期刊文献+
共找到15,464篇文章
< 1 2 250 >
每页显示 20 50 100
A Multi-Objective Particle Swarm Optimization Algorithm Based on Decomposition and Multi-Selection Strategy
1
作者 Li Ma Cai Dai +1 位作者 Xingsi Xue Cheng Peng 《Computers, Materials & Continua》 SCIE EI 2025年第1期997-1026,共30页
The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition... The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition and multi-selection strategy is proposed to improve the search efficiency.First,two update strategies based on decomposition are used to update the evolving population and external archive,respectively.Second,a multiselection strategy is designed.The first strategy is for the subspace without a non-dominated solution.Among the neighbor particles,the particle with the smallest penalty-based boundary intersection value is selected as the global optimal solution and the particle far away fromthe search particle and the global optimal solution is selected as the personal optimal solution to enhance global search.The second strategy is for the subspace with a non-dominated solution.In the neighbor particles,two particles are randomly selected,one as the global optimal solution and the other as the personal optimal solution,to enhance local search.The third strategy is for Pareto optimal front(PF)discontinuity,which is identified by the cumulative number of iterations of the subspace without non-dominated solutions.In the subsequent iteration,a new probability distribution is used to select from the remaining subspaces to search.Third,an adaptive inertia weight update strategy based on the dominated degree is designed to further improve the search efficiency.Finally,the proposed algorithmis compared with fivemulti-objective particle swarm optimization algorithms and five multi-objective evolutionary algorithms on 22 test problems.The results show that the proposed algorithm has better performance. 展开更多
关键词 multi-objective optimization multi-objective particle swarm optimization DECOMPOSITION multi-selection strategy
在线阅读 下载PDF
A Surrogate-assisted Multi-objective Grey Wolf Optimizer for Empty-heavy Train Allocation Considering Coordinated Line Utilization Balance 被引量:1
2
作者 Zhigang Du Shaoquan Ni +1 位作者 Jeng-Shyang Pan Shuchuan Chu 《Journal of Bionic Engineering》 2025年第1期383-397,共15页
This paper introduces the Surrogate-assisted Multi-objective Grey Wolf Optimizer(SMOGWO)as a novel methodology for addressing the complex problem of empty-heavy train allocation,with a focus on line utilization balanc... This paper introduces the Surrogate-assisted Multi-objective Grey Wolf Optimizer(SMOGWO)as a novel methodology for addressing the complex problem of empty-heavy train allocation,with a focus on line utilization balance.By integrating surrogate models to approximate the objective functions,SMOGWO significantly improves the efficiency and accuracy of the optimization process.The effectiveness of this approach is evaluated using the CEC2009 multi-objective test function suite,where SMOGWO achieves a superiority rate of 76.67%compared to other leading multi-objective algorithms.Furthermore,the practical applicability of SMOGWO is demonstrated through a case study on empty and heavy train allocation,which validates its ability to balance line capacity,minimize transportation costs,and optimize the technical combination of heavy trains.The research highlights SMOGWO's potential as a robust solution for optimization challenges in railway transportation,offering valuable contributions toward enhancing operational efficiency and promoting sustainable development in the sector. 展开更多
关键词 Surrogate-assisted model Grey wolf optimizer multi-objective optimization Empty-heavy train allocation
在线阅读 下载PDF
Optimal Scheduling of an Independent Electro-Hydrogen System with Hybrid Energy Storage Using a Multi-Objective Standardization Fusion Method
3
作者 Suliang Ma Zeqing Meng +1 位作者 Mingxuan Chen Yuan Jiang 《Energy Engineering》 EI 2025年第1期63-84,共22页
In the independent electro-hydrogen system(IEHS)with hybrid energy storage(HESS),achieving optimal scheduling is crucial.Still,it presents a challenge due to the significant deviations in values ofmultiple optimizatio... In the independent electro-hydrogen system(IEHS)with hybrid energy storage(HESS),achieving optimal scheduling is crucial.Still,it presents a challenge due to the significant deviations in values ofmultiple optimization objective functions caused by their physical dimensions.These deviations seriously affect the scheduling process.A novel standardization fusion method has been established to address this issue by analyzing the variation process of each objective function’s values.The optimal scheduling results of IEHS with HESS indicate that the economy and overall energy loss can be improved 2–3 times under different optimization methods.The proposed method better balances all optimization objective functions and reduces the impact of their dimensionality.When the cost of BESS decreases by approximately 30%,its participation deepens by about 1 time.Moreover,if the price of the electrolyzer is less than 15¥/kWh or if the cost of the fuel cell drops below 4¥/kWh,their participation will increase substantially.This study aims to provide a more reasonable approach to solving multi-objective optimization problems. 展开更多
