For dealing with the multi-objective optimization problems of parametric design for aircraft, a novel hybrid parallel multi-objective tabu search (HPMOTS) algorithm is used. First, a new multi-objective tabu search ...For dealing with the multi-objective optimization problems of parametric design for aircraft, a novel hybrid parallel multi-objective tabu search (HPMOTS) algorithm is used. First, a new multi-objective tabu search (MOTS) algorithm is proposed. Comparing with the traditional MOTS algorithm, this proposed algorithm adds some new methods such as the combination of MOTS algorithm and "Pareto solution", the strategy of "searching from many directions" and the reservation of good solutions. Second, this article also proposes the improved parallel multi-objective tabu search (PMOTS) algorithm. Finally, a new hybrid algorithm--HPMOTS algorithm which combines the PMOTS algorithm with the non-dominated sorting-based multi-objective genetic algorithm (NSGA) is presented. The computing results of these algorithms are compared with each other and it is shown that the optimal result can be obtained by the HPMOTS algorithm and the computing result of the PMOTS algorithm is better than that of MOTS algorithm.展开更多
In recent years, a large number of approaches to constrained multi-objective optimization problems(CMOPs) have been proposed, focusing on developing tweaked strategies and techniques for handling constraints. However,...In recent years, a large number of approaches to constrained multi-objective optimization problems(CMOPs) have been proposed, focusing on developing tweaked strategies and techniques for handling constraints. However, an overly finetuned strategy or technique might overfit some problem types,resulting in a lack of versatility. In this article, we propose a generic search strategy that performs an even search in a promising region. The promising region, determined by obtained feasible non-dominated solutions, possesses two general properties.First, the constrained Pareto front(CPF) is included in the promising region. Second, as the number of feasible solutions increases or the convergence performance(i.e., approximation to the CPF) of these solutions improves, the promising region shrinks. Then we develop a new strategy named even search,which utilizes the non-dominated solutions to accelerate convergence and escape from local optima, and the feasible solutions under a constraint relaxation condition to exploit and detect feasible regions. Finally, a diversity measure is adopted to make sure that the individuals in the population evenly cover the valuable areas in the promising region. Experimental results on 45 instances from four benchmark test suites and 14 real-world CMOPs have demonstrated that searching evenly in the promising region can achieve competitive performance and excellent versatility compared to 11 most state-of-the-art methods tailored for CMOPs.展开更多
The recently proposed Cuckoo search algorithm is an evolutionary algorithm based on probability. It surpasses other algorithms in solving the multi-modal discontinuous and nonlinear problems. Searches made by it are v...The recently proposed Cuckoo search algorithm is an evolutionary algorithm based on probability. It surpasses other algorithms in solving the multi-modal discontinuous and nonlinear problems. Searches made by it are very efficient because it adopts Levy flight to carry out random walks. This paper proposes an improved version of cuckoo search for multi-objective problems(IMOCS). Combined with nondominated sorting, crowding distance and Levy flights, elitism strategy is applied to improve the algorithm. Then numerical studies are conducted to compare the algorithm with DEMO and NSGA-II against some benchmark test functions. Result shows that our improved cuckoo search algorithm convergences rapidly and performs efficienly.展开更多
Shenvi et al.have proposed a quantum algorithm based on quantum walking called Shenvi-Kempe-Whaley(SKW)algorithm,but this search algorithm can only search one target state and use a specific search target state vector...Shenvi et al.have proposed a quantum algorithm based on quantum walking called Shenvi-Kempe-Whaley(SKW)algorithm,but this search algorithm can only search one target state and use a specific search target state vector.Therefore,when there are more than two target nodes in the search space,the algorithm has certain limitations.Even though a multiobjective SKW search algorithm was proposed later,when the number of target nodes is more than two,the SKW search algorithm cannot be mapped to the same quotient graph.In addition,the calculation of the optimal target state depends on the number of target states m.In previous studies,quantum computing and testing algorithms were used to solve this problem.But these solutions require more Oracle calls and cannot get a high accuracy rate.Therefore,to solve the above problems,we improve the multi-target quantum walk search algorithm,and construct a controllable quantum walk search algorithm under the condition of unknown number of target states.By dividing the Hilbert space into multiple subspaces,the accuracy of the search algorithm is improved from p_(c)=(1/2)-O(1/n)to p_(c)=1-O(1/n).And by adding detection gate phase,the algorithm can stop when the amplitude of the target state becomes the maximum for the first time,and the algorithm can always maintain the optimal number of iterations,so as to reduce the number of unnecessary iterations in the algorithm process and make the number of iterations reach t_(f)=(π/2)(?).展开更多
