 Yexuan SHI Yongxin TONG Yi ZHANG 《Frontiers of Computer Science》 SCIE EI CSCD 2024年第1期93-103,共11页
Federated learning is a promising learning paradigm that allows collaborative training of models across multiple data owners without sharing their raw datasets.To enhance privacy in federated learning,multi-party comp... Federated learning is a promising learning paradigm that allows collaborative training of models across multiple data owners without sharing their raw datasets.To enhance privacy in federated learning,multi-party computation can be leveraged for secure communication and computation during model training.This survey provides a comprehensive review on how to integrate mainstream multi-party computation techniques into diverse federated learning setups for guaranteed privacy,as well as the corresponding optimization techniques to improve model accuracy and training efficiency.We also pinpoint future directions to deploy federated learning to a wider range of applications. 展开更多
关键词 sfederated learning multi-party ycomputation privacy-preserving data mining distributed learning
原文传递
Data-Driven Healthcare:The Role of Computational Methods in Medical Innovation
4
作者 Hariharasakthisudhan Ponnarengan Sivakumar Rajendran +2 位作者 Vikas Khalkar Gunapriya Devarajan Logesh Kamaraj 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期1-48,共48页
The purpose of this review is to explore the intersection of computational engineering and biomedical science,highlighting the transformative potential this convergence holds for innovation in healthcare and medical r... The purpose of this review is to explore the intersection of computational engineering and biomedical science,highlighting the transformative potential this convergence holds for innovation in healthcare and medical research.The review covers key topics such as computational modelling,bioinformatics,machine learning in medical diagnostics,and the integration of wearable technology for real-time health monitoring.Major findings indicate that computational models have significantly enhanced the understanding of complex biological systems,while machine learning algorithms have improved the accuracy of disease prediction and diagnosis.The synergy between bioinformatics and computational techniques has led to breakthroughs in personalized medicine,enabling more precise treatment strategies.Additionally,the integration of wearable devices with advanced computational methods has opened new avenues for continuous health monitoring and early disease detection.The review emphasizes the need for interdisciplinary collaboration to further advance this field.Future research should focus on developing more robust and scalable computational models,enhancing data integration techniques,and addressing ethical considerations related to data privacy and security.By fostering innovation at the intersection of these disciplines,the potential to revolutionize healthcare delivery and outcomes becomes increasingly attainable. 展开更多
关键词 computational models biomedical engineering BIOINFORMATICS machine learning wearable technology
在线阅读 下载PDF
Digital Humanities,Computational Criticism and the Stanford Literary Lab:An Interviewwith Mark Algee-Hewittr
5
作者 Hui Haifeng Mark Algee-Hewitt 《外国文学研究》 北大核心 2025年第4期1-10,共10页
The Literary Lab at Stanford University is one of the birthplaces of digital humanities and has maintained significant influence in this field over the years.Professor Hui Haifeng has been engaged in research on digit... The Literary Lab at Stanford University is one of the birthplaces of digital humanities and has maintained significant influence in this field over the years.Professor Hui Haifeng has been engaged in research on digital humanities and computational criticism in recent years.During his visiting scholarship at Stanford University,he participated in the activities of the Literary Lab.Taking this opportunity,he interviewed Professor Mark Algee-Hewitt,the director of the Literary Lab,discussing important topics such as the current state and reception of DH(digital humanities)in the English Department,the operations of the Literary Lab,and the landscape of computational criticism.Mark Algee-Hewitt's research focuses on the eighteenth and early nineteenth centuries in England and Germany and seeks to combine literary criticism with digital and quantitative analyses of literary texts.In particular,he is interested in the history of aesthetic theory and the development and transmission of aesthetic and philosophical concepts during the Enlightenment and Romantic periods.He is also interested in the relationship between aesthetic theory and the poetry of the long eighteenth century.Although his primary background is English literature,he also has a degree in computer science.He believes that the influence of digital humanities within the humanities disciplines is growing increasingly significant.This impact is evident in both the attraction and assistance it offers to students,as well as in the new interpretations it brings to traditional literary studies.He argues that the key to effectively integrating digital humanities into the English Department is to focus on literary research questions,exploring how digital tools can raise new questions or provide new insights into traditional research. 展开更多
