期刊文献+
共找到1,876篇文章
< 1 2 94 >
每页显示 20 50 100
Review on Multi-objective Dynamic Scheduling Methods for Flexible Job Shops and Application in Aviation Manufacturing
1
作者 MA Yajie JIANG Bin +3 位作者 GUAN Li CHEN Lijun HUANG Binda CHEN Zhi 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第1期1-24,共24页
Intelligent production is an important development direction in intelligent manufacturing,with intelligent factories playing a crucial role in promoting intelligent production.Flexible job shops,as the main form of in... Intelligent production is an important development direction in intelligent manufacturing,with intelligent factories playing a crucial role in promoting intelligent production.Flexible job shops,as the main form of intelligent factories,constantly face dynamic disturbances during the production process,including machine failures and urgent orders.This paper discusses the basic models and research methods of job shop scheduling,emphasizing the important role of dynamic job shop scheduling and its response schemes in future research.A multi-objective flexible job shop dynamic scheduling mathematical model is established,highlighting its complex and multi-constraint characteristics under different interferences.A classification discussion is conducted on the dynamic response methods and optimization objectives under machine failures,emergency orders,fuzzy completion times,and mixed dynamic events.The development process of traditional scheduling rules and intelligent methods in dynamic scheduling are also analyzed.Finally,based on the current development status of job shop scheduling and the requirements of intelligent manufacturing,the future development trends of dynamic scheduling in flexible job shops are proposed. 展开更多
关键词 flexible job shop dynamic scheduling machine breakdown job insertion multi-objective optimization
在线阅读 下载PDF
Multi-Objective Dynamic Induction Research of Ship Routes in the Context of Low Carbon Shipping
2
作者 He Zhang Junfeng Dong Siyuan Kong 《哈尔滨工程大学学报(英文版)》 2025年第3期593-605,共13页
To improve the efficiency of ship traffic in frequently traded sea areas and respond to the national“dual-carbon”strategy,a multi-objective ship route induction model is proposed.Considering the energy-saving and en... To improve the efficiency of ship traffic in frequently traded sea areas and respond to the national“dual-carbon”strategy,a multi-objective ship route induction model is proposed.Considering the energy-saving and environmental issues of ships,this study aims to improve the transportation efficiency of ships by providing a ship route induction method.Ship data from a certain bay during a defined period are collected,and an improved backpropagation neural network algorithm is used to forecast ship traffic.On the basis of the forecasted data and ship route induction objectives,dynamic programming of ship routes is performed.Experimental results show that the routes planned using this induction method reduce the combined cost by 17.55%compared with statically induced routes.This method has promising engineering applications in improving ship navigation efficiency,promoting energy conservation,and reducing emissions. 展开更多
关键词 dynamic route induction Low-carbon shipping Short-term vessel flow prediction multi-objective induction model Maritime transport efficiency
在线阅读 下载PDF
Dynamic Multi-Objective Gannet Optimization(DMGO):An Adaptive Algorithm for Efficient Data Replication in Cloud Systems
3
作者 P.William Ved Prakash Mishra +3 位作者 Osamah Ibrahim Khalaf Arvind Mukundan Yogeesh N Riya Karmakar 《Computers, Materials & Continua》 2025年第9期5133-5156,共24页
Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple dat... Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple data centers poses a significant challenge,especially when balancing opposing goals such as latency,storage costs,energy consumption,and network efficiency.This study introduces a novel Dynamic Optimization Algorithm called Dynamic Multi-Objective Gannet Optimization(DMGO),designed to enhance data replication efficiency in cloud environments.Unlike traditional static replication systems,DMGO adapts dynamically to variations in network conditions,system demand,and resource availability.The approach utilizes multi-objective optimization approaches to efficiently balance data access latency,storage efficiency,and operational costs.DMGO consistently evaluates data center performance and adjusts replication algorithms in real time to guarantee optimal system efficiency.Experimental evaluations conducted in a simulated cloud environment demonstrate that DMGO significantly outperforms conventional static algorithms,achieving faster data access,lower storage overhead,reduced energy consumption,and improved scalability.The proposed methodology offers a robust and adaptable solution for modern cloud systems,ensuring efficient resource consumption while maintaining high performance. 展开更多
