Since wireless links in Ad hoc networks are more fragile than those in traditional wireless networks due to route flapping,multi-node cooperation plays an important role in ensuring the quality of service( QoS). Based...Since wireless links in Ad hoc networks are more fragile than those in traditional wireless networks due to route flapping,multi-node cooperation plays an important role in ensuring the quality of service( QoS). Based on the authors' previous work,this paper proposes a receiver-controlled multi-node cooperation routing protocol,known as AODV-RCC. In this protocol,nodes form a cooperation group based on signal power. In a cooperation group,signal power between a partner and a transmitter,as well as signal power between the partner and the receiver,must be larger than the signal power between the transmitter and the receiver. Otherwise,the transmission will not benefit from cooperation. To avoid collision or congestion,each cooperation group only contains one partner. This partner offers both data and ACK cooperative retransmission. Its retransmission time should be shorter than the internal retry time of the transmitter's MAC layer,because it is better for the partner to retransmit firstly,as it offers a more reliable cooperative link. In AODV-RCC,it is the receiver that chooses the partner,because the link between the partner and the receiver is the most important. According to our simulation results,AODV-RCC shortens the end-to-end delay and increases the packet delivery ratio.展开更多
Closed form expressions for the PDF and MGF of the harmonic mean of two independent exponential variates are cited and derived, and then applied to study the performance of cellular multi-node and dual-hop cooperative...Closed form expressions for the PDF and MGF of the harmonic mean of two independent exponential variates are cited and derived, and then applied to study the performance of cellular multi-node and dual-hop cooperative communication systems with non-regenerative relays over flat Rayleigh fading channels. We derive the probability density function (PDF) and asymptotic symbol error rate (SER) expression with MRC scheme. Then we use Matlab to simulate the performance.展开更多
In recent years the variety and complexity of Wireless Sensor Network (WSN) applications, the nodes and the functions they are expected to perform have increased immensely. This poses the question of reducing the ti...In recent years the variety and complexity of Wireless Sensor Network (WSN) applications, the nodes and the functions they are expected to perform have increased immensely. This poses the question of reducing the time from initial design of WSN applications to their implementation as a major research topic. RF communication programs for WSN nodes are generally written on microcontroller units (MCUs) for universal asynchronous receiver/transmitter (UART) data communication, however nowadays radio frequency (RF) designs based on field-programmable gate array (FPGA) have emerged as a very powerful alternative, due to their parallel data processing ability and software reconfigurability. In this paper, the authors present a prototype of a flexible multi-node transceiver and monitoring system. The prototype is designed for time-critical applications and can be also reconfigured for other applications like event tracking. The processing power of FPGA is combined with a simple communication protocol. The system consists of three major parts: wireless nodes, the FPGA and display used for visualization of data processing. The transmission protocol is based on preamble and synchronous data transmission, where the receiver adjusts the receiving baud rate in the range from min. 300 to max. 2400 bps. The most important contribution of this work is using the virtual PicoBlaze Soft-Core Processor for controlling the data transmission through the RF modules. The proposed system has been evaluated based on logic utilization, in terms of the number of slice flip flops, the number of 4 input LUTs (Look-Up Tables) and the number of bonded lOBs (Input Output Blocks). The results for capacity usage are very promising as compared to other similar research.展开更多
Along with the progress of sciences and technologies, a lot of explorations are taken in many countries or organizations in succession. Lunar, the natural satellite of the earth, become a focus of the space discovery ...Along with the progress of sciences and technologies, a lot of explorations are taken in many countries or organizations in succession. Lunar, the natural satellite of the earth, become a focus of the space discovery again recently because of its abundant resource and high value in use. Lunar exploration is also one of the most important projects in China. A primary objective of the probe in lunar is to soft-land a manned spacecraft on the lunar surface. The soft-landing system is the key composition of the lunar lander. In the overall design of lunar lander, the analysis of touchdown dynamics during landing stage is an important work. The rigid-flexible coupling dynamics of a system with flexible cantilevers attached to the main lander is analyzed. The equations are derived from the subsystem method. Results show that the deformations of cantilevers have considerable effect on the overloading of the lunar lander system.展开更多
