An algorithm of highly maneuvering target tracking is proposed to solve the problem of large tracking error caused by strong maneuver. In this algorithm, a new estimator, named as multi-parameter fusion Singer (MF-Sin...An algorithm of highly maneuvering target tracking is proposed to solve the problem of large tracking error caused by strong maneuver. In this algorithm, a new estimator, named as multi-parameter fusion Singer (MF-Singer) model is derived based on the Singer model and the fuzzy reasoning method by using radial acceleration and velocity of the target, and applied to the problem of maneuvering target tracking in strong maneuvering environment and operating environment. The tracking performance of the MF-Singer model is evaluated and compared with other manuevering tracking models. It is shown that the MF-Singer model outperforms these algorithms in several examples.展开更多
Assuring medical images protection and robustness is a compulsory necessity nowadays.In this paper,a novel technique is proposed that fuses the wavelet-induced multi-resolution decomposition of the Discrete Wavelet Tr...Assuring medical images protection and robustness is a compulsory necessity nowadays.In this paper,a novel technique is proposed that fuses the wavelet-induced multi-resolution decomposition of the Discrete Wavelet Transform(DWT)with the energy compaction of the Discrete Wavelet Transform(DCT).The multi-level Encryption-based Hybrid Fusion Technique(EbhFT)aims to achieve great advances in terms of imperceptibility and security of medical images.A DWT disintegrated sub-band of a cover image is reformed simultaneously using the DCT transform.Afterwards,a 64-bit hex key is employed to encrypt the host image as well as participate in the second key creation process to encode the watermark.Lastly,a PN-sequence key is formed along with a supplementary key in the third layer of the EbHFT.Thus,the watermarked image is generated by enclosing both keys into DWT and DCT coefficients.The fusions ability of the proposed EbHFT technique makes the best use of the distinct privileges of using both DWT and DCT methods.In order to validate the proposed technique,a standard dataset of medical images is used.Simulation results show higher performance of the visual quality(i.e.,57.65)for the watermarked forms of all types of medical images.In addition,EbHFT robustness outperforms an existing scheme tested for the same dataset in terms of Normalized Correlation(NC).Finally,extra protection for digital images from against illegal replicating and unapproved tampering using the proposed technique.展开更多
In order to ensure the service security of space structures under wind load, the stress identification method based on the combination of fuzzy pattern recognition and information fusion technique is proposed, in whic...In order to ensure the service security of space structures under wind load, the stress identification method based on the combination of fuzzy pattern recognition and information fusion technique is proposed, in which the measurements of limited strain sensors arranged on the structure are used. Firstly, the structure is divided into several regions according to the similarity and the most unfavorable region is selected to be the key region for stress identification, while the different numbers of the strain sensors are located on the key region and the normal regions; secondly, the different stress distributions of the key region are obtained based on the measurements of the strain sensors located on the key region and the normal regions separately, in which the fuzzy pattern recognition is used to identify the different stress distributions; thirdly, the stress distributions obtained by the measurements of sensors in normal regions are selected to calculate the synthesized stress distribution of the key region by D-S evidence theory; fourthly, the weighted fusion algorithm is used to assign the different fusion coefficients to the selected stress distributions obtained by the measurements of the normal regions and the key region, while the synthesized stress distribution of the key region can be obtained. Numerical study on a lattice shell model is carried out to validate the reliability of the proposed stress identification method. The simulated results indicate that the method can improve identification accuracy and be effective by different noise disturbing.展开更多
