The ongoing pandemic of coronavirus disease 2019(COVID-19)has been a great burden for the healthcare system in many countries because of its high transmissibility,severity,and fatality.Chest radiography and computed t...The ongoing pandemic of coronavirus disease 2019(COVID-19)has been a great burden for the healthcare system in many countries because of its high transmissibility,severity,and fatality.Chest radiography and computed tomography(CT)play a vital role in the diagnosis,detection of complications,and prognostication of COVID-19.Additionally,magnetic resonance imaging(MRI),especially multi-nuclei MRI,is another important imaging technique for disease diagnosis because of its good soft tissue contrast and the ability to conduct structural and functional imaging,which has also been used to evaluate COVID-19-related organ injuries in previous studies.Herein,we briefly reviewed the recent research on multi-nuclei MRI for evaluating injuries caused by COVID-19 and the clinical 1 H MRI techniques and their applications for assessing injuries in lungs,brain,and heart.Moreover,the emerging hyperpolarized 129Xe gas MRI and its applications in the evaluation of pulmonary structures and functional abnormalities caused by COVID-19 were also reviewed.展开更多
Multinucleon transfer processes in low-energy heavy ion collisions open a new field of research in nuclear physics, namely, production and studying properties of heavy neutron rich nuclei. This not-yet-explored area o...Multinucleon transfer processes in low-energy heavy ion collisions open a new field of research in nuclear physics, namely, production and studying properties of heavy neutron rich nuclei. This not-yet-explored area of the nuclear map is extremely important for understanding the astrophysical nucleosynthesis and the origin of heavy elements. Beams of very heavy U-like ions are needed to produce new long-living isotopes of transfermium and superheavy elements located very close to the island of stability. The calculated cross sections are high enough to perform the experiments at available accelerators.Beams of medium-mass ions(such as136 Xe,192Os,198Pt) can be used for the production of neutron rich nuclei located along the neutron closed shell N = 126(the last waiting point) having the largest impact on the astrophysical r-process. The Low-energy multinucleon transfer reactions is a very efficient tool also for the production and spectroscopic study of light exotic nuclei. The corresponding cross sections are 2 or 3 orders of magnitude larger as compared with high energy fragmentation reactions.展开更多
基金This work is supported by National key Research and Development Project of China(grant no.2018YFA0704000)National Natural Science Foundation of China(grant no.91859206,81625011,21921004)+3 种基金Scientific Instrument Developing Project of the Chinese Academy of Sciences(grant no.GJJSTD20200002,YJKYYQ20200067)Key Research Program of Frontier Sciences,CAS(grant no.ZDBS-LY-JSC004)Haidong Li acknowledges the support from Youth Innovation Promotion Association,CAS(grant no.2020330)Xin Zhou acknowledges the support from the Tencent Foundation through the XPLORER PRIZE.
文摘The ongoing pandemic of coronavirus disease 2019(COVID-19)has been a great burden for the healthcare system in many countries because of its high transmissibility,severity,and fatality.Chest radiography and computed tomography(CT)play a vital role in the diagnosis,detection of complications,and prognostication of COVID-19.Additionally,magnetic resonance imaging(MRI),especially multi-nuclei MRI,is another important imaging technique for disease diagnosis because of its good soft tissue contrast and the ability to conduct structural and functional imaging,which has also been used to evaluate COVID-19-related organ injuries in previous studies.Herein,we briefly reviewed the recent research on multi-nuclei MRI for evaluating injuries caused by COVID-19 and the clinical 1 H MRI techniques and their applications for assessing injuries in lungs,brain,and heart.Moreover,the emerging hyperpolarized 129Xe gas MRI and its applications in the evaluation of pulmonary structures and functional abnormalities caused by COVID-19 were also reviewed.
文摘Multinucleon transfer processes in low-energy heavy ion collisions open a new field of research in nuclear physics, namely, production and studying properties of heavy neutron rich nuclei. This not-yet-explored area of the nuclear map is extremely important for understanding the astrophysical nucleosynthesis and the origin of heavy elements. Beams of very heavy U-like ions are needed to produce new long-living isotopes of transfermium and superheavy elements located very close to the island of stability. The calculated cross sections are high enough to perform the experiments at available accelerators.Beams of medium-mass ions(such as136 Xe,192Os,198Pt) can be used for the production of neutron rich nuclei located along the neutron closed shell N = 126(the last waiting point) having the largest impact on the astrophysical r-process. The Low-energy multinucleon transfer reactions is a very efficient tool also for the production and spectroscopic study of light exotic nuclei. The corresponding cross sections are 2 or 3 orders of magnitude larger as compared with high energy fragmentation reactions.