Multi-objective Evolutionary Algorithm (MOEA) is becoming a hot research area and quite a few aspects of MOEAs have been studied and discussed. However there are still few literatures discussing the roles of search an...Multi-objective Evolutionary Algorithm (MOEA) is becoming a hot research area and quite a few aspects of MOEAs have been studied and discussed. However there are still few literatures discussing the roles of search and selection operators in MOEAs. This paper studied their roles by solving a case of discrete Multi-objective Optimization Problem (MOP): Multi-objective TSP with a new MOEA. In the new MOEA, We adopt an efficient search operator, which has the properties of both crossover and mutation, to generate the new individuals and chose two selection operators: Family Competition and Population Competition with probabilities to realize selection. The simulation experiments showed that this new MOEA could get good uniform solutions representing the Pareto Front and outperformed SPEA in almost every simulation run on this problem. Furthermore, we analyzed its convergence property using finite Markov chain and proved that it could converge to Pareto Front with probability 1. We also find that the convergence property of MOEAs has much relationship with search and selection operators.展开更多
The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency...The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency. A multi-objective model was presented for the material distribution routing problem in mixed manufacturing systems, and it was solved by a hybrid multi-objective evolutionary algorithm (HMOEA). The characteristics of the HMOEA are as follows: 1) A route pool is employed to preserve the best routes for the population initiation; 2) A specialized best?worst route crossover (BWRC) mode is designed to perform the crossover operators for selecting the best route from Chromosomes 1 to exchange with the worst one in Chromosomes 2, so that the better genes are inherited to the offspring; 3) A route swap mode is used to perform the mutation for improving the convergence speed and preserving the better gene; 4) Local heuristics search methods are applied in this algorithm. Computational study of a practical case shows that the proposed algorithm can decrease the total travel distance by 51.66%, enhance the average vehicle load rate by 37.85%, cut down 15 routes and reduce a deliver vehicle. The convergence speed of HMOEA is faster than that of famous NSGA-II.展开更多
In this paper, a new hybrid multi-objective evolutionary algorithm (MOEA), the niched Pareto tabu search combined with a genetic algorithm (NPTSGA), is proposed for the management of groundwater resources under va...In this paper, a new hybrid multi-objective evolutionary algorithm (MOEA), the niched Pareto tabu search combined with a genetic algorithm (NPTSGA), is proposed for the management of groundwater resources under variable density conditions. Relatively few MOEAs can possess global search ability contenting with intensified search in a local area. Moreover, the overall searching ability of tabu search (TS) based MOEAs is very sensitive to the neighborhood step size. The NPTSGA is developed on the thought of integrating the genetic algorithm (GA) with a TS based MOEA, the niched Pareto tabu search (NPTS), which helps to alleviate both of the above difficulties. Here, the global search ability of the NPTS is improved by the diversification of candidate solutions arising from the evolving genetic algorithm population. Furthermore, the proposed methodology coupled with a density-dependent groundwater flow and solute transport simulator, SEAWAT, is developed and its performance is evaluated through a synthetic seawater intrusion management problem. Optimization results indicate that the NPTSGA offers a tradeoff between the two conflicting objectives. A key conclusion of this study is that the NPTSGA keeps the balance between the intensification of nondomination and the diversification of near Pareto-optimal solutions along the tradeoff curves and is a stable and robust method for implementing the multi-objective design of variable-density groundwater resources.展开更多