Background: Minimally invasive transforaminal lumbar interbody fusion (MI TLIF) is a widely known and performed technique, however its versatility among different physicians continues to hinder its replication and res...Background: Minimally invasive transforaminal lumbar interbody fusion (MI TLIF) is a widely known and performed technique, however its versatility among different physicians continues to hinder its replication and results. Therefore, this study aimed to provide a step-by-step surgical guide to perform a safe MI-TLIF, based on the results obtained in patients operated on by a single surgeon over a period of 12 years. Patients and methods: A retrospective, single center, longitudinal, and observational cohort study was conducted with 931 patients who underwent MI TLIF by a single surgeon between 2010 and 2022 using the technique described on this paper, each with a minimum follow-up of 12 months. Criteria included Schizas classification, listhesis according to Meyerding classification, number of levels treated, cage size, and complications (screw repositioning or cerebrospinal fluid leak). Patient clinical outcomes were assessed using the Oswestry Disability Index (ODI), Visual Analog Scale (VAS) for pre- and postoperative radicular pain. Thin slice CT scans were used to assess the progression of the fusion using the Bridwell classification. In the statistical analysis, percentages, median, and interquartile range (IQR) were calculated. Results: Nine hundred and thirty one patients underwent MI TLIF using the technique described, eight hundred and eighty (94.5%) had a single level treated and fifty one (5.5%) had a 2 level procedure (982 levels), an 8mm cage was placed on five hundred and seventeenlevels (52.7%), six hundred and sixty three levels(67.6%) achieved grade I fusion, two hundred and sixty six levels (27.1%) achieved grade II fusion, 52 levels (5.3) achieved grade III fusion and one level (0.1) achieved a grade IV fusion or non-union. Revision surgery was performed on 3 patients (0.3%) for screw repositioning, cerebrospinal fluid leak was present on 2 patients during surgery and treated before closure. VAS scores and ODI were improved at 12 months postop (VAS from 8.70 to 2.30 and ODI from 34.2 to 14.1, (p = 0.001). Conclusions: The MI TLIF technique described could be a safe and easy to replicate way to achieved lumbar interbody fusion, providingclinical and radiological benefits.展开更多
Based on measured natural frequencies and acceleration responses,a non-probabilistic information fusion technique is proposed for the structural damage detection by adopting the set-membership identification(SMI) an...Based on measured natural frequencies and acceleration responses,a non-probabilistic information fusion technique is proposed for the structural damage detection by adopting the set-membership identification(SMI) and twostep model updating procedure.Due to the insufficiency and uncertainty of information obtained from measurements,the uncertain problem of damage identification is addressed with interval variables in this paper.Based on the first-order Taylor series expansion,the interval bounds of the elemental stiffness parameters in undamaged and damaged models are estimated,respectively.The possibility of damage existence(PoDE) in elements is proposed as the quantitative measure of structural damage probability,which is more reasonable in the condition of insufficient measurement data.In comparison with the identification method based on a single kind of information,the SMI method will improve the accuracy in damage identification,which reflects the information fusion concept based on the non-probabilistic set.A numerical example is performed to demonstrate the feasibility and effectiveness of the proposed technique.展开更多
This paper introduces how to use remote sensing images including Landsat (MSS and TM) and airborne radioactivity images to identify the type of rocks in the areas covered by vegetation. The relationship between light ...This paper introduces how to use remote sensing images including Landsat (MSS and TM) and airborne radioactivity images to identify the type of rocks in the areas covered by vegetation. The relationship between light spectrum (Landsat MSS and TM) and energy spectrum (U, Th and K) is discussed on the basis of correlation analysis, and it is proven that there are correlations between the Landsat MSS or TM data and the U, Th and K data. By using the fusion technique, new images were generated, which contain both the light spectrum and the energy spectrum information.展开更多
Applications of certain multi-parameter acceleration techniques used with themodified New-ton-Raphson (mN-R) methods to solve the nonlinear equations arising from rigid-plasticfinite element analysis are investigated....Applications of certain multi-parameter acceleration techniques used with themodified New-ton-Raphson (mN-R) methods to solve the nonlinear equations arising from rigid-plasticfinite element analysis are investigated. New modified multi-parameter techniques, developed fromCrisfield's multi-parameter methods, are utilized to solve these nonlinear equations. The numericalperformance of these techniques is compared with the standard Newton-Raphson method (sN-R),Crisfield's single parameter method (C1), Crisfield's two parameter method (C2) and Crisfield'sthree parameter method (C3). The new techniques do not involve additional residual force calculationand require little extra computational effort. In addition, they are more robust and efficient thanother existing acceleration techniques.展开更多