关键词 Cloud computing data replication dynamic optimization multi-objective optimization gannet optimization algorithm adaptive algorithms resource efficiency SCALABILITY latency reduction energy-efficient computing
在线阅读 下载PDF
Development of Electroactive Biofiltration Dynamic Membrane for Enhanced Wastewater Treatment and Fouling Mitigation:Unraveling the Growth Equilibrium Mechanisms of Fouling Layer
4
作者 Chengxin Niu Wei Shi +3 位作者 Zhouyan Li Zhiwei Qiu Yun Guo Zhiwei Wang 《Engineering》 2025年第7期60-71,共12页
We developed a strategy involving an electroactive biofiltration dynamic membrane(EBDM)for wastewater treatment and membrane fouling mitigation.This approach utilizes a cathode potential within an anaerobic dynamic me... We developed a strategy involving an electroactive biofiltration dynamic membrane(EBDM)for wastewater treatment and membrane fouling mitigation.This approach utilizes a cathode potential within an anaerobic dynamic membrane bioreactor to establish a growth equilibrium electroactive fouling layer.Over a 240 day operation period,the EBDM exhibited outstanding performance,characterized by an ultralow fouling rate(transmembrane pressure<2.5 kPa),superior effluent quality(chemical oxygen demand(COD)removal>93%and turbidity 2 nephelometric turbidity units(NTU)),and a 7.2%increase in methane(CH4)productivity.Morphological analysis revealed that the EBDM acted as a biofilter consisting of a structured,interconnected,multilevel dynamic membrane system with orderly clogging.In the EBDM system,the balanced-growth fouling layers presented fewer biofoulants and looser secondary protein structures.Furthermore,the applied electric field modified the physicochemical properties of the biomass,leading to a decrease in fouling potential.Quartz crystal microbalance with dissipation monitoring analysis indicated that growth equilibrium promoted a looser fouling layer with a lower adsorption mass than did the denser,viscoelastic fouling layer observed in the control reactor.Metagenomic sequencing further demonstrated that continuous electrical stimulation encouraged the development of an electroactive fouling layer with enhanced microbial metabolic functionality on the EBDM.This approach selectively modifies metabolic pathways and increases the degradation of foulants.The EBDM strategy successfully established an ordered-clogging,step-filtered,and balanced-growth electroactive fouling layer,achieving a synergistic effect in reducing membrane fouling,enhancing effluent quality,and improving CH_(4)productivity. 展开更多
关键词 Wastewater treatment Electroactive biofiltration dynamic membrane Growth equilibrium Biomass properties Microbial metabolism
在线阅读 下载PDF
An Efficient Multi-objective Approach Based on Golden Jackal Search for Dynamic Economic Emission Dispatch
5
作者 Keyu Zhong Fen Xiao Xieping Gao 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第3期1541-1566,共26页
Dynamic Economic Emission Dispatch(DEED)aims to optimize control over fuel cost and pollution emission,two conflicting objectives,by scheduling the output power of various units at specific times.Although many methods... Dynamic Economic Emission Dispatch(DEED)aims to optimize control over fuel cost and pollution emission,two conflicting objectives,by scheduling the output power of various units at specific times.Although many methods well-performed on the DEED problem,most of them fail to achieve expected results in practice due to a lack of effective trade-off mechanisms between the convergence and diversity of non-dominated optimal dispatching solutions.To address this issue,a new multi-objective solver called Multi-Objective Golden Jackal Optimization(MOGJO)algorithm is proposed to cope with the DEED problem.The proposed algorithm first stores non-dominated optimal solutions found so far into an archive.Then,it chooses the best dispatching solution from the archive as the leader through a selection mechanism designed based on elite selection strategy and Euclidean distance index method.This mechanism can guide the algorithm to search for better dispatching solutions in the direction of reducing fuel costs and pollutant emissions.Moreover,the basic golden jackal optimization