Crow Search Algorithm(CSA)is a swarm-based single-objective optimizer proposed in recent years,which tried to inspire the behavior of crows that hide foods in different locations and retrieve them when needed.The orig...Crow Search Algorithm(CSA)is a swarm-based single-objective optimizer proposed in recent years,which tried to inspire the behavior of crows that hide foods in different locations and retrieve them when needed.The original version of the CSA has simple parameters and moderate performance.However,it often tends to converge slowly or get stuck in a locally optimal region due to a missed harmonizing strategy during the exploitation and exploration phases.Therefore,strategies of mutation and crisscross are combined into CSA(CCMSCSA)in this paper to improve the performance and provide an efficient optimizer for various optimization problems.To verify the superiority of CCMSCSA,a set of comparisons has been performed reasonably with some well-established metaheuristics and advanced metaheuristics on 15 benchmark functions.The experimental results expose and verify that the proposed CCMSCSA has meaningfully improved the convergence speed and the ability to jump out of the local optimum.In addition,the scalability of CCMSCSA is analyzed,and the algorithm is applied to several engineering problems in a constrained space and feature selection problems.Experimental results show that the scalability of CCMSCSA has been significantly improved and can find better solutions than its competitors when dealing with combinatorial optimization problems.The proposed CCMSCSA performs well in almost all experimental results.Therefore,we hope the researchers can see it as an effective method for solving constrained and unconstrained optimization problems.展开更多
This paper introduces a parallel search system for dynamic multi-objective traveling salesman problem. We design a multi-objective TSP in a stochastic dynamic environment. This dynamic setting of the problem is very u...This paper introduces a parallel search system for dynamic multi-objective traveling salesman problem. We design a multi-objective TSP in a stochastic dynamic environment. This dynamic setting of the problem is very useful for routing in ad-hoc networks. The proposed search system first uses parallel processors to identify the extreme solutions of the search space for each ofk objectives individually at the same time. These solutions are merged into the so-called hit-frequency matrix E. The solutions in E are then searched by parallel processors and evaluated for dominance relationship. The search system is implemented in two different ways master-worker architecture and pipeline architecture.展开更多
Large-scale multi-objective optimization problems(MOPs)that involve a large number of decision variables,have emerged from many real-world applications.While evolutionary algorithms(EAs)have been widely acknowledged a...Large-scale multi-objective optimization problems(MOPs)that involve a large number of decision variables,have emerged from many real-world applications.While evolutionary algorithms(EAs)have been widely acknowledged as a mainstream method for MOPs,most research progress and successful applications of EAs have been restricted to MOPs with small-scale decision variables.More recently,it has been reported that traditional multi-objective EAs(MOEAs)suffer severe deterioration with the increase of decision variables.As a result,and motivated by the emergence of real-world large-scale MOPs,investigation of MOEAs in this aspect has attracted much more attention in the past decade.This paper reviews the progress of evolutionary computation for large-scale multi-objective optimization from two angles.From the key difficulties of the large-scale MOPs,the scalability analysis is discussed by focusing on the performance of existing MOEAs and the challenges induced by the increase of the number of decision variables.From the perspective of methodology,the large-scale MOEAs are categorized into three classes and introduced respectively:divide and conquer based,dimensionality reduction based and enhanced search-based approaches.Several future research directions are also discussed.展开更多