Information on the population distribution at the building scale can help governments make supplemental decisions to address complex urban management issues.However,the discontinuity and strong spatial heterogeneity o...Information on the population distribution at the building scale can help governments make supplemental decisions to address complex urban management issues.However,the discontinuity and strong spatial heterogeneity of research units at the building scale make it challenging to fuse multi-source geographic data,which causes significant errors in population estimation.To address this problem,this study proposes a method for population estimation at the building scale based on Dual-Environment Feature Fusion(DEFF).The dual environments of buildings were constructed by splitting the physical boundaries and extracting features suitable for the dual-environment scale from multi-source geographic data to describe the complex environmental features of buildings.Meanwhile,Data Quality Weighting based Technique for Order of Preference by Similarity to Ideal Solution(DQW-TOPSIS)method was proposed to assign appropriate weights to the features of the external environment for better feature fusion.Finally,a regression model was established using dual-environment features for building-scale population estimation.The experimental areas chosen for this study were Jianghan and Wuchang Districts,both located in Wuhan City,China.The estimated results of the DEFF were compared with those of the ablation experiments,as well as three publicly accessible population datasets,specifically LandScan,WorldPop,and GHS-POP,at the community scale.The evaluation results showed that DEFF had an R2 of approximately 0.8,Mean Absolute Error(MAE)of approximately 1200,Root Mean Square Error(RMSE)of approximately 1700,and both Mean Absolute Percentage Error(MAPE)and Symmetric Mean Absolute Percentage Error(SMAPE)of approximately 26%,indicating an improved performance and verifying the validity of the proposed method for fine-scale population estimation.展开更多
目的:分析双操作通道全内镜下远外侧经椎间孔入路腰椎椎间融合术治疗腰椎滑脱症的临床疗效。方法:回顾性分析2023年6月~2023年12月我科接受双操作通道全内镜下远外侧经椎间孔入路腰椎椎间融合术治疗的单节段腰椎滑脱症患者的临床资料共2...目的:分析双操作通道全内镜下远外侧经椎间孔入路腰椎椎间融合术治疗腰椎滑脱症的临床疗效。方法:回顾性分析2023年6月~2023年12月我科接受双操作通道全内镜下远外侧经椎间孔入路腰椎椎间融合术治疗的单节段腰椎滑脱症患者的临床资料共20例;其中退变性腰椎滑脱15例,峡部裂型腰椎滑脱5例;女7例,男13例;年龄49~72(59.95±7.16)岁;病程为2~120(35.15±42.10)个月。记录手术时间、术中出血量、住院时间及手术并发症,术前、术后1个月及末次随访时应用腰椎Oswestry功能障碍指数(Oswestry disability index,ODI)、腰痛及腿痛的视觉模拟评分(visual analog scale,VAS)评价疗效。对随访期间腰椎CT影像按照Bridwell标准判断椎间融合情况。结果:所有患者顺利完成镜下融合手术;手术时间为175~235min(201.75±24.40min)。所有病例随访时间为12~16(14.15±1.14)个月。术后1个月及末次随访时ODI、腰痛及腿痛VAS评分均较术前明显改善(P<0.05)。术中、术后及末次随访时均无严重并发症发生。随访期间20例复查腰椎CT,其中19例(95.0%)达到骨性融合。结论:双操作通道全内镜下远外侧经椎间孔入路腰椎椎间融合术早期随访临床疗效令人满意,是治疗腰椎滑脱症的一种微创、安全、有效的术式选择。展开更多
基金supported by the National Natural Science Foundation of China(6153102061471383)
文摘An algorithm of highly maneuvering target tracking is proposed to solve the problem of large tracking error caused by strong maneuver. In this algorithm, a new estimator, named as multi-parameter fusion Singer (MF-Singer) model is derived based on the Singer model and the fuzzy reasoning method by using radial acceleration and velocity of the target, and applied to the problem of maneuvering target tracking in strong maneuvering environment and operating environment. The tracking performance of the MF-Singer model is evaluated and compared with other manuevering tracking models. It is shown that the MF-Singer model outperforms these algorithms in several examples.
文摘Assuring medical images protection and robustness is a compulsory necessity nowadays.In this paper,a novel technique is proposed that fuses the wavelet-induced multi-resolution decomposition of the Discrete Wavelet Transform(DWT)with the energy compaction of the Discrete Wavelet Transform(DCT).The multi-level Encryption-based Hybrid Fusion Technique(EbhFT)aims to achieve great advances in terms of imperceptibility and security of medical images.A DWT disintegrated sub-band of a cover image is reformed simultaneously using the DCT transform.Afterwards,a 64-bit hex key is employed to encrypt the host image as well as participate in the second key creation process to encode the watermark.Lastly,a PN-sequence key is formed along with a supplementary key in the third layer of the EbHFT.Thus,the watermarked image is generated by enclosing both keys into DWT and DCT coefficients.The fusions ability of the proposed EbHFT technique makes the best use of the distinct privileges of using both DWT and DCT methods.In order to validate the proposed technique,a standard dataset of medical images is used.Simulation results show higher performance of the visual quality(i.e.,57.65)for the watermarked forms of all types of medical images.In addition,EbHFT robustness outperforms an existing scheme tested for the same dataset in terms of Normalized Correlation(NC).Finally,extra protection for digital images from against illegal replicating and unapproved tampering using the proposed technique.