关键词 digital humanities computational criticism literary research Literary Lab
原文传递
Computational Offloading and Resource Allocation for Internet of Vehicles Based on UAV-Assisted Mobile Edge Computing System
6
作者 Fang Yujie Li Meng +3 位作者 Si Pengbo Yang Ruizhe Sun Enchang Zhang Yanhua 《China Communications》 2025年第9期333-351,共19页
As an essential element of intelligent trans-port systems,Internet of vehicles(IoV)has brought an immersive user experience recently.Meanwhile,the emergence of mobile edge computing(MEC)has enhanced the computational ... As an essential element of intelligent trans-port systems,Internet of vehicles(IoV)has brought an immersive user experience recently.Meanwhile,the emergence of mobile edge computing(MEC)has enhanced the computational capability of the vehicle which reduces task processing latency and power con-sumption effectively and meets the quality of service requirements of vehicle users.However,there are still some problems in the MEC-assisted IoV system such as poor connectivity and high cost.Unmanned aerial vehicles(UAVs)equipped with MEC servers have become a promising approach for providing com-munication and computing services to mobile vehi-cles.Hence,in this article,an optimal framework for the UAV-assisted MEC system for IoV to minimize the average system cost is presented.Through joint consideration of computational offloading decisions and computational resource allocation,the optimiza-tion problem of our proposed architecture is presented to reduce system energy consumption and delay.For purpose of tackling this issue,the original non-convex issue is converted into a convex issue and the alternat-ing direction method of multipliers-based distributed optimal scheme is developed.The simulation results illustrate that the presented scheme can enhance the system performance dramatically with regard to other schemes,and the convergence of the proposed scheme is also significant. 展开更多
关键词 computational offloading Internet of Vehicles mobile edge computing resource optimization unmanned aerial vehicle
在线阅读 下载PDF
DDPG-Based Intelligent Computation Offloading and Resource Allocation for LEO Satellite Edge Computing Network
7
作者 Jia Min Wu Jian +2 位作者 Zhang Liang Wang Xinyu Guo Qing 《China Communications》 2025年第3期1-15,共15页
Low earth orbit(LEO)satellites with wide coverage can carry the mobile edge computing(MEC)servers with powerful computing capabilities to form the LEO satellite edge computing system,providing computing services for t... Low earth orbit(LEO)satellites with wide coverage can carry the mobile edge computing(MEC)servers with powerful computing capabilities to form the LEO satellite edge computing system,providing computing services for the global ground users.In this paper,the computation offloading problem and resource allocation problem are formulated as a mixed integer nonlinear program(MINLP)problem.This paper proposes a computation offloading algorithm based on deep deterministic policy gradient(DDPG)to obtain the user offloading decisions and user uplink transmission power.This paper uses the convex optimization algorithm based on Lagrange multiplier method to obtain the optimal MEC server resource allocation scheme.In addition,the expression of suboptimal user local CPU cycles is derived by relaxation method.Simulation results show that the proposed algorithm can achieve excellent convergence effect,and the proposed algorithm significantly reduces the system utility values at considerable time cost compared with other algorithms. 展开更多
关键词 computation offloading deep deterministic policy gradient low earth orbit satellite mobile edge computing resource allocation
在线阅读 下载PDF
Harnessing the Power of PM6:Y6 Semitransparent Photoanodes by Computational Balancement of Photon Absorption in Photoanode/Photovoltaic Organic Tandems:>7mA cm^(-2) Solar Synthetic Fuels Production at Bias-Free Potentials
8
作者 Francisco Bernal-Texca Emmanouela Andrioti +1 位作者 Jordi Martorell Carles Ros 《Energy & Environmental Materials》 2025年第1期197-202,共6页
This study first demonstrates the potential of organic photoabsorbing blends in overcoming a critical limitation of metal oxide photoanodes in tandem modules:insufficient photogenerated current.Various organic blends,... This study first demonstrates the potential of organic photoabsorbing blends in overcoming a critical limitation of metal oxide photoanodes in tandem modules:insufficient photogenerated current.Various organic blends,including PTB7-Th:FOIC,PTB7-Th:O6T-4F,PM6:Y6,and PM6:FM,were systematically tested.When coupled with electron transport layer(ETL)contacts,these blends exhibit exceptional charge separation and extraction,with PM6:Y6 achieving saturation photocurrents up to 16.8 mA cm^(-2) at 1.23 VRHE(oxygen evolution thermodynamic potential).For the first time,a tandem structure utilizing organic photoanodes has been computationally designed and fabricated and the implementation of a double PM6:Y6 photoanode/photovoltaic structure resulted in photogenerated currents exceeding 7mA cm^(-2) at 0 VRHE(hydrogen evolution thermodynamic potential)and anodic current onset potentials as low as-0.5 VRHE.The herein-presented organic-based approach paves the way for further exploration of different blend combinations to target specific oxidative reactions by selecting precise donor/acceptor candidates among the multiple existing ones. 展开更多