The halbach permanent magnet synchronous motor(HPMSM)combines the advantages of permanent magnet motors and halbach arrays,which make it very suitable to act as a robot joint motor,and it can also be used in other fie...The halbach permanent magnet synchronous motor(HPMSM)combines the advantages of permanent magnet motors and halbach arrays,which make it very suitable to act as a robot joint motor,and it can also be used in other fields,such as electric vehicles,wind power generation,etc.At first,the sizing equation is derived and the initial design dimensions are calculated for the HPMSM with the rated power of 275W,based on which the finite element parametric model of the motor is built up and the key structural parameters that affect the total harmonic distortion of air-gap flux density and output torque are determined by analyzing multi-objective sensitivity.Then the structure parameters are optimized by using the cuckoo search algorithm.Last,in view of the problem of local overheating of the motor,an improved stator slot structure is proposed and researched.Under the condition of the same outer dimensions,the electromagnetic performance of the HPMSM before and after the improvement are analyzed and compared by the finite element method.It is found that the improved HPMSM can obtain better performances.展开更多
In response to practical application challenges in utilizing solar-powered unmanned aerial vehicle(UAV)for remote sensing,this study presents a three-dimensional path planning method tailored for urban-mountainous env...In response to practical application challenges in utilizing solar-powered unmanned aerial vehicle(UAV)for remote sensing,this study presents a three-dimensional path planning method tailored for urban-mountainous environment.Taking into account constraints related to the solar-powered UAV,terrain,and mission objectives,a multi-objective trajectory optimization model is transferred into a single-objective optimization problem with weight factors and multiconstraint and is developed with a focus on three key indicators:minimizing trajectory length,maximizing energy flow efficiency,and minimizing regional risk levels.Additionally,an enhanced sparrow search algorithm incorporating the Levy flight strategy(SSA-Levy)is introduced to address trajectory planning challenges in such complex environments.Through simulation,the proposed algorithm is compared with particle swarm optimization(PSO)and the regular sparrow search algorithm(SSA)across 17 standard test functions and a simplified simulation of urban-mountainous environments.The results of the simulation demonstrate the superior effectiveness of the designed improved SSA based on the Levy flight strategy for solving the established single-objective trajectory optimization model.展开更多
基金National Science Fund for Distinguished Young Scholars (10425208)Programme of Introducing Talents of Discipline to Universities (B07009)
文摘For dealing with the multi-objective optimization problems of parametric design for aircraft, a novel hybrid parallel multi-objective tabu search (HPMOTS) algorithm is used. First, a new multi-objective tabu search (MOTS) algorithm is proposed. Comparing with the traditional MOTS algorithm, this proposed algorithm adds some new methods such as the combination of MOTS algorithm and "Pareto solution", the strategy of "searching from many directions" and the reservation of good solutions. Second, this article also proposes the improved parallel multi-objective tabu search (PMOTS) algorithm. Finally, a new hybrid algorithm--HPMOTS algorithm which combines the PMOTS algorithm with the non-dominated sorting-based multi-objective genetic algorithm (NSGA) is presented. The computing results of these algorithms are compared with each other and it is shown that the optimal result can be obtained by the HPMOTS algorithm and the computing result of the PMOTS algorithm is better than that of MOTS algorithm.
基金partly supported by the National Natural Science Foundation of China(62076225)。
文摘In recent years, a large number of approaches to constrained multi-objective optimization problems(CMOPs) have been proposed, focusing on developing tweaked strategies and techniques for handling constraints. However, an overly finetuned strategy or technique might overfit some problem types,resulting in a lack of versatility. In this article, we propose a generic search strategy that performs an even search in a promising region. The promising region, determined by obtained feasible non-dominated solutions, possesses two general properties.First, the constrained Pareto front(CPF) is included in the promising region. Second, as the number of feasible solutions increases or the convergence performance(i.e., approximation to the CPF) of these solutions improves, the promising region shrinks. Then we develop a new strategy named even search,which utilizes the non-dominated solutions to accelerate convergence and escape from local optima, and the feasible solutions under a constraint relaxation condition to exploit and detect feasible regions. Finally, a diversity measure is adopted to make sure that the individuals in the population evenly cover the valuable areas in the promising region. Experimental results on 45 instances from four benchmark test suites and 14 real-world CMOPs have demonstrated that searching evenly in the promising region can achieve competitive performance and excellent versatility compared to 11 most state-of-the-art methods tailored for CMOPs.