关键词 Electro-hydrogen system multi-objective optimization standardization method hybrid energy storage system
在线阅读 下载PDF
Pixel-by-Pixel Analysis of Soil and Leaf Coverage in Purslane: A CIELAB Approach
4
作者 Abel Quevedo-Nolasco Graciano-Javier Aguado-Rodríguez +1 位作者 Francisco-Marcelo Lara-Viveros Nadia Landero-Valenzuela 《Agricultural Sciences》 2025年第2期227-239,共13页
This study utilized a computer application developed in Visual StudioTM using C# to extract pixel samples (RGB) from multiple images (26 images obtained from August 20, 2024, to September 22, 2024), of a purslane pot ... This study utilized a computer application developed in Visual StudioTM using C# to extract pixel samples (RGB) from multiple images (26 images obtained from August 20, 2024, to September 22, 2024), of a purslane pot taken from a top-down perspective at a distance of 30 cm. These samples were projected into the CIELAB color space, and the extracted pixels were plotted on the a*b* plane, excluding the luminance value. A polygon was then drawn around all the plotted pixels, defining the color to be identified. Subsequently, the application analyzed another image to determine the number of pixels within the polygon. These identified pixels were transformed to white, and the percentage of these pixels relative to the total number of pixels in the image was calculated. This process yielded percentages for brown (soil), green (leaf cover), and pink (stem color). A single polygon was sufficient to accurately identify the green and brown colors in the images. However, due to varying lighting conditions, customized polygons were necessary for each image to accurately identify the stem color. To validate the green polygon’s accuracy in identifying purslane leaves, all leaves in the image were digitized in AutoCADTM, and the green area was compared to the total image area to obtain the observed green percentage. The green percentage obtained with the polygon was then compared to the observed green percentage, resulting in an R2 value of 0.8431. Similarly, for the brown color, an R2 value of 0.9305 was found. The stem color was not subjected to this validation due to the necessity of multiple polygons. The R2 values were derived from percentage data obtained by analyzing the total pixels in the images. When sampling to estimate the proportion and analyzing only the suggested sample size of pixels, R2 values of 0.93049 for brown and 0.8088 for green were obtained. The average analysis time to determine the brown soil percentage using the polygon (BP) for 26 images with an average size of 1070 × 1210 pixels was 44 seconds. In contrast, sampling to estimate the proportion reduced the analysis time to 0.9 seconds for the same number of images. This indicates that significant time savings can be achieved while obtaining similar results. 展开更多
关键词 Automated Color Identification C# Application Color Space Soil Color Identification Leaf coverage
在线阅读 下载PDF
PolyDiffusion:AMulti-Objective Optimized Contour-to-Image Diffusion Framework
5
作者 Yuzhen Liu Jiasheng Yin +3 位作者 Yixuan Chen Jin Wang Xiaolan Zhou Xiaoliang Wang 《Computers, Materials & Continua》 2025年第11期3965-3980,共16页
Multi-instance image generation remains a challenging task in the field of computer vision.While existing diffusionmodels demonstrate impressive fidelity in image generation,they often struggle with precisely controll... Multi-instance image generation remains a challenging task in the field of computer vision.While existing diffusionmodels demonstrate impressive fidelity in image generation,they often struggle with precisely controlling each object’s shape,pose,and size.Methods like layout-to-image and mask-to-image provide spatial guidance but frequently suffer from object shape distortion,overlaps,and poor consistency,particularly in complex scenes with multiple objects.To address these issues,we introduce PolyDiffusion,a contour-based diffusion framework that encodes each object’s contour as a boundary-coordinate sequence,decoupling object shapes and positions.This approach allows for better control over object geometry and spatial positioning,which is critical for achieving high-quality multiinstance generation.We formulate the training process as a multi-objective optimization problem,balancing three key objectives:a denoising diffusion loss to maintain overall image fidelity,a cross-attention contour alignment loss to ensure precise shape adherence,and a reward-guided denoising objective that minimizes the Fréchet distance to real images.In addition,the Object Space-Aware Attention module fuses contour tokens with visual features,while a prior-guided fusion mechanism utilizes inter-object spatial relationships and class semantics to enhance consistency across multiple objects.Experimental results on benchmark datasets such as COCO-Stuff and VOC-2012 demonstrate that PolyDiffusion significantly outperforms existing layout-to-image and mask-to-image methods,achieving notable improvements in both image quality and instance-level segmentation accuracy.The implementation of Poly Diffusion is available at https://github.com/YYYYYJS/PolyDiffusion(accessed on 06 August 2025). 展开更多