关键词 computationAL hydrogen ORGANIC photoanodes photovoltaics tandem
在线阅读 下载PDF
Introduction to the Special Issue on Mathematical Aspects of Computational Biology and Bioinformatics-Ⅱ
9
作者 Dumitru Baleanu Carla M.A.Pinto Sunil Kumar 《Computer Modeling in Engineering & Sciences》 2025年第5期1297-1299,共3页
1 Summary Mathematical modeling has become a cornerstone in understanding the complex dynamics of infectious diseases and chronic health conditions.With the advent of more refined computational techniques,researchers ... 1 Summary Mathematical modeling has become a cornerstone in understanding the complex dynamics of infectious diseases and chronic health conditions.With the advent of more refined computational techniques,researchers are now able to incorporate intricate features such as delays,stochastic effects,fractional dynamics,variable-order systems,and uncertainty into epidemic models.These advancements not only improve predictive accuracy but also enable deeper insights into disease transmission,control,and policy-making.Tashfeen et al. 展开更多
关键词 computational techniquesresearchers effectsfractional dynamicsvariable order understanding complex dynamics infectious diseases chronic health conditionswith computational techniques mathematical modeling infectious diseases chronic health conditions DELAYS
暂未订购
Merging computational intelligence and wearable technologies for adolescent idiopathic scoliosis: a quest for multiscale modelling, long-term monitoring and personalized treatment
10
作者 Chun-Zhi Yi Xiao-Lei Sun 《Medical Data Mining》 2025年第2期21-30,共10页
Adolescent idiopathic scoliosis(AIS)is a dynamic progression during growth,which requires long-term collaborations and efforts from clinicians,patients and their families.It would be beneficial to have a precise inter... Adolescent idiopathic scoliosis(AIS)is a dynamic progression during growth,which requires long-term collaborations and efforts from clinicians,patients and their families.It would be beneficial to have a precise intervention based on cross-scale understandings of the etiology,real-time sensing and actuating to enable early detection,screening and personalized treatment.We argue that merging computational intelligence and wearable technologies can bridge the gap between the current trajectory of the techniques applied to AIS and this vision.Wearable technologies such as inertial measurement units(IMUs)and surface electromyography(sEMG)have shown great potential in monitoring spinal curvature and muscle activity in real-time.For instance,IMUs can track the kinematics of the spine during daily activities,while sEMG can detect asymmetric muscle activation patterns that may contribute to scoliosis progression.Computational intelligence,particularly deep learning algorithms,can process these multi-modal data streams to identify early signs of scoliosis and adapt treatment strategies dynamically.By using their combination,we can find potential solutions for a better understanding of the disease,a more effective and intelligent way for treatment and rehabilitation. 展开更多
关键词 adolescent idiopathic scoliosis computational intelligence wearable technologies
暂未订购
A Study for Inter-Satellite Cooperative Computation Offloading in LEO Satellite Networks
11
作者 Gang Yuanshuo Zhang Yuexia +2 位作者 Wu Peng Zheng Hui Fan Guangteng 《China Communications》 2025年第2期12-25,共14页
Low Earth orbit(LEO)satellite networks have the advantages of low transmission delay and low deployment cost,playing an important role in providing reliable services to ground users.This paper studies an efficient int... Low Earth orbit(LEO)satellite networks have the advantages of low transmission delay and low deployment cost,playing an important role in providing reliable services to ground users.This paper studies an efficient inter-satellite cooperative computation offloading(ICCO)algorithm for LEO satellite networks.Specifically,an ICCO system model is constructed,which considers using neighboring satellites in the LEO satellite networks to collaboratively process tasks generated by ground user terminals,effectively improving resource utilization efficiency.Additionally,the optimization objective of minimizing the system task computation offloading delay and energy consumption is established,which is decoupled into two sub-problems.In terms of computational resource allocation,the convexity of the problem is proved through theoretical derivation,and the Lagrange multiplier method is used to obtain the optimal solution of computational resources.To deal with the task offloading decision,a dynamic sticky binary particle swarm optimization algorithm is designed to obtain the offloading decision by iteration.Simulation results show that the ICCO algorithm can effectively reduce the delay and energy consumption. 展开更多