基金Supported by the National Natural Science Foundation of China(71471140)
文摘The recently proposed Cuckoo search algorithm is an evolutionary algorithm based on probability. It surpasses other algorithms in solving the multi-modal discontinuous and nonlinear problems. Searches made by it are very efficient because it adopts Levy flight to carry out random walks. This paper proposes an improved version of cuckoo search for multi-objective problems(IMOCS). Combined with nondominated sorting, crowding distance and Levy flights, elitism strategy is applied to improve the algorithm. Then numerical studies are conducted to compare the algorithm with DEMO and NSGA-II against some benchmark test functions. Result shows that our improved cuckoo search algorithm convergences rapidly and performs efficienly.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11975132 and 61772295)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2019YQ01)the Project of Shandong Provincial Higher Educational Science and Technology Program,China(Grant No.J18KZ012)。
文摘Shenvi et al.have proposed a quantum algorithm based on quantum walking called Shenvi-Kempe-Whaley(SKW)algorithm,but this search algorithm can only search one target state and use a specific search target state vector.Therefore,when there are more than two target nodes in the search space,the algorithm has certain limitations.Even though a multiobjective SKW search algorithm was proposed later,when the number of target nodes is more than two,the SKW search algorithm cannot be mapped to the same quotient graph.In addition,the calculation of the optimal target state depends on the number of target states m.In previous studies,quantum computing and testing algorithms were used to solve this problem.But these solutions require more Oracle calls and cannot get a high accuracy rate.Therefore,to solve the above problems,we improve the multi-target quantum walk search algorithm,and construct a controllable quantum walk search algorithm under the condition of unknown number of target states.By dividing the Hilbert space into multiple subspaces,the accuracy of the search algorithm is improved from p_(c)=(1/2)-O(1/n)to p_(c)=1-O(1/n).And by adding detection gate phase,the algorithm can stop when the amplitude of the target state becomes the maximum for the first time,and the algorithm can always maintain the optimal number of iterations,so as to reduce the number of unnecessary iterations in the algorithm process and make the number of iterations reach t_(f)=(π/2)(?).
基金Supported by the National Natural Science Foundation of China(60133010,70071042,60073043)
文摘Multi-objective Evolutionary Algorithm (MOEA) is becoming a hot research area and quite a few aspects of MOEAs have been studied and discussed. However there are still few literatures discussing the roles of search and selection operators in MOEAs. This paper studied their roles by solving a case of discrete Multi-objective Optimization Problem (MOP): Multi-objective TSP with a new MOEA. In the new MOEA, We adopt an efficient search operator, which has the properties of both crossover and mutation, to generate the new individuals and chose two selection operators: Family Competition and Population Competition with probabilities to realize selection. The simulation experiments showed that this new MOEA could get good uniform solutions representing the Pareto Front and outperformed SPEA in almost every simulation run on this problem. Furthermore, we analyzed its convergence property using finite Markov chain and proved that it could converge to Pareto Front with probability 1. We also find that the convergence property of MOEAs has much relationship with search and selection operators.
基金Project(50775089)supported by the National Natural Science Foundation of ChinaProject(2007AA04Z190,2009AA043301)supported by the National High Technology Research and Development Program of ChinaProject(2005CB724100)supported by the National Basic Research Program of China
文摘The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency. A multi-objective model was presented for the material distribution routing problem in mixed manufacturing systems, and it was solved by a hybrid multi-objective evolutionary algorithm (HMOEA). The characteristics of the HMOEA are as follows: 1) A route pool is employed to preserve the best routes for the population initiation; 2) A specialized best?worst route crossover (BWRC) mode is designed to perform the crossover operators for selecting the best route from Chromosomes 1 to exchange with the worst one in Chromosomes 2, so that the better genes are inherited to the offspring; 3) A route swap mode is used to perform the mutation for improving the convergence speed and preserving the better gene; 4) Local heuristics search methods are applied in this algorithm. Computational study of a practical case shows that the proposed algorithm can decrease the total travel distance by 51.66%, enhance the average vehicle load rate by 37.85%, cut down 15 routes and reduce a deliver vehicle. The convergence speed of HMOEA is faster than that of famous NSGA-II.