Flexible lander,composed of multiple nodes connected by flexible material,can reducethe bouncing and overturning during the asteroid landing.To satisfy the complex constraints inthe node cooperation of the flexible la...Flexible lander,composed of multiple nodes connected by flexible material,can reducethe bouncing and overturning during the asteroid landing.To satisfy the complex constraints inthe node cooperation of the flexible landing,an intelligent cooperative guidance method is pro-posed.The method consists of a double-layer cooperative guidance structure,a guidance parameterdetermination approach,and an action priority strategy.The double-layer contains a basic guid-ance used to satisfy the terminal state constraints,and a compensatory guidance used to satisfythe lander's attitude constraint.For the compensatory guidance,the parameters are determinedby multi-agent system,which are trained according to the performance index of flexible landing tra-jectories.The action priority strategy is used to reduce the detrimental effect of parameter inconsis-tency on the node cooperation.The simulation of flexible landing shows that the cooperativeguidance method is effective in improving the landing accuracy while satisfying the constraints.Meanwhile,the method is robust to the disturbance in the navigation and control.展开更多
China Completes First Manned Lunar Lander Landing and Takeoff Test China announced that it has successfully completed a comprehensive landing and takeoff test on August 7 for its manned lunar lander at a test site in ...China Completes First Manned Lunar Lander Landing and Takeoff Test China announced that it has successfully completed a comprehensive landing and takeoff test on August 7 for its manned lunar lander at a test site in Huailai County,north China's Hebei Province.The test which was completed on August 6 represents a key step in the development of China’s manned lunar exploration program,and also marks the first time that China has carried out a test of extraterrestrial landing and takeoff capabilities of a manned spacecraft,the China Manned Space Agency said.展开更多
Focused on the dynamics problems of a lunar lander during landing process, the whole process was analysed in detail, and the linear elastic model of the moon soil was established by means of experiments-analogic metho...Focused on the dynamics problems of a lunar lander during landing process, the whole process was analysed in detail, and the linear elastic model of the moon soil was established by means of experiments-analogic method. Combining the way of elastic impact with the way of velocity replacement, the dynamics model of damping free vibration dynamics model with 3-degree of freedom(DOF) for lunar lander is obtained according to the vibration mechanics elementary theory. Based on Lagrange equations and the energy principle, the damping free vibration differential equations for the lunar lander with 3-DOF are derived and the equations are solved in simulation ways by means of ADAMS software. The conclusions obtained can be used for the design and manufacture of lunar lander.展开更多
The displacement field generated by aftershocks in Landers earthquake fault zone and its adjacent areas is calculated in this study. The result is compared with the displacement field of the main shock calculated by c...The displacement field generated by aftershocks in Landers earthquake fault zone and its adjacent areas is calculated in this study. The result is compared with the displacement field of the main shock calculated by co-seismic slip model of Wald and Heaton (1994). The result shows that the direction of displacement generated by aftershocks in Landers seismic fault plane and its adjacent areas is consistent with that generated by main shock. The rupture of aftershock is generally inherited from main shock. The displacement generated by aftershocks is up to an order of centimeter and can be measured by GPS sites nearby. So when we use geodetic data measured after earthquake to study the geophysical problems such as crustal viscosity structure, afterslip distribution, etc., only the displacement field generated by aftershocks considered, can uncertainty be reduced to minimum and realistic result be obtained.展开更多