关键词 computation offloading inter-satellite co-operation LEO satellite networks
在线阅读 下载PDF
Adiabatic holonomic quantum computation in decoherence-free subspace with two-body interaction
12
作者 Xiaoyu Sun Lei Qiao Peizi Zhao 《Chinese Physics B》 2025年第9期97-102,共6页
Adiabatic holonomic gates possess the geometric robustness of adiabatic geometric phases,i.e.,dependence only on the evolution path of the parameter space but not on the evolution details of the quantum system,which,w... Adiabatic holonomic gates possess the geometric robustness of adiabatic geometric phases,i.e.,dependence only on the evolution path of the parameter space but not on the evolution details of the quantum system,which,when coordinated with decoherence-free subspaces,permits additional resilience to the collective dephasing environment.However,the previous scheme[Phys.Rev.Lett.95130501(2005)]of adiabatic holonomic quantum computation in decoherence-free subspaces requires four-body interaction that is challenging in practical implementation.In this work,we put forward a scheme to realize universal adiabatic holonomic quantum computation in decoherence-free subspaces using only realistically available two-body interaction,thereby avoiding the difficulty of implementing four-body interaction.Furthermore,an arbitrary one-qubit gate in our scheme can be realized by a single-shot implementation,which eliminates the need to combine multiple gates for realizing such a gate. 展开更多
关键词 adiabatic evolution holonomic quantum computation decoherence-free subspaces
原文传递
Latency minimization for multiuser computation offloading in fog-radio access networks
13
作者 Wei Zhang Shafei Wang +3 位作者 Ye Pan Qiang Li Jingran Lin Xiaoxiao Wu 《Digital Communications and Networks》 2025年第1期160-171,共12页
Recently,the Fog-Radio Access Network(F-RAN)has gained considerable attention,because of its flexible architecture that allows rapid response to user requirements.In this paper,computational offloading in F-RAN is con... Recently,the Fog-Radio Access Network(F-RAN)has gained considerable attention,because of its flexible architecture that allows rapid response to user requirements.In this paper,computational offloading in F-RAN is considered,where multiple User Equipments(UEs)offload their computational tasks to the F-RAN through fog nodes.Each UE can select one of the fog nodes to offload its task,and each fog node may serve multiple UEs.The tasks are computed by the fog nodes or further offloaded to the cloud via a capacity-limited fronhaul link.In order to compute all UEs'tasks quickly,joint optimization of UE-Fog association,radio and computation resources of F-RAN is proposed to minimize the maximum latency of all UEs.This min-max problem is formulated as a Mixed Integer Nonlinear Program(MINP).To tackle it,first,MINP is reformulated as a continuous optimization problem,and then the Majorization Minimization(MM)method is used to find a solution.The MM approach that we develop is unconventional in that each MM subproblem is solved inexactly with the same provable convergence guarantee as the exact MM,thereby reducing the complexity of MM iteration.In addition,a cooperative offloading model is considered,where the fog nodes compress-and-forward their received signals to the cloud.Under this model,a similar min-max latency optimization problem is formulated and tackled by the inexact MM.Simulation results show that the proposed algorithms outperform some offloading strategies,and that the cooperative offloading can exploit transmission diversity better than noncooperative offloading to achieve better latency performance. 展开更多
关键词 Fog-radio access network Fog computing Majorization minimization WMMSE
在线阅读 下载PDF
Robust Transmission Design for Federated Learning Through Over-the-Air Computation
14
作者 Hamideh Zamanpour Abyaneh Saba Asaad Amir Masoud Rabiei 《China Communications》 2025年第3期65-75,共11页
Over-the-air computation(AirComp)enables federated learning(FL)to rapidly aggregate local models at the central server using waveform superposition property of wireless channel.In this paper,a robust transmission sche... Over-the-air computation(AirComp)enables federated learning(FL)to rapidly aggregate local models at the central server using waveform superposition property of wireless channel.In this paper,a robust transmission scheme for an AirCompbased FL system with imperfect channel state information(CSI)is proposed.To model CSI uncertainty,an expectation-based error model is utilized.The main objective is to maximize the number of selected devices that meet mean-squared error(MSE)requirements for model broadcast and model aggregation.The problem is formulated as a combinatorial optimization problem and is solved in two steps.First,the priority order of devices is determined by a sparsity-inducing procedure.Then,a feasibility detection scheme is used to select the maximum number of devices to guarantee that the MSE requirements are met.An alternating optimization(AO)scheme is used to transform the resulting nonconvex problem into two convex subproblems.Numerical results illustrate the effectiveness and robustness of the proposed scheme. 展开更多