文摘In order to ensure the service security of space structures under wind load, the stress identification method based on the combination of fuzzy pattern recognition and information fusion technique is proposed, in which the measurements of limited strain sensors arranged on the structure are used. Firstly, the structure is divided into several regions according to the similarity and the most unfavorable region is selected to be the key region for stress identification, while the different numbers of the strain sensors are located on the key region and the normal regions; secondly, the different stress distributions of the key region are obtained based on the measurements of the strain sensors located on the key region and the normal regions separately, in which the fuzzy pattern recognition is used to identify the different stress distributions; thirdly, the stress distributions obtained by the measurements of sensors in normal regions are selected to calculate the synthesized stress distribution of the key region by D-S evidence theory; fourthly, the weighted fusion algorithm is used to assign the different fusion coefficients to the selected stress distributions obtained by the measurements of the normal regions and the key region, while the synthesized stress distribution of the key region can be obtained. Numerical study on a lattice shell model is carried out to validate the reliability of the proposed stress identification method. The simulated results indicate that the method can improve identification accuracy and be effective by different noise disturbing.
文摘Background: Minimally invasive transforaminal lumbar interbody fusion (MI TLIF) is a widely known and performed technique, however its versatility among different physicians continues to hinder its replication and results. Therefore, this study aimed to provide a step-by-step surgical guide to perform a safe MI-TLIF, based on the results obtained in patients operated on by a single surgeon over a period of 12 years. Patients and methods: A retrospective, single center, longitudinal, and observational cohort study was conducted with 931 patients who underwent MI TLIF by a single surgeon between 2010 and 2022 using the technique described on this paper, each with a minimum follow-up of 12 months. Criteria included Schizas classification, listhesis according to Meyerding classification, number of levels treated, cage size, and complications (screw repositioning or cerebrospinal fluid leak). Patient clinical outcomes were assessed using the Oswestry Disability Index (ODI), Visual Analog Scale (VAS) for pre- and postoperative radicular pain. Thin slice CT scans were used to assess the progression of the fusion using the Bridwell classification. In the statistical analysis, percentages, median, and interquartile range (IQR) were calculated. Results: Nine hundred and thirty one patients underwent MI TLIF using the technique described, eight hundred and eighty (94.5%) had a single level treated and fifty one (5.5%) had a 2 level procedure (982 levels), an 8mm cage was placed on five hundred and seventeenlevels (52.7%), six hundred and sixty three levels(67.6%) achieved grade I fusion, two hundred and sixty six levels (27.1%) achieved grade II fusion, 52 levels (5.3) achieved grade III fusion and one level (0.1) achieved a grade IV fusion or non-union. Revision surgery was performed on 3 patients (0.3%) for screw repositioning, cerebrospinal fluid leak was present on 2 patients during surgery and treated before closure. VAS scores and ODI were improved at 12 months postop (VAS from 8.70 to 2.30 and ODI from 34.2 to 14.1, (p = 0.001). Conclusions: The MI TLIF technique described could be a safe and easy to replicate way to achieved lumbar interbody fusion, providingclinical and radiological benefits.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education (20091102120023)the Aeronautical Science Foundation of China (2012ZA51010)+1 种基金the National Natural Science Foundation of China (11002013)Defense Industrial Technology Development Program (A2120110001 and B2120110011)
文摘Based on measured natural frequencies and acceleration responses,a non-probabilistic information fusion technique is proposed for the structural damage detection by adopting the set-membership identification(SMI) and twostep model updating procedure.Due to the insufficiency and uncertainty of information obtained from measurements,the uncertain problem of damage identification is addressed with interval variables in this paper.Based on the first-order Taylor series expansion,the interval bounds of the elemental stiffness parameters in undamaged and damaged models are estimated,respectively.The possibility of damage existence(PoDE) in elements is proposed as the quantitative measure of structural damage probability,which is more reasonable in the condition of insufficient measurement data.In comparison with the identification method based on a single kind of information,the SMI method will improve the accuracy in damage identification,which reflects the information fusion concept based on the non-probabilistic set.A numerical example is performed to demonstrate the feasibility and effectiveness of the proposed technique.