关键词 Diffusion models multi-object generation multi-objective optimization contour-to-image
在线阅读 下载PDF
Multi-objective optimization of microwave power transmission system architecture with engineering consideration
6
作者 DONG Shiwei SHINOHARA Naoki 《中国空间科学技术(中英文)》 北大核心 2025年第4期114-122,共9页
In the last decade,space solar power satellites(SSPSs)have been conceived to support net-zero carbon emissions and have attracted considerable attention.Electric energy is transmitted to the ground via a microwave pow... In the last decade,space solar power satellites(SSPSs)have been conceived to support net-zero carbon emissions and have attracted considerable attention.Electric energy is transmitted to the ground via a microwave power beam,a technology known as microwave power transmission(MPT).Due to the vast transmission distance of tens of thousands of kilometers,the power transmitting antenna array must span up to 1 kilometer in diameter.At the same time,the size of the rectifying array on the ground should extend over a few kilometers.This makes the MPT system of SSPSs significantly larger than the existing aerospace engineering system.To design and operate a rational MPT system,comprehensive optimization is required.Taking the space MPT system engineering into consideration,a novel multi-objective optimization function is proposed and further analyzed.The multi-objective optimization problem is modeled mathematically.Beam collection efficiency(BCE)is the primary factor,followed by the thermal management capability.Some tapers,designed to solve the conflict between BCE and the thermal problem,are reviewed.In addition to these two factors,rectenna design complexity is included as a functional factor in the optimization objective.Weight coefficients are assigned to these factors to prioritize them.Radiating planar arrays with different aperture illumination fields are studied,and their performances are compared using the multi-objective optimization function.Transmitting array size,rectifying array size,transmission distance,and transmitted power remaine constant in various cases,ensuring fair comparisons.The analysis results show that the proposed optimization function is effective in optimizing and selecting the MPT system architecture.It is also noted that the multi-objective optimization function can be expanded to include other factors in the future. 展开更多
关键词 space solar power satellite(SSPS) microwave power transmission(MPT) multi-objective function beam collection efficiency(BCE) system engineering
在线阅读 下载PDF
Multi-Objective Optimization of Swirling Impinging Air Jets with Genetic Algorithm and Weighted Sum Method
7
作者 Sudipta Debnath Zahir Uddin Ahmed +3 位作者 Muhammad Ikhlaq Md.Tanvir Khan Avneet Kaur Kuljeet Singh Grewal 《Frontiers in Heat and Mass Transfer》 2025年第1期71-94,共24页
Impinging jet arrays are extensively used in numerous industrial operations,including the cooling of electronics,turbine blades,and other high-heat flux systems because of their superior heat transfer capabilities.Opt... Impinging jet arrays are extensively used in numerous industrial operations,including the cooling of electronics,turbine blades,and other high-heat flux systems because of their superior heat transfer capabilities.Optimizing the design and operating parameters of such systems is essential to enhance cooling efficiency and achieve uniform pressure distribution,which can lead to improved system performance and energy savings.This paper presents two multi-objective optimization methodologies for a turbulent air jet impingement cooling system.The governing equations are resolved employing the commercial computational fluid dynamics(CFD)software ANSYS Fluent v17.The study focuses on four controlling parameters:Reynolds number(Re),swirl number(S),jet-to-jet separation distance(Z/D),and impingement height(H/D).The effects of these parameters on heat transfer and impingement pressure distribution are investigated.Non-dominated Sorting Genetic Algorithm(NSGA-II)and Weighted Sum Method(WSM)are employed to optimize the controlling parameters for maximum cooling performance.The aim is to identify optimal design parameters and system configurations that enhance heat transfer efficiency while achieving a uniform impingement pressure distribution.These findings have practical implications for applications requiring efficient cooling.The optimized design achieved a 12.28%increase in convective heat transfer efficiency with a local Nusselt number of 113.05 compared to 100.69 in the reference design.Enhanced convective cooling and heat flux were observed in the optimized configuration,particularly in areas of direct jet impingement.Additionally,the optimized design maintained lower wall temperatures,demonstrating more effective thermal dissipation. 展开更多
关键词 Jet impingement multi-objective optimization pareto front NSGA-Ⅱ WSM
在线阅读 下载PDF
CCHP-Type Micro-Grid Scheduling Optimization Based on Improved Multi-Objective Grey Wolf Optimizer