关键词 federated learning imperfect CSI optimization over-the-air computing robust design
在线阅读 下载PDF
Towards the future of physics-and data-guided AI frameworks in computational mechanics
15
作者 Jinshuai Bai Yizheng Wang +8 位作者 Hyogu Jeong Shiyuan Chu Qingxia Wang Laith Alzubaidi Xiaoying Zhuang Timon Rabczuk Yi Min Xie Xi-Qiao Feng Yuantong Gu 《Acta Mechanica Sinica》 2025年第7期38-51,共14页
The integration of physics-based modelling and data-driven artificial intelligence(AI)has emerged as a transformative paradigm in computational mechanics.This perspective reviews the development and current status of ... The integration of physics-based modelling and data-driven artificial intelligence(AI)has emerged as a transformative paradigm in computational mechanics.This perspective reviews the development and current status of AI-empowered frameworks,including data-driven methods,physics-informed neural networks,and neural operators.While these approaches have demonstrated significant promise,challenges remain in terms of robustness,generalisation,and computational efficiency.We delineate four promising research directions:(1)Modular neural architectures inspired by traditional computational mechanics,(2)physics informed neural operators for resolution-invariant operator learning,(3)intelligent frameworks for multiphysics and multiscale biomechanics problems,and(4)structural optimisation strategies based on physics constraints and reinforcement learning.These directions represent a shift toward foundational frameworks that combine the strengths of physics and data,opening new avenues for the modelling,simulation,and optimisation of complex physical systems. 展开更多
关键词 computational mechanics Physics-informed neural network Operator learning BIOMECHANICS Topology optimisation
原文传递
Evaluations of large language models in computational fluid dynamics:Leveraging,learning and creating knowledge
16
作者 Long Wang Lei Zhang Guowei He 《Theoretical & Applied Mechanics Letters》 2025年第3期207-218,共12页
This paper investigates the capabilities of large language models(LLMs)to leverage,learn and create knowledge in solving computational fluid dynamics(CFD)problems through three categories of baseline problems.These ca... This paper investigates the capabilities of large language models(LLMs)to leverage,learn and create knowledge in solving computational fluid dynamics(CFD)problems through three categories of baseline problems.These categories include(1)conventional CFD problems that can be solved using existing numerical methods in LLMs,such as lid-driven cavity flow and the Sod shock tube problem;(2)problems that require new numerical methods beyond those available in LLMs,such as the recently developed Chien-physics-informed neural networks for singularly perturbed convection-diffusion equations;and(3)problems that cannot be solved using existing numerical methods in LLMs,such as the ill-conditioned Hilbert linear algebraic systems.The evaluations indicate that reasoning LLMs overall outperform non-reasoning models in four test cases.Reasoning LLMs show excellent performance for CFD problems according to the tailored prompts,but their current capability in autonomous knowledge exploration and creation needs to be enhanced. 展开更多
关键词 Large language models computational fluid dynamics Machine learning
在线阅读 下载PDF
Computational and experimental analysis of flow velocity and complex vortex formation around a group of bridge piers
17
作者 Nima Ikani Jaan H.Pu +4 位作者 Prashanth Reddy Hanmaiahgari Bimlesh Kumar Ebrahim Hamid Hussein Al-Qadami Mohd Adib Mohammad Razi Shu-yan Zang 《Water Science and Engineering》 2025年第2期247-258,共12页
In this study,the flow characteristics around a group of three piers arranged in tandem were investigated both numerically and experimentally.The simulation utilised the volume of fluid(VOF)model in conjunction with t... In this study,the flow characteristics around a group of three piers arranged in tandem were investigated both numerically and experimentally.The simulation utilised the volume of fluid(VOF)model in conjunction with the k–ɛmethod(i.e.,for flow turbulence representations),implemented through the ANSYS FLUENT software,to model the free-surface flow.The simulation results were validated against laboratory measurements obtained using an acoustic Doppler velocimeter.The comparative analysis revealed discrepancies between the simulated and measured maximum velocities within the investigated flow field.However,the numerical results demonstrated a distinct vortex-induced flow pattern following the first pier and throughout the vicinity of the entire pier group,which aligned reasonably well with experimental data.In the heavily narrowed spaces