基金funded by the National Basic Research Program of China(the 973 Program,No.2010CB428803)the National Natural Science Foundation of China(Nos.41072175,40902069 and 40725010)
文摘In this paper, a new hybrid multi-objective evolutionary algorithm (MOEA), the niched Pareto tabu search combined with a genetic algorithm (NPTSGA), is proposed for the management of groundwater resources under variable density conditions. Relatively few MOEAs can possess global search ability contenting with intensified search in a local area. Moreover, the overall searching ability of tabu search (TS) based MOEAs is very sensitive to the neighborhood step size. The NPTSGA is developed on the thought of integrating the genetic algorithm (GA) with a TS based MOEA, the niched Pareto tabu search (NPTS), which helps to alleviate both of the above difficulties. Here, the global search ability of the NPTS is improved by the diversification of candidate solutions arising from the evolving genetic algorithm population. Furthermore, the proposed methodology coupled with a density-dependent groundwater flow and solute transport simulator, SEAWAT, is developed and its performance is evaluated through a synthetic seawater intrusion management problem. Optimization results indicate that the NPTSGA offers a tradeoff between the two conflicting objectives. A key conclusion of this study is that the NPTSGA keeps the balance between the intensification of nondomination and the diversification of near Pareto-optimal solutions along the tradeoff curves and is a stable and robust method for implementing the multi-objective design of variable-density groundwater resources.
基金Natural Science Foundation of Zhejiang Province(LZ22F020005)National Natural Science Foundation of China(42164002,62076185 and,U1809209)National Key R&D Program of China(2018YFC1503806).
文摘Crow Search Algorithm(CSA)is a swarm-based single-objective optimizer proposed in recent years,which tried to inspire the behavior of crows that hide foods in different locations and retrieve them when needed.The original version of the CSA has simple parameters and moderate performance.However,it often tends to converge slowly or get stuck in a locally optimal region due to a missed harmonizing strategy during the exploitation and exploration phases.Therefore,strategies of mutation and crisscross are combined into CSA(CCMSCSA)in this paper to improve the performance and provide an efficient optimizer for various optimization problems.To verify the superiority of CCMSCSA,a set of comparisons has been performed reasonably with some well-established metaheuristics and advanced metaheuristics on 15 benchmark functions.The experimental results expose and verify that the proposed CCMSCSA has meaningfully improved the convergence speed and the ability to jump out of the local optimum.In addition,the scalability of CCMSCSA is analyzed,and the algorithm is applied to several engineering problems in a constrained space and feature selection problems.Experimental results show that the scalability of CCMSCSA has been significantly improved and can find better solutions than its competitors when dealing with combinatorial optimization problems.The proposed CCMSCSA performs well in almost all experimental results.Therefore,we hope the researchers can see it as an effective method for solving constrained and unconstrained optimization problems.
文摘This paper introduces a parallel search system for dynamic multi-objective traveling salesman problem. We design a multi-objective TSP in a stochastic dynamic environment. This dynamic setting of the problem is very useful for routing in ad-hoc networks. The proposed search system first uses parallel processors to identify the extreme solutions of the search space for each ofk objectives individually at the same time. These solutions are merged into the so-called hit-frequency matrix E. The solutions in E are then searched by parallel processors and evaluated for dominance relationship. The search system is implemented in two different ways master-worker architecture and pipeline architecture.
基金This work was supported by the Natural Science Foundation of China(Nos.61672478 and 61806090)the National Key Research and Development Program of China(No.2017YFB1003102)+4 种基金the Guangdong Provincial Key Laboratory(No.2020B121201001)the Shenzhen Peacock Plan(No.KQTD2016112514355531)the Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-inspired Intelligence Fund(No.2019028)the Fellowship of China Postdoctoral Science Foundation(No.2020M671900)the National Leading Youth Talent Support Program of China.