8
作者 Yu Zhang Sheng Wang +1 位作者 Fanming Zeng Yijie Lin 《Energy Engineering》 2025年第3期1137-1151,共15页
With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through algorithm impro... With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through algorithm improvement.To reduce the operational costs of micro-grid systems and the energy abandonment rate of renewable energy,while simultaneously enhancing user satisfaction on the demand side,this paper introduces an improvedmultiobjective Grey Wolf Optimizer based on Cauchy variation.The proposed approach incorporates a Cauchy variation strategy during the optimizer’s search phase to expand its exploration range and minimize the likelihood of becoming trapped in local optima.At the same time,adoptingmultiple energy storage methods to improve the consumption rate of renewable energy.Subsequently,under different energy balance orders,themulti-objective particle swarmalgorithm,multi-objective grey wolf optimizer,and Cauchy’s variant of the improvedmulti-objective grey wolf optimizer are used for example simulation,solving the Pareto solution set of the model and comparing.The analysis of the results reveals that,compared to the original optimizer,the improved optimizer decreases the daily cost by approximately 100 yuan,and reduces the energy abandonment rate to zero.Meanwhile,it enhances user satisfaction and ensures the stable operation of the micro-grid. 展开更多
关键词 multi-objective optimization algorithm hybrid energy storage MICRO-GRID CCHP
在线阅读 下载PDF
Multi-Objective Optimization of Marine Winch Based on Surrogate Model and MOGA
9
作者 Chunhuan Jin Linsen Zhu +1 位作者 Quanliang Liu Ji Lin 《Computer Modeling in Engineering & Sciences》 2025年第5期1689-1711,共23页
This study proposes a multi-objective optimization framework for electric winches in fiber-reinforced plastic(FRP)fishing vessels to address critical limitations of conventional designs,including excessive weight,mate... This study proposes a multi-objective optimization framework for electric winches in fiber-reinforced plastic(FRP)fishing vessels to address critical limitations of conventional designs,including excessive weight,material inefficiency,and performance redundancy.By integrating surrogate modeling techniques with a multi-objective genetic algorithm(MOGA),we have developed a systematic approach that encompasses parametric modeling,finite element analysis under extreme operational conditions,and multi-fidelity performance evaluation.Through a 10-t electric winch case study,the methodology’s effectiveness is demonstrated via parametric characterization of structural integrity,stiffness behavior,and mass distribution.The comparative analysis identified optimal surrogate models for predicting key performance metrics,which enabled the construction of a robust multi-objective optimization model.The MOGA-derived Pareto solutions produced a design configuration achieving 7.86%mass reduction,2.01%safety factor improvement,and 23.97%deformation mitigation.Verification analysis confirmed the optimization scheme’s reliability in balancing conflicting design requirements.This research establishes a generalized framework for marine deck machinery modernization,particularly addressing the structural compatibility challenges in FRP vessel retrofitting.The proposed methodology demonstrates significant potential for facilitating sustainable upgrades of fishing vessel equipment through systematic performance optimization. 展开更多
关键词 Marine winch multi-objective optimization surrogate model
在线阅读 下载PDF
Multiple fixed-wing UAVs collaborative coverage 3D path planning method for complex areas
10
作者 Mengyang Wang Dong Zhang +1 位作者 Chaoyue Li Zhaohua Zhang 《Defence Technology(防务技术)》 2025年第5期197-215,共19页
Complex multi-area collaborative coverage path planning in dynamic environments poses a significant challenge for multi-fixed-wing UAVs(multi-UAV).This study establishes a comprehensive framework that incorporates UAV... Complex multi-area collaborative coverage path planning in dynamic environments poses a significant challenge for multi-fixed-wing UAVs(multi-UAV).This study establishes a comprehensive framework that incorporates UAV capabilities,terrain,complex areas,and mission dynamics.A novel dynamic collaborative path planning algorithm is introduced,designed to ensure complete coverage of designated areas.This algorithm meticulously optimizes the operation,entry,and transition paths for each UAV,while also establishing evaluation metrics to refine coverage sequences for each area.Additionally,a three-dimensional path is computed utilizing an altitude descent method,effectively integrating twodimensional coverage paths with altitude constraints.The efficacy of the proposed approach is validated through digital simulations and mixed-reality semi-physical experiments across a variety of dynamic scenarios,including both single-area and multi-area coverage by multi-UAV.Results show that the coverage paths generated by this method significantly reduce both computation time and path length,providing a reliable solution for dynamic multi-UAV mission planning in semi-physical environments. 展开更多