between the piers,simulated velocity profiles were overestimated in the free-surface region and underestimated in the areas near the bed to the mid-stream when compared to measurements.These discrepancies diminished away from the regions with intense vortices,indicating that the employed model was capable of simulating relatively less disturbed flow turbulence.Furthermore,velocity results from both simulations and measurements were compared based on velocity distributions at three different depth ratios(0.15,0.40,and 0.62)to assess vortex characteristic around the piers.This comparison revealed consistent results between experimental and simulated data.This research contributes to a deeper understanding of flow dynamics around complex interactive pier systems,which is critical for designing stable and sustainable hydraulic structures.Furthermore,the insights gained from this study provide valuable information for engineers aiming to develop effective strategies for controlling scour and minimizing destructive vortex effects,thereby guiding the design and maintenance of sustainable infrastructure. 展开更多
关键词 CFD computation ADV measurements Pier group Flow turbulence Velocity profile
在线阅读 下载PDF
Computational Modeling of the Prefrontal-Cingulate Cortex to Investigate the Role of Coupling Relationships for Balancing Emotion and Cognition
18
作者 Jinzhao Wei Licong Li +3 位作者 Jiayi Zhang Erdong Shi Jianli Yang Xiuling Liu 《Neuroscience Bulletin》 2025年第1期33-45,共13页
Within the prefrontal-cingulate cortex,abnormalities in coupling between neuronal networks can disturb the emotion-cognition interactions,contributing to the development of mental disorders such as depression.Despite ... Within the prefrontal-cingulate cortex,abnormalities in coupling between neuronal networks can disturb the emotion-cognition interactions,contributing to the development of mental disorders such as depression.Despite this understanding,the neural circuit mechanisms underlying this phenomenon remain elusive.In this study,we present a biophysical computational model encompassing three crucial regions,including the dorsolateral prefrontal cortex,subgenual anterior cingulate cortex,and ventromedial prefrontal cortex.The objective is to investigate the role of coupling relationships within the prefrontal-cingulate cortex networks in balancing emotions and cognitive processes.The numerical results confirm that coupled weights play a crucial role in the balance of emotional cognitive networks.Furthermore,our model predicts the pathogenic mechanism of depression resulting from abnormalities in the subgenual cortex,and network functionality was restored through intervention in the dorsolateral prefrontal cortex.This study utilizes computational modeling techniques to provide an insight explanation for the diagnosis and treatment of depression. 展开更多
关键词 Prefrontal-cingulate cortex computational modeling Coupling relationships DEPRESSION Emotion and cognition
原文传递
Machine Learning on Blockchain (MLOB): A New Paradigm for Computational Security in Engineering
19
作者 Zhiming Dong Weisheng Lu 《Engineering》 2025年第4期250-263,共14页
Machine learning(ML)has been increasingly adopted to solve engineering problems with performance gauged by accuracy,efficiency,and security.Notably,blockchain technology(BT)has been added to ML when security is a part... Machine learning(ML)has been increasingly adopted to solve engineering problems with performance gauged by accuracy,efficiency,and security.Notably,blockchain technology(BT)has been added to ML when security is a particular concern.Nevertheless,there is a research gap that prevailing solutions focus primarily on data security using blockchain but ignore computational security,making the traditional ML process vulnerable to off-chain risks.Therefore,the research objective is to develop a novel ML on blockchain(MLOB)framework to ensure both the data and computational process security.The central tenet is to place them both on the blockchain,execute them as blockchain smart contracts,and protect the execution records on-chain.The framework is established by developing a prototype and further calibrated using a case study of industrial inspection.It is shown that the MLOB framework,compared with existing ML and BT isolated solutions,is superior in terms of security(successfully defending against corruption on six designed attack scenario),maintaining accuracy(0.01%difference with baseline),albeit with a slightly compromised efficiency(0.231 second latency increased).The key finding is MLOB can significantly enhances the computational security of engineering computing without increasing computing power demands.This finding can alleviate concerns regarding the computational resource requirements of ML-BT integration.With proper adaption,the MLOB framework can inform various novel solutions to achieve computational security in broader engineering challenges. 展开更多
关键词 Engineering computing Machine learning Blockchain Blockchain smart contract Deployable framework
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部