algorithm has the drawback of insufficient search,which hinders its ability to effectively discover more Pareto solutions.To this end,a non-linear control parameter based on the cosine function is introduced to enhance global exploration of the dispatching space,thus improving the efficiency of finding the optimal dispatching solutions.The proposed MOGJO is evaluated on the latest CEC benchmark test functions,and its superiority over the state-of-the-art multi-objective optimizers is highlighted by performance indicators.Also,empirical results on 5-unit,10-unit,IEEE 30-bus,and 30-unit systems show that the MOGJO can provide competitive compromise scheduling solutions compared to published DEED methods.Finally,in the analysis of the Pareto dominance relationship and the Euclidean distance index,the optimal dispatching solutions provided by MOGJO are the closest to the ideal solutions for minimizing fuel costs and pollution emissions simultaneously,compared to the latest published DEED solutions. 展开更多
关键词 dynamic economic emission dispatch multi-objective optimization Golden jackal Euclidean distance index
在线阅读 下载PDF
Multi-objective integrated optimization based on evolutionary strategy with a dynamic weighting schedule 被引量:2
6
作者 傅武军 朱昌明 叶庆泰 《Journal of Southeast University(English Edition)》 EI CAS 2006年第2期204-207,共4页
The evolutionary strategy with a dynamic weighting schedule is proposed to find all the compromised solutions of the multi-objective integrated structure and control optimization problem, where the optimal system perf... The evolutionary strategy with a dynamic weighting schedule is proposed to find all the compromised solutions of the multi-objective integrated structure and control optimization problem, where the optimal system performance and control cost are defined by H2 or H∞ norms. During this optimization process, the weights are varying with the increasing generation instead of fixed values. The proposed strategy together with the linear matrix inequality (LMI) or the Riccati controller design method can find a series of uniformly distributed nondominated solutions in a single run. Therefore, this method can greatly reduce the computation intensity of the integrated optimization problem compared with the weight-based single objective genetic algorithm. Active automotive suspension is adopted as an example to illustrate the effectiveness of the proposed method. 展开更多
关键词 integrated design multi-objective optimization evolutionary strategy dynamic weighting schedule suspension system
在线阅读 下载PDF
A dynamic spectrum and power allocation method for co-located pulse radar and communication system coexistence
7
作者 Youwei MENG Yaoyao LI +1 位作者 Shaoxiong CAI Donglin SU 《Chinese Journal of Aeronautics》 2025年第4期501-512,共12页
Airborne pulse radar and communication systems are essential for precise detection and collision avoidance,ensuring that aircraft operate safely and efficiently.A major challenge in spectrum sharing is the allocation ... Airborne pulse radar and communication systems are essential for precise detection and collision avoidance,ensuring that aircraft operate safely and efficiently.A major challenge in spectrum sharing is the allocation of resources in both the time and frequency domains,aiming to minimize inter-system interference as the available spectrum fluctuates over time.In this paper,regarding maximization of detection probability and spectrum utilization efficiency as two fundamental objectives,a novel Dynamic Spectrum and Power Allocation based on Genetic Algorithm(GA-DSPA)model is proposed,which dynamically allocates communication channel frequency and power under the constraints of pulse radar detection probability and signal-to-interferenceplus-noise ratio of communication.To solve this bi-objective model,a non-dominated sortingbased multi-objective genetic algorithm is developed.A novel environment perception strategy and offspring sorting technique based on radar echoes are integrated into the optimization framework.Simulation results indicate that by integrating environmental monitoring mechanisms and dynamic adaptation strategies,the proposed method effectively tracks the evolving Paretooptimal Fronts(Po Fs),thereby ensuring optimal performance for both co-located pulse radar and communication systems.Hardware test results confirm that within the GA-DSPA framework,the pulse radar achieves higher detection probabilities under identical conditions,while the communication system realizes increased average throughput. 展开更多