关键词 Multi-fixed-wing UAVs(multi-UAV) Minimum time cooperative coverage Dynamic complete coverage path planning(DCCPP) Dubins curves Improved dynamic programming algorithm(IDP)
在线阅读 下载PDF
Impact of Wave-Induced Stress on Whitecap Coverage Parameterizations in Low to Moderate Wind Conditions
11
作者 LIU Min DAI Xiao-ming +2 位作者 JIA Nan BAI Ye-fei ZOU Zhong-shui 《China Ocean Engineering》 2025年第4期687-697,共11页
Research has shown considerable variability in whitecap coverage(W)under low to moderate wind conditions.During an expedition to the Northwestern Pacific,oceanographic variables and photographic measurements were coll... Research has shown considerable variability in whitecap coverage(W)under low to moderate wind conditions.During an expedition to the Northwestern Pacific,oceanographic variables and photographic measurements were collected to investigate the influence of wave-induced stress on W within these wind ranges.The friction velocity was recalculated based on turbulent stress,and wind profiles were modified to account for wave-induced stress and swell presence on the sea surface.The study examined W’s relationship with multiple parameters,including friction velocity(u*),breaking wave Reynolds numbers,wavesea Reynolds numbers,and wave age.The analysis utilized both conventional u*and turbulent stress-based friction velocity(u*turb).When utilizing u*turb rather than u*,the estimation model’s fitting results revealed an increase in correlation coefficient(R2)from 0.51 to 0.62,and a decrease in root mean square error(RMSE)from 0.0652 to 0.0574.Additionally,when parameterizing W using the windsea Reynolds number,with u_(*turb) replacing u*and wind wave height substituting mixed wave height,the R^(2) increased from 0.38 to 0.53,and the RMSE decreased from 0.0737 to 0.0668.The results demonstrate that calculating u*using the turbulent stress-based method,along with wind wave height and peak wave speed of mixed waves,yields stronger correlation with W.This correlation improvement stems from the inhibition of wave breaking by swell and wave-induced stress.The integration of turbulent stress and wind wave field measurements enhances the understanding of relationships between W and various parameters.However,swell effects on wind profiles do not substantially affect W estimation using wind speed-related parameters. 展开更多
关键词 whitecap coverage wave-induced stress turbulent stress friction velocity wind profile
在线阅读 下载PDF
Performance Analysis and Multi-Objective Optimization of Functional Gradient Honeycomb Non-pneumatic Tires
12
作者 Haichao Zhou Haifeng Zhou +2 位作者 Haoze Ren Zhou Zheng Guolin Wang 《Chinese Journal of Mechanical Engineering》 2025年第3期412-431,共20页
The spoke as a key component has a significant impact on the performance of the non-pneumatic tire(NPT).The current research has focused on adjusting spoke structures to improve the single performance of NPT.Few studi... The spoke as a key component has a significant impact on the performance of the non-pneumatic tire(NPT).The current research has focused on adjusting spoke structures to improve the single performance of NPT.Few studies have been conducted to synergistically improve multi-performance by optimizing the spoke structure.Inspired by the concept of functionally gradient structures,this paper introduces a functionally gradient honeycomb NPT and its optimization method.Firstly,this paper completes the parameterization of the honeycomb spoke structure and establishes the numerical models of honeycomb NPTs with seven different gradients.Subsequently,the accuracy of the numerical models is verified using experimental methods.Then,the static and dynamic characteristics of these gradient honeycomb NPTs are thoroughly examined by using the finite element method.The findings highlight that the gradient structure of NPT-3 has superior performance.Building upon this,the study investigates the effects of key parameters,such as honeycomb spoke thickness and length,on load-carrying capacity,honeycomb spoke stress and mass.Finally,a multi-objective optimization method is proposed that uses a response surface model(RSM)and the Nondominated Sorting Genetic Algorithm-II(NSGA-II)to further optimize the functional gradient honeycomb NPTs.The optimized NPT-OP shows a 23.48%reduction in radial stiffness,8.95%reduction in maximum spoke stress and 16.86%reduction in spoke mass compared to the initial NPT-1.The damping characteristics of the NPT-OP have also been improved.The results offer a theoretical foundation and technical methodology for the structural design and optimization of gradient honeycomb NPTs. 展开更多
关键词 Non-pneumatic tires Honeycomb structure Gradient structure multi-objective optimization
在线阅读 下载PDF
Kinetic modeling and multi-objective optimization of an industrial hydrocracking process with an improved SPEA2-PE algorithm
13
作者 Chen Fan Xindong Wang +1 位作者 Gaochao Li Jian Long 《Chinese Journal of Chemical Engineering》 2025年第4期130-146,共17页