文摘Large-scale multi-objective optimization problems(MOPs)that involve a large number of decision variables,have emerged from many real-world applications.While evolutionary algorithms(EAs)have been widely acknowledged as a mainstream method for MOPs,most research progress and successful applications of EAs have been restricted to MOPs with small-scale decision variables.More recently,it has been reported that traditional multi-objective EAs(MOEAs)suffer severe deterioration with the increase of decision variables.As a result,and motivated by the emergence of real-world large-scale MOPs,investigation of MOEAs in this aspect has attracted much more attention in the past decade.This paper reviews the progress of evolutionary computation for large-scale multi-objective optimization from two angles.From the key difficulties of the large-scale MOPs,the scalability analysis is discussed by focusing on the performance of existing MOEAs and the challenges induced by the increase of the number of decision variables.From the perspective of methodology,the large-scale MOEAs are categorized into three classes and introduced respectively:divide and conquer based,dimensionality reduction based and enhanced search-based approaches.Several future research directions are also discussed.
基金This work was supported by the National Natural Science Foundation of China(51507087)the Six Talents Summit Project of Jiangsu Province(XNYQC-017)the Science and Technology Planning Project of Nantong City(MS22019017).
文摘The halbach permanent magnet synchronous motor(HPMSM)combines the advantages of permanent magnet motors and halbach arrays,which make it very suitable to act as a robot joint motor,and it can also be used in other fields,such as electric vehicles,wind power generation,etc.At first,the sizing equation is derived and the initial design dimensions are calculated for the HPMSM with the rated power of 275W,based on which the finite element parametric model of the motor is built up and the key structural parameters that affect the total harmonic distortion of air-gap flux density and output torque are determined by analyzing multi-objective sensitivity.Then the structure parameters are optimized by using the cuckoo search algorithm.Last,in view of the problem of local overheating of the motor,an improved stator slot structure is proposed and researched.Under the condition of the same outer dimensions,the electromagnetic performance of the HPMSM before and after the improvement are analyzed and compared by the finite element method.It is found that the improved HPMSM can obtain better performances.
基金supported in part by the National Natural Science Foundation of China under Grant 51979275the National Key Research and Development Program of China under Grant 2022YFD2001405+8 种基金the open fund of Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province under Grant 2023ZJZD2306the Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities,Ministry of Natural Resources,under Grant KFKT-2022-05in part by Shenzhen Science and Technology Program(grant number ZDSYS20210623091808026)the Open Project Program of State Key Laboratory of Virtual Reality Technology and Systems,Beihang University,under Grant VRLAB2022C10in part by the open fund project of State Key Laboratory of Clean Energy Utilization under Grant ZJUCEU2022002the open fund of Key Laboratory of Smart Agricultural Technology(Yangtze River Delta),Ministry of Agriculture and Rural Affairs,under Grant KSAT-YRD2023005the Open Project Program of Key Laboratory of Smart Agricultural Technology in Tropical South China,Ministry of Agriculture and Rural Affairs,under Grant HNZHNYKFKT-202202the Higher Education Scientific Research Planning Project,China Association of Higher Education,under Grant 23XXK0304the 2115 Talent Development Program of China Agricultural University.Ben Ma received the master's degree in mechatronics engineering at the College of Engineering,China Agricultural University,Beijing,China,in 2021.
文摘In response to practical application challenges in utilizing solar-powered unmanned aerial vehicle(UAV)for remote sensing,this study presents a three-dimensional path planning method tailored for urban-mountainous environment.Taking into account constraints related to the solar-powered UAV,terrain,and mission objectives,a multi-objective trajectory optimization model is transferred into a single-objective optimization problem with weight factors and multiconstraint and is developed with a focus on three key indicators:minimizing trajectory length,maximizing energy flow efficiency,and minimizing regional risk levels.Additionally,an enhanced sparrow search algorithm incorporating the Levy flight strategy(SSA-Levy)is introduced to address trajectory planning challenges in such complex environments.Through simulation,the proposed algorithm is compared with particle swarm optimization(PSO)and the regular sparrow search algorithm(SSA)across 17 standard test functions and a simplified simulation of urban-mountainous environments.The results of the simulation demonstrate the superior effectiveness of the designed improved SSA based on the Levy flight strategy for solving the established single-objective trajectory optimization model.