文摘This paper introduces how to use remote sensing images including Landsat (MSS and TM) and airborne radioactivity images to identify the type of rocks in the areas covered by vegetation. The relationship between light spectrum (Landsat MSS and TM) and energy spectrum (U, Th and K) is discussed on the basis of correlation analysis, and it is proven that there are correlations between the Landsat MSS or TM data and the U, Th and K data. By using the fusion technique, new images were generated, which contain both the light spectrum and the energy spectrum information.
文摘Applications of certain multi-parameter acceleration techniques used with themodified New-ton-Raphson (mN-R) methods to solve the nonlinear equations arising from rigid-plasticfinite element analysis are investigated. New modified multi-parameter techniques, developed fromCrisfield's multi-parameter methods, are utilized to solve these nonlinear equations. The numericalperformance of these techniques is compared with the standard Newton-Raphson method (sN-R),Crisfield's single parameter method (C1), Crisfield's two parameter method (C2) and Crisfield'sthree parameter method (C3). The new techniques do not involve additional residual force calculationand require little extra computational effort. In addition, they are more robust and efficient thanother existing acceleration techniques.
基金supported by the National Natural Science Foundation of China[Grant numbers U20A2091,41930107]。
文摘Information on the population distribution at the building scale can help governments make supplemental decisions to address complex urban management issues.However,the discontinuity and strong spatial heterogeneity of research units at the building scale make it challenging to fuse multi-source geographic data,which causes significant errors in population estimation.To address this problem,this study proposes a method for population estimation at the building scale based on Dual-Environment Feature Fusion(DEFF).The dual environments of buildings were constructed by splitting the physical boundaries and extracting features suitable for the dual-environment scale from multi-source geographic data to describe the complex environmental features of buildings.Meanwhile,Data Quality Weighting based Technique for Order of Preference by Similarity to Ideal Solution(DQW-TOPSIS)method was proposed to assign appropriate weights to the features of the external environment for better feature fusion.Finally,a regression model was established using dual-environment features for building-scale population estimation.The experimental areas chosen for this study were Jianghan and Wuchang Districts,both located in Wuhan City,China.The estimated results of the DEFF were compared with those of the ablation experiments,as well as three publicly accessible population datasets,specifically LandScan,WorldPop,and GHS-POP,at the community scale.The evaluation results showed that DEFF had an R2 of approximately 0.8,Mean Absolute Error(MAE)of approximately 1200,Root Mean Square Error(RMSE)of approximately 1700,and both Mean Absolute Percentage Error(MAPE)and Symmetric Mean Absolute Percentage Error(SMAPE)of approximately 26%,indicating an improved performance and verifying the validity of the proposed method for fine-scale population estimation.
文摘目的:分析双操作通道全内镜下远外侧经椎间孔入路腰椎椎间融合术治疗腰椎滑脱症的临床疗效。方法:回顾性分析2023年6月~2023年12月我科接受双操作通道全内镜下远外侧经椎间孔入路腰椎椎间融合术治疗的单节段腰椎滑脱症患者的临床资料共20例;其中退变性腰椎滑脱15例,峡部裂型腰椎滑脱5例;女7例,男13例;年龄49~72(59.95±7.16)岁;病程为2~120(35.15±42.10)个月。记录手术时间、术中出血量、住院时间及手术并发症,术前、术后1个月及末次随访时应用腰椎Oswestry功能障碍指数(Oswestry disability index,ODI)、腰痛及腿痛的视觉模拟评分(visual analog scale,VAS)评价疗效。对随访期间腰椎CT影像按照Bridwell标准判断椎间融合情况。结果:所有患者顺利完成镜下融合手术;手术时间为175~235min(201.75±24.40min)。所有病例随访时间为12~16(14.15±1.14)个月。术后1个月及末次随访时ODI、腰痛及腿痛VAS评分均较术前明显改善(P<0.05)。术中、术后及末次随访时均无严重并发症发生。随访期间20例复查腰椎CT,其中19例(95.0%)达到骨性融合。结论:双操作通道全内镜下远外侧经椎间孔入路腰椎椎间融合术早期随访临床疗效令人满意,是治疗腰椎滑脱症的一种微创、安全、有效的术式选择。