Hydrocracking is one of the most important petroleum refining processes that converts heavy oils into gases,naphtha,diesel,and other products through cracking reactions.Multi-objective optimization algorithms can help... Hydrocracking is one of the most important petroleum refining processes that converts heavy oils into gases,naphtha,diesel,and other products through cracking reactions.Multi-objective optimization algorithms can help refining enterprises determine the optimal operating parameters to maximize product quality while ensuring product yield,or to increase product yield while reducing energy consumption.This paper presents a multi-objective optimization scheme for hydrocracking based on an improved SPEA2-PE algorithm,which combines path evolution operator and adaptive step strategy to accelerate the convergence speed and improve the computational accuracy of the algorithm.The reactor model used in this article is simulated based on a twenty-five lumped kinetic model.Through model and test function verification,the proposed optimization scheme exhibits significant advantages in the multiobjective optimization process of hydrocracking. 展开更多
关键词 HYDROCRACKING multi-objective optimization Improved SPEA2 Kinetic modeling
在线阅读 下载PDF
Automatic collaborative water surface coverage and cleaning strategy of UAV and USVs
14
作者 Tianping Deng Xiaohui Xu +3 位作者 Zeyan Ding Xiao Xiao Ming Zhu Kai Peng 《Digital Communications and Networks》 2025年第2期365-376,共12页
As the problem of surface garbage pollution becomes more serious,it is necessary to improve the efficiency of garbage inspection and picking rather than traditional manual methods.Due to lightness,Unmanned Aerial Vehi... As the problem of surface garbage pollution becomes more serious,it is necessary to improve the efficiency of garbage inspection and picking rather than traditional manual methods.Due to lightness,Unmanned Aerial Vehicles(UAVs)can traverse the entire water surface in a short time through their flight field of view.In addition,Unmanned Surface Vessels(USVs)can provide battery replacement and pick up garbage.In this paper,we innovatively establish a system framework for the collaboration between UAV and USVs,and develop an automatic water cleaning strategy.First,on the basis of the partition principle,we propose a collaborative coverage path algorithm based on UAV off-site takeoff and landing to achieve global inspection.Second,we design a task scheduling and assignment algorithm for USVs to balance the garbage loads based on the particle swarm optimization algorithm.Finally,based on the swarm intelligence algorithm,we also design an autonomous obstacle avoidance path planning algorithm for USVs to realize autonomous navigation and collaborative cleaning.The system can simultaneously perform inspection and clearance tasks under certain constraints.The simulation results show that the proposed algorithms have higher generality and flexibility while effectively improving computational efficiency and reducing actual cleaning costs compared with other schemes. 展开更多
关键词 UAV USVs Collaborative cleaning Path planning coverage Autonomous obstacle avoidance
在线阅读 下载PDF
Improving Vaccination Coverage Through Community Pharmacy Service Delivery in Nigeria:The COVID-19 Experience and Implications for Policy Review
15
作者 Yejide Olukemi Oseni Ukamaka Gladys Okafor +8 位作者 Taofik Oladipupo Odukoya Hamidu Adediran Oluyedun Abiodun Abdulah Ajibade Yusuff Olanrewaju Azeez Abigail Isaac Okonu Oladapo Adewale Adetunji Adebusuyi Akande Ademisoye Fatimah Adebukola Sanusi Okechi Eberechukwu Nzedibe 《Health Care Science》 2025年第1期52-61,共10页
Background:Globally,the use of community pharmacies and pharmacists in the delivery of vaccination services has been hampered by several factors,laws,and regulations that do not support pharmacists to participate in t... Background:Globally,the use of community pharmacies and pharmacists in the delivery of vaccination services has been hampered by several factors,laws,and regulations that do not support pharmacists to participate in the delivery of vaccination services.With the advent of COVID-19 pandemic,many countries have included community pharmacists and pharmacies in vaccination services to improve coverage.This study described the delivery of vaccination services in community pharmacies using the COVID-19 experience and how their involvement impacted vaccination coverage in Nigeria.It also exposed how this experience can be used to support policy revisions to formally recognize pharmacists in immunization delivery.Methods:A descriptive cross-sectional study was conducted among 474 community pharmacists in two southwestern States in Nigeria,using a semi-structured questionnaire.It determines the number of community pharmacists who have been trained in the delivery of vaccination services,the types of vaccination services provided,and vaccines administered in their pharmacies.Data were analyzed with descriptive and inferential statistics and p-value at≤0.05.Results:Response rate was 86.7%.Less than half of the respondents(40.1%)had undergone vaccination training.Of the 129(31.4%)respondents that provide vaccination services,72(55.8%)administer vaccines in their pharmacies.Out of these 72 respondents;45(62.5%)were administering vaccines before their involvement in COVID-19 vaccine administration;57(79.2%)of the health personnel who administer vaccines were pharmacists;60(83.3%)of them administer vaccines on request;22(30.6%)administered COVID-19 vaccines only;and only 7(9.7%)of the respondents had administered over 500 doses of COVID-19 vaccines.Training in vaccination was associated with the vaccination services provided(p<0.05).Respondents suggested government support through legal framework and policy review,training and empowering pharmacists in vaccine administration,and recognition of community pharmacists as PHC providers. 展开更多
关键词 community pharmacies PHARMACISTS NIGERIA vaccination coverage vaccination services COVID policy review
暂未订购
Multi-objective optimization of top-level arrangement for flight test
16
作者 WANG Yunong BI Wenhao +2 位作者 FAN Qiucen XU Shuangfei ZHANG An 《Journal of Systems Engineering and Electronics》 2025年第3期714-724,共11页
The lack of systematic and scientific top-level arrangement in the field of civil aircraft flight test leads to the problems of long duration and high cost.Based on the flight test activity,mathematical models of flig... The lack of systematic and scientific top-level arrangement in the field of civil aircraft flight test leads to the problems of long duration and high cost.Based on the flight test activity,mathematical models of flight test duration and cost are established to set up the framework of flight test process.The top-level arrangement for flight test is optimized by multi-objective algorithm to reduce the duration and cost of flight test.In order to verify the necessity and validity of the mathematical models and the optimization algorithm of top-level arrangement,real flight test data is used to make an example calculation.Results show that the multi-objective optimization results of the top-level flight arrangement are better than the initial arrangement data,which can shorten the duration,reduce the cost,and improve the efficiency of flight test. 展开更多
关键词 flight test top-level arrangement flight test optimization multi-objective optimization
在线阅读 下载PDF
Agile Coverage for Low-Altitude Aerial Intelligent Networks:A Blended Hyper-Cellular Solution
17
作者 Zhou Sheng Xie Bowen +3 位作者 Shen Daohong Feng Wei Jiang Zhiyuan Niu Zhisheng 《China Communications》 2025年第9期22-36,共15页
This paper proposes a novel blended hyper-cellular architecture for low-altitude aerial intelligent networks(LAINs)to provide agile coverage tailored to active air routes and takeoff/landing spots.Traditional cellular... This paper proposes a novel blended hyper-cellular architecture for low-altitude aerial intelligent networks(LAINs)to provide agile coverage tailored to active air routes and takeoff/landing spots.Traditional cellular networks struggle to meet the dynamic demands of low-altitude UAV communications due to their rigid structures.The hyper-cellular network(HCN)architecture separates control and traffic coverage,enabling flexible and energy-efficient operations.The key components include control base stations(CBSs)for wide-area signaling coverage and traffic base stations(TBSs)that can be dynamically activated based on traffic demands.The proposed solution also integrates space information networks(SINs)to enhance the coverage efficiency.Key technologies such as all-G CBS using RISC-V architecture,AI-powered radio maps for low-altitude environments,and agile TBS coverage adaptation are introduced with some preliminary studies.These designs aim to address challenges like mobility management,interference coordination,and the need for real-time spectrum sharing in blended satellite-terrestrial networks.The proposed solution offers a scalable and agile framework to support the rapidly growing demand for reliable,low-latency,and high-capacity UAV communications in urban environments. 展开更多
关键词 coverage optimization hyper-cellular low-altitude aerial networks space-air-ground integrated networks
在线阅读 下载PDF
Coverage Enhancement for Offshore Communications: A Joint User Association and Power Allocation Design Exploiting Maritime Features
18
作者 Zhou Zhengyi Ge Ning +1 位作者 Wang Zhaocheng John S.Thompson 《China Communications》 2025年第10期118-136,共19页
In offshore maritime communication sys-tems,base stations(BSs)are employed along the coastline to provide high-speed data service for ves-sels in coastal sea areas.To ensure the line-of-sight propagation of BS-vessel ... In offshore maritime communication sys-tems,base stations(BSs)are employed along the coastline to provide high-speed data service for ves-sels in coastal sea areas.To ensure the line-of-sight propagation of BS-vessel links,high transceiver an-tenna height is required,which limits the number of geographically available sites for BS deployment,and imposes a high cost for realizing effective wide-area coverage.In this paper,the joint user association and power allocation(JUAPA)problem is investigated to enhance the coverage of offshore maritime systems.By exploiting the characteristics of network topology as well as vessels’motion in offshore communica-tions,a multi-period JUAPA problem is formulated to maximize the number of ships that can be simultane-ously served by the network.This JUAPA problem is intrinsically non-convex and subject to mixed-integer constraints,which is difficult to solve either analyt-ically or numerically.Hence,we propose an iterative augmentation based framework to efficiently select the active vessels,where the JUAPA scheme is iteratively optimized by the network for increasing the number of the selected vessels.More specifically,in each itera-tion,the user association variables and power alloca-tion variables are determined by solving two separate subproblems,so that the JUAPA strategy can be up-dated in a low-complexity manner.The performance of the proposed JUAPA method is evaluated by exten-sive simulation,and numerical results indicate that it can effectively increase the number of vessels served by the network,and thus enhances the coverage of off-shore systems. 展开更多
关键词 coverage enhancement maritime offshore communication power allocation user association
在线阅读 下载PDF
Efficient Resource Allocation in Cloud IaaS: A Multi-Objective Strategy for Minimizing Workflow Makespan and Cloud Resource Costs
19
作者 Jean Edgard Gnimassoun Dagou Dangui Augustin Sylvain Legrand Koffi Akanza Konan Ricky N’dri 《Open Journal of Applied Sciences》 2025年第1期147-167,共21页
The ease of accessing a virtually unlimited pool of resources makes Infrastructure as a Service (IaaS) clouds an ideal platform for running data-intensive workflow applications comprising hundreds of computational tas... The ease of accessing a virtually unlimited pool of resources makes Infrastructure as a Service (IaaS) clouds an ideal platform for running data-intensive workflow applications comprising hundreds of computational tasks. However, executing scientific workflows in IaaS cloud environments poses significant challenges due to conflicting objectives, such as minimizing execution time (makespan) and reducing resource utilization costs. This study responds to the increasing need for efficient and adaptable optimization solutions in dynamic and complex environments, which are critical for meeting the evolving demands of modern users and applications. This study presents an innovative multi-objective approach for scheduling scientific workflows in IaaS cloud environments. The proposed algorithm, MOS-MWMC, aims to minimize total execution time (makespan) and resource utilization costs by leveraging key features of virtual machine instances, such as a high number of cores and fast local SSD storage. By integrating realistic simulations based on the WRENCH framework, the method effectively dimensions the cloud infrastructure and optimizes resource usage. Experimental results highlight the superiority of MOS-MWMC compared to benchmark algorithms HEFT and Max-Min. The Pareto fronts obtained for the CyberShake, Epigenomics, and Montage workflows demonstrate closer proximity to the optimal front, confirming the algorithm’s ability to balance conflicting objectives. This study contributes to optimizing scientific workflows in complex environments by providing solutions tailored to specific user needs while minimizing costs and execution times. 展开更多
关键词 Cloud Infrastructure multi-objective Scheduling Resource Cost Optimization Resource Utilization Scientific Workflows
在线阅读 下载PDF
Review on Multi-objective Dynamic Scheduling Methods for Flexible Job Shops and Application in Aviation Manufacturing
20
作者 MA Yajie JIANG Bin +3 位作者 GUAN Li CHEN Lijun HUANG Binda CHEN Zhi 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第1期1-24,共24页
Intelligent production is an important development direction in intelligent manufacturing,with intelligent factories playing a crucial role in promoting intelligent production.Flexible job shops,as the main form of in... Intelligent production is an important development direction in intelligent manufacturing,with intelligent factories playing a crucial role in promoting intelligent production.Flexible job shops,as the main form of intelligent factories,constantly face dynamic disturbances during the production process,including machine failures and urgent orders.This paper discusses the basic models and research methods of job shop scheduling,emphasizing the important role of dynamic job shop scheduling and its response schemes in future research.A multi-objective flexible job shop dynamic scheduling mathematical model is established,highlighting its complex and multi-constraint characteristics under different interferences.A classification discussion is conducted on the dynamic response methods and optimization objectives under machine failures,emergency orders,fuzzy completion times,and mixed dynamic events.The development process of traditional scheduling rules and intelligent methods in dynamic scheduling are also analyzed.Finally,based on the current development status of job shop scheduling and the requirements of intelligent manufacturing,the future development trends of dynamic scheduling in flexible job shops are proposed. 展开更多
关键词 flexible job shop dynamic scheduling machine breakdown job insertion multi-objective optimization
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部