Safe soft landing of the lander is vital to the Mars surface exploration mission. Analysis and verification of the landing stability under uncertain terrain play an important role in lander design. However, the effect...Safe soft landing of the lander is vital to the Mars surface exploration mission. Analysis and verification of the landing stability under uncertain terrain play an important role in lander design. However, the effect of uncertain terrain is ignored in most existing studies, making the analysis incomprehensive and increasing the risk of landing failure in practice. In this paper, a Mars lander with 10 attitude control thrusters is introduced and its dynamics model is then established considering plastic deformation parts and nonlinear contact forces. The effectiveness and accuracy of the dynamics modeling method are verified by experiments with an average relative error of 10%.In order to carry out the dynamics simulation with high-fidelity terrain, a terrain generation method based on statistical data is proposed. Through Monte Carlo simulation under a 50 m × 50 m randomly generated landing terrain, the stability of the lander and the effects of attitude control thrusters are analyzed. The results show that the failure rate is 5.5%, in which the primary failure forms are overturning and abnormal attitude. When the landing simulations are repeated without thrusters, the stable ratio decreases from 94.5% to 90.7%, suggesting the positive effects of attitude control thrusters in improving landing stability under rough terrain.展开更多
The Chang'e-3 (CE-3) lander and rover mission to the Moon was an in- termediate step in China's lunar exploration program, which will be followed by a sample return mission. The lander was equipped with a number o...The Chang'e-3 (CE-3) lander and rover mission to the Moon was an in- termediate step in China's lunar exploration program, which will be followed by a sample return mission. The lander was equipped with a number of remote-sensing instruments including a pair of cameras (Landing Camera and Terrain Camera) for recording the landing process and surveying terrain, an extreme ultraviolet camera for monitoring activities in the Earth's plasmasphere, and a first-ever Moon-based ultravi- olet telescope for astronomical observations. The Yutu rover successfully carried out close-up observations with the Panoramic Camera, mineralogical investigations with the VIS-NIR Imaging Spectrometer, study of elemental abundances with the Active Particle-induced X-ray Spectrometer, and pioneering measurements of the lunar sub- surface with Lunar Penetrating Radar. This special issue provides a collection of key information on the instrumental designs, calibration methods and data processing pro- cedures used by these experiments with a perspective of facilitating further analyses of scientific data from CE-3 in preparation for future missions.展开更多
The footpad structure of a deep space exploration lander is a critical system that makes the initial contact with the ground,and thereby plays a crucial role in determining the stability and energy absorption characte...The footpad structure of a deep space exploration lander is a critical system that makes the initial contact with the ground,and thereby plays a crucial role in determining the stability and energy absorption characteristics during the impact process.The conventional footpad is typically designed with an aluminum honeycomb structure that dissipates energy through plastic deformation.Nevertheless,its effectiveness in providing cushioning and energy absorption becomes significantly compromised when the structure is crushed,rendering it unusable for reusable landers in the future.This study presents a methodology for designing and evaluating structural energy absorption systems incorporating recoverable strain constraints of shape memory alloys(SMA).The topological configuration of the energy absorbing structure is derived using an equivalent static load method(ESL),and three lightweight footpad designs featuring honeycomb-like Ni-Ti shape memory alloys structures and having variable stiffness skins are proposed.To verify the accuracy of the numerical modelling,a honeycomb-like structure subjected to compression load is modeled and then compared with experimental results.Moreover,the influence of the configurations and thickness distribution of the proposed structures on their energy absorption performance is comprehensively evaluated using finite element simulations.The results demonstrate that the proposed design approach effectively regulates the strain threshold to maintain the SMA within the constraint of maximum recoverable strain,resulting in a structural energy absorption capacity of 362 J/kg with a crushing force efficiency greater than 63%.展开更多
Three kinds of possible structures of legged lander including monocoqe, semi-monocoqe and space frame are compared, and the lightest space frame structure is selected as the lander's structure. Then, a new lander ...Three kinds of possible structures of legged lander including monocoqe, semi-monocoqe and space frame are compared, and the lightest space frame structure is selected as the lander's structure. Then, a new lander with four-legged truss structure is proposed. In the premise of ensuring that the main and assistant structures of landing legs are not changed, six possible lander body structures of the new lander are put forward. Taking the section size of each component of lander as design variables, and taking the total mass of the structure as the objective function, the six structures are analyzed by using the software Altair. OptiStruct and the results show that the mass of the basic structure is the lightest, and it is selected as the final design scheme of lander due to its simple structure and convenient manufacture. The optimization on the selected lander structure is conducted, and the detailed results are presented.展开更多