关键词 Communication systems dynamic multi-objective optimization Electromagnetic compatibility Radar-communication coexistence Spectrum and power allocation
原文传递
Optimizing high-speed train tracking intervals with an improved multi-objective grey wolf
8
作者 Lin Yue Meng Wang +1 位作者 Peng Wang Jinchao Mu 《Railway Sciences》 2025年第3期322-336,共15页
Purpose-With the rapid advancement of China’s high-speed rail network,the density of train operations is on the rise.To address the challenge of shortening train tracking intervals while enhancing transportation effi... Purpose-With the rapid advancement of China’s high-speed rail network,the density of train operations is on the rise.To address the challenge of shortening train tracking intervals while enhancing transportation efficiency,the multi-objective dynamic optimization of the train operation process has emerged as a critical issue.Design/methodology/approach-Train dynamic model is established by analyzing the force of the train in the process of tracing operation.The train tracing operation model is established according to the dynamic mechanical model of the train tracking process,and the dynamic optimization analysis is carried out with comfort,energy saving and punctuality as optimization objectives.To achieve multi-objective dynamic optimization,a novel train tracking operation calculation method is proposed,utilizing the improved grey wolf optimization algorithm(MOGWO).The proposed method is simulated and verified based on the train characteristics and line data of CR400AF electric multiple units.Findings-The simulation results prove that the optimized MOGWO algorithm can be computed quickly during train tracks,the optimum results can be given within 5s and the algorithm can converge effectively in different optimization target directions.The optimized speed profile of the MOGWO algorithm is smoother and more stable and meets the target requirements of energy saving,punctuality and comfort while maximally respecting the speed limit profile.Originality/value-The MOGWO train tracking interval optimization method enhances the tracking process while ensuring a safe tracking interval.This approach enables the trailing train to operate more comfortably,energy-efficiently and punctually,aligning with passenger needs and industry trends.The method offers valuable insights for optimizing the high-speed train tracking process. 展开更多
关键词 Tracking running Train dynamics model multi-objective optimization MOGWO CR400AF electric multiple units
在线阅读 下载PDF
Multi-Objective Equilibrium Optimizer for Feature Selection in High-Dimensional English Speech Emotion Recognition
9
作者 Liya Yue Pei Hu +1 位作者 Shu-Chuan Chu Jeng-Shyang Pan 《Computers, Materials & Continua》 SCIE EI 2024年第2期1957-1975,共19页
Speech emotion recognition(SER)uses acoustic analysis to find features for emotion recognition and examines variations in voice that are caused by emotions.The number of features acquired with acoustic analysis is ext... Speech emotion recognition(SER)uses acoustic analysis to find features for emotion recognition and examines variations in voice that are caused by emotions.The number of features acquired with acoustic analysis is extremely high,so we introduce a hybrid filter-wrapper feature selection algorithm based on an improved equilibrium optimizer for constructing an emotion recognition system.The proposed algorithm implements multi-objective emotion recognition with the minimum number of selected features and maximum accuracy.First,we use the information gain and Fisher Score to sort the features extracted from signals.Then,we employ a multi-objective ranking method to evaluate these features and assign different importance to them.Features with high rankings have a large probability of being selected.Finally,we propose a repair strategy to address the problem of duplicate solutions in multi-objective feature selection,which can improve the diversity of solutions and avoid falling into local traps.Using random forest and K-nearest neighbor classifiers,four English speech emotion datasets are employed to test the proposed algorithm(MBEO)as well as other multi-objective emotion identification techniques.The results illustrate that it performs well in inverted generational distance,hypervolume,Pareto solutions,and execution time,and MBEO is appropriate for high-dimensional English SER. 展开更多
关键词 Speech emotion recognition filter-wrapper HIGH-DIMENSIONAL feature selection equilibrium optimizer multi-objective
在线阅读 下载PDF
Disaggregated effect of construction investments on the Saudi economy:a dynamic computable general equilibrium model of Saudi Arabia
10
作者 Irfan Ahmed Khadija Mehrez +3 位作者 Claudio Socci Stefano Deriu Naif M.Mathkur Ian P.Casasr 《Financial Innovation》 2024年第1期3919-3935,共17页
The role of the construction industry in economic growth has been widely discussed in the extant literature,but existing studies have not investigated the disaggregated impact of construction investments on the produc... The role of the construction industry in economic growth has been widely discussed in the extant literature,but existing studies have not investigated the disaggregated impact of construction investments on the production and social sectors.This study examines the disaggregated effect of construction investments on the Saudi economy.The study uses a social accounting matrix of Saudi Arabia and constructs a dynamic computable general equilibrium model.The findings reveal that construction investments significantly boosted GDP and aggregate investments in the first two periods;however,the growth declined in the following three periods.This finding underlines the importance of long-term investments in the construction sector and calls for continuous monitoring and updating of the investment policy for sustainable development.This study also presents the disaggregated impact of investments on the value-added by each sector of the economy.The ranking of sectors exhibits that mining and quarry activities underwent a high increase in value-added,second to construction activities.Other economic activities also experienced growth in value-added and some of them changed their ranks within the five years. 展开更多
关键词 Construction investments Social accounting matrix And dynamic computable general equilibrium model
在线阅读 下载PDF
Nonlinear Dynamic Modeling for Joint Interfaces by Combining Equivalent Linear Mechanics with Multi-objective Optimization 被引量:2
11
作者 Dong Wang Xuanliua Fan 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2020年第4期564-578,共15页
The nonlinear dynamic modeling by combining the equivalent linear mechanics with the multi-objective optimization algorithm is proposed to describe the nonlinear behaviors of the joint interfaces.The joint interfaces ... The nonlinear dynamic modeling by combining the equivalent linear mechanics with the multi-objective optimization algorithm is proposed to describe the nonlinear behaviors of the joint interfaces.The joint interfaces are simplified as the equivalent virtual material or linear spring damper element.The genetic algorithm for multi-objective optimization is then used to identify the mechanical properties of the equivalent joint by minimizing the error between the simulated dynamic characteristics and the experimental results,including the modal frequencies of the bolted joint beam and the frequency response functions(FRFs)of the rubber isolation system.The FRFs are divided into several subsections with frequency-varied dynamic properties of the joint to consider the nonlinear dynamic behaviors,and the effects of subsection number and excitation amplitudes on the FRFs are also investigated.The results show that the simulated dynamic characteristics of modal frequencies and FRFs agree well with the experimental results.With the increase in the subsection number,the simulated FRFs agree better with the experimental results,indicating a good performance of modeling the nonlinear dynamic behaviors of the joint interfaces forced by different excitation amplitudes.Larger excitation amplitudes will decrease the joint stiffness. 展开更多
关键词 Joint interfaces Nonlinear dynamic Equivalent linear mechanics Frequencyvaried properties multi-objective optimization
原文传递
Immune Optimization Approach for Dynamic Constrained Multi-Objective Multimodal Optimization Problems 被引量:1
12
作者 Zhuhong Zhang Min Liao Lei Wang 《American Journal of Operations Research》 2012年第2期193-202,共10页
This work investigates one immune optimization approach for dynamic constrained multi-objective multimodal optimization in terms of biological immune inspirations and the concept of constraint dominance. Such approach... This work investigates one immune optimization approach for dynamic constrained multi-objective multimodal optimization in terms of biological immune inspirations and the concept of constraint dominance. Such approach includes mainly three functional modules, environmental detection, population initialization and immune evolution. The first, inspired by the function of immune surveillance, is designed to detect the change of such kind of problem and to decide the type of a new environment;the second generates an initial population for the current environment, relying upon the result of detection;the last evolves two sub-populations along multiple directions and searches those excellent and diverse candidates. Experimental results show that the proposed approach can adaptively track the environmental change and effectively find the global Pareto-optimal front in each environment. 展开更多
关键词 dynamic CONSTRAINED multi-objective OPTIMIZATION MULTIMODALITY Artificial IMMUNE Systems IMMUNE OPTIMIZATION Environmental Detection
暂未订购
Dynamic Multi-objective Optimization of Chemical Processes Using Modified BareBones MOPSO Algorithm
13
作者 杜文莉 王珊珊 +1 位作者 陈旭 钱锋 《Journal of Donghua University(English Edition)》 EI CAS 2014年第2期184-189,共6页
Dynamic multi-objective optimization is a complex and difficult research topic of process systems engineering. In this paper,a modified multi-objective bare-bones particle swarm optimization( MOBBPSO) algorithm is pro... Dynamic multi-objective optimization is a complex and difficult research topic of process systems engineering. In this paper,a modified multi-objective bare-bones particle swarm optimization( MOBBPSO) algorithm is proposed that takes advantage of a few parameters of bare-bones algorithm. To avoid premature convergence,Gaussian mutation is introduced; and an adaptive sampling distribution strategy is also used to improve the exploratory capability. Moreover, a circular crowded sorting approach is adopted to improve the uniformity of the population distribution.Finally, by combining the algorithm with control vector parameterization,an approach is proposed to solve the dynamic optimization problems of chemical processes. It is proved that the new algorithm performs better compared with other classic multiobjective optimization algorithms through the results of solving three dynamic optimization problems. 展开更多
关键词 dynamic multi-objective optimization bare-bones particle swarm optimization(PSO) algorithm chemical process
在线阅读 下载PDF
A Parallel Search System for Dynamic Multi-Objective Traveling Salesman Problem
14
作者 Weiqi Li 《Journal of Mathematics and System Science》 2014年第5期295-314,共20页
This paper introduces a parallel search system for dynamic multi-objective traveling salesman problem. We design a multi-objective TSP in a stochastic dynamic environment. This dynamic setting of the problem is very u... This paper introduces a parallel search system for dynamic multi-objective traveling salesman problem. We design a multi-objective TSP in a stochastic dynamic environment. This dynamic setting of the problem is very useful for routing in ad-hoc networks. The proposed search system first uses parallel processors to identify the extreme solutions of the search space for each ofk objectives individually at the same time. These solutions are merged into the so-called hit-frequency matrix E. The solutions in E are then searched by parallel processors and evaluated for dominance relationship. The search system is implemented in two different ways master-worker architecture and pipeline architecture. 展开更多
关键词 dynamic multi-objective optimization traveling salesman problem parallel search algorithm solution attractor.
在线阅读 下载PDF
Electric Vehicle Charging Load Optimization Strategy Based on Dynamic Time-of-Use Tariff 被引量:1
15
作者 Shuwei Zhong Yanbo Che Shangyuan 《Energy Engineering》 EI 2024年第3期603-618,共16页
Electric vehicle(EV)is an ideal solution to resolve the carbon emission issue and the fossil fuels scarcity problem in the future.However,a large number of EVs will be concentrated on charging during the valley hours ... Electric vehicle(EV)is an ideal solution to resolve the carbon emission issue and the fossil fuels scarcity problem in the future.However,a large number of EVs will be concentrated on charging during the valley hours leading to new load peaks under the guidance of static time-of-use tariff.Therefore,this paper proposes a dynamic time-of-use tariff mechanism,which redefines the peak and valley time periods according to the predicted loads using the fuzzy C-mean(FCM)clustering algorithm,and then dynamically adjusts the peak and valley tariffs according to the actual load of each time period.Based on the proposed tariff mechanism,an EV charging optimization model with the lowest cost to the users and the lowest variance of the grid-side load as the objective function is established.Then,a weight selection principle with an equal loss rate of the two objectives is proposed to transform the multi-objective optimization problem into a single-objective optimization problem.Finally,the EV charging load optimization model under three tariff strategies is set up and solved with the mathematical solver GROUBI.The results show that the EV charging load optimization strategy based on the dynamic time-of-use tariff can better balance the benefits between charging stations and users under different numbers and proportions of EVs connected to the grid,and can effectively reduce the grid load variance and improve the grid load curve. 展开更多
关键词 dynamic time-of-use tariff peak and valley time electric vehicle multi-objective optimization
在线阅读 下载PDF
Stochastic sampled-data multi-objective control of active suspension systems for in-wheel motor driven electric vehicles 被引量:1
16
作者 Iftikhar Ahmad Xiaohua Ge Qing-Long Han 《Journal of Automation and Intelligence》 2024年第1期2-18,共17页
This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus... This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus is placed on the scenario that the dynamical state of the half-vehicle active suspension system is transmitted over an in-vehicle controller area network that only permits the transmission of sampled data packets.For this purpose,a stochastic sampling mechanism is developed such that the sampling periods can randomly switch among different values with certain mathematical probabilities.Then,an asynchronous fuzzy sampled-data controller,featuring distinct premise variables from the active suspension system,is constructed to eliminate the stringent requirement that the sampled-data controller has to share the same grades of membership.Furthermore,novel criteria for both stability analysis and controller design are derived in order to guarantee that the resultant closed-loop active suspension system is stochastically stable with simultaneous𝐻2 and𝐻∞performance requirements.Finally,the effectiveness of the proposed stochastic sampled-data multi-objective control method is verified via several numerical cases studies in both time domain and frequency domain under various road disturbance profiles. 展开更多
关键词 Active suspension system Electric vehicles In-wheel motor Stochastic sampling dynamic dampers Sampled-data control multi-objective control
在线阅读 下载PDF
Process design for gas condensate desulfurization and synthesis of nano-13X zeolite adsorbent: equilibrium and dynamic studies 被引量:1
17
作者 Ghasem Bakhtiari Hamid Ghassabzadeh +2 位作者 Sayed Javid Royaee Majid Abdouss Mansour Bazmi 《Petroleum Science》 SCIE CAS CSCD 2019年第2期417-427,共11页
This paper summarizes the results of a study of adsorption of sulfur compounds from a high-sulfur feed on improved spherical-shaped nano-AgX zeolite. For this purpose, the nano-AgX zeolite was initially synthesized an... This paper summarizes the results of a study of adsorption of sulfur compounds from a high-sulfur feed on improved spherical-shaped nano-AgX zeolite. For this purpose, the nano-AgX zeolite was initially synthesized and improved with silver compounds such as silver nitrate, and then it was utilized in the adsorption process. In order to investigate the equilibrium and dynamics of the adsorption process, adsorptive desulfurization of real feed(i.e., sour gas condensate from the South Pars gas field) was carried out in batch and continuous processes under several operating conditions; a temperature-dependent Langmuir isotherm model was used to fit the equilibrium data. The value of monolayer adsorption capacity(q_m) and adsorption enthalpy(ΔH) were calculated to be 1.044 mmol/g and 16.8 kJ/mol, respectively. Furthermore, a detailed theoretical model was employed in order to model the breakthrough experiments. The results revealed that an increase in the feed flow rate and 1/T values will cause linear and exponential increase in the total mass transfer coefficient(ks). Isotherm and dynamic breakthrough models were found to be in agreement with the experimental data. 展开更多
关键词 PROCESS design DESULFURIZATION dynamic ADSORPTION Gas CONDENSATE equilibrium
原文传递
Optimal Design of the Modular Joint Drive Train for Enhancing Cobot Load Capacity and Dynamic Performance
18
作者 Peng Li Zhenguo Nie +1 位作者 Zihao Li Xinjun Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期26-40,共15页
Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to e... Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to enhance load capacity,equal attention should be paid to the dynamic response characteristics of cobot during the design process to make the cobot more flexible.In this paper,a new method for designing the drive train parameters of cobot is proposed.Firstly,based on the analysis of factors influencing the load capacity and dynamic response characteristics,design criteria for both aspects are established for cobot with all optimization design criteria normalized within the design domain.Secondly,with the cobot in the horizontal pose,the motor design scheme is discretized and it takes the joint motor diameter and gearbox speed ratio as optimization design variables.Finally,all the discrete values of the optimization objectives are obtained through the enumeration method and the Pareto front is used to select the optimal solution through multi-objective optimization.Base on the cobot design method proposed in this paper,a six-axis cobot is designed and compared with the commercial cobot.The result shows that the load capacity of the designed cobot in this paper reaches 8.4 kg,surpassing the 5 kg load capacity commercial cobot which is used as a benchmark.The minimum resonance frequency of the joints is 42.70 Hz. 展开更多
关键词 multi-objective optimization Modular joint drive train design Load capacity dynamic response performance
在线阅读 下载PDF
Dynamics of Low-Viscosity Liquids Interface in an Unevenly Rotating Vertical Layer
19
作者 Victor Kozlov Vladimir Saidakov Nikolai Kozlov 《Fluid Dynamics & Materials Processing》 EI 2024年第4期693-703,共11页
The behavior of two immiscible low-viscosity liquids differing in density and viscosity in a vertical flat layer undergoing modulated rotation is experimentally studied.The layer has a circular axisymmetric boundary.I... The behavior of two immiscible low-viscosity liquids differing in density and viscosity in a vertical flat layer undergoing modulated rotation is experimentally studied.The layer has a circular axisymmetric boundary.In the absence of modulation of the rotation speed,the interphase boundary has the shape of a short axisymmetric cylinder.A new effect has been discovered,under the influence of rotation speed modulation,the interface takes on a new dynamic equilibrium state.A more viscous liquid covers the end boundaries of the layer in the form of thin films,which have the shape of round spots of almost constant radius;with increasing amplitude of the velocity modulation,the wetting boundary expands.It is found that upon reaching the critical amplitude of oscillations,the film of a viscous liquid loses stability,and the outer edge of the wetting spot collapses and takes on a feathery structure.It is shown that this threshold is caused by the development of the Kelvin-Helmholtz oscillatory instability of the film.The spreading radius of a spot of light viscous liquid and its stability are studied depending on the rotation rate,amplitude,and frequency of rotation speed modulation.The discovered averaged effects are determined by different oscillatory interaction of fluids with the end-walls of the cell,due to different viscosities.The effect of films forming can find application in technological processes to intensify mass transfer at interphase boundaries. 展开更多
关键词 ROTATION OSCILLATIONS immiscible fluids contact line INTERFACE film dynamic equilibrium Nomenclature frot
在线阅读 下载PDF
Deviation of Carbon Dioxide-Water Gas-Liquid Balance from Thermodynamic Equilibrium in Turbulence h Experiment and Correlation 被引量:2
20
作者 张珍稹 钱智 +2 位作者 徐联滨 吴彩艳 郭锴 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第7期770-775,共6页
The carbon dioxide-water system was used to investigate the flowing gas-liquid metastable state. The experiment was carded out in a constant volume vessel with a horizontal circulation pipe and a peristaltic pump forc... The carbon dioxide-water system was used to investigate the flowing gas-liquid metastable state. The experiment was carded out in a constant volume vessel with a horizontal circulation pipe and a peristaltic pump forced CO2 saturated water to flow. The temperature and pressure were recorded. The results showed that some CO2 escaped from the water in the flow process and the pressure increased, indicating that the gas-liquid equilibrium was broken. The amount of escaped CO2 varied with flow speed and reached a limit in a few minutes, entitled dy- namic equilibrium. Temperature and liquid movement played the same important role in breaking the phase equilib- rium. Under the experimental conditions, the ratio of the excessive carbon dioxide in the gas phase to its thermody- namic equilibrium amount in the liquid could achieve 15%. 展开更多
关键词 carbon dioxide TURBULENCE DESORPTION dynamic gas-liquid phase equilibrium
在线阅读 下载PDF
上一页 1 2 94 下一页 到第
使用帮助 返回顶部