The colonization of underwater environments by exotic seaweeds is causing major ecological problems around the world.This project,referred to AMALIA,aims to transform this current ocean threat into an opportunity by a...The colonization of underwater environments by exotic seaweeds is causing major ecological problems around the world.This project,referred to AMALIA,aims to transform this current ocean threat into an opportunity by adding value to the macroalgae present off the northwest of the Iberian Peninsula.To do so and to observe the presence of seaweeds in situ,an ocean modular submersible platform was developed.This platform was designed to be capable of detecting and surveying surges of invasive seaweeds while withstanding sea conditions.Conceptual designs followed by a screening process were performed,taking into consideration criteria such as operational range and modularity.An open-frame lander was considered and further developed using buckling criteria.In parallel,a state-of-the-art monitoring system was created using spectral imaging,allowing for the future creation of a macroalgae identification system.In addition,sensorial systems for characterizing growth conditions were introduced.Laboratory trials were executed to assess the capability of the system,and sea trials are currently being performed.Numerical simulations and laboratory trials indicate that the structure is fully capable of being deployed for shallow-water environments with a state-of-the-art invasive seaweed monitoring system while maintaining a high degree of modularity.展开更多
基金Sponsored by the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(Grant No.HIT.NSRIF.2013029)the National Science and Technology Major Project(Grant No.2012ZX03004003)+1 种基金the National Basic Research Development Program of China(973 Program)(Grant No.2013CB329003)the National Natural Science Foundation of China(Grant No.61201148 and No.61101123)
文摘Since wireless links in Ad hoc networks are more fragile than those in traditional wireless networks due to route flapping,multi-node cooperation plays an important role in ensuring the quality of service( QoS). Based on the authors' previous work,this paper proposes a receiver-controlled multi-node cooperation routing protocol,known as AODV-RCC. In this protocol,nodes form a cooperation group based on signal power. In a cooperation group,signal power between a partner and a transmitter,as well as signal power between the partner and the receiver,must be larger than the signal power between the transmitter and the receiver. Otherwise,the transmission will not benefit from cooperation. To avoid collision or congestion,each cooperation group only contains one partner. This partner offers both data and ACK cooperative retransmission. Its retransmission time should be shorter than the internal retry time of the transmitter's MAC layer,because it is better for the partner to retransmit firstly,as it offers a more reliable cooperative link. In AODV-RCC,it is the receiver that chooses the partner,because the link between the partner and the receiver is the most important. According to our simulation results,AODV-RCC shortens the end-to-end delay and increases the packet delivery ratio.
文摘Closed form expressions for the PDF and MGF of the harmonic mean of two independent exponential variates are cited and derived, and then applied to study the performance of cellular multi-node and dual-hop cooperative communication systems with non-regenerative relays over flat Rayleigh fading channels. We derive the probability density function (PDF) and asymptotic symbol error rate (SER) expression with MRC scheme. Then we use Matlab to simulate the performance.
文摘In recent years the variety and complexity of Wireless Sensor Network (WSN) applications, the nodes and the functions they are expected to perform have increased immensely. This poses the question of reducing the time from initial design of WSN applications to their implementation as a major research topic. RF communication programs for WSN nodes are generally written on microcontroller units (MCUs) for universal asynchronous receiver/transmitter (UART) data communication, however nowadays radio frequency (RF) designs based on field-programmable gate array (FPGA) have emerged as a very powerful alternative, due to their parallel data processing ability and software reconfigurability. In this paper, the authors present a prototype of a flexible multi-node transceiver and monitoring system. The prototype is designed for time-critical applications and can be also reconfigured for other applications like event tracking. The processing power of FPGA is combined with a simple communication protocol. The system consists of three major parts: wireless nodes, the FPGA and display used for visualization of data processing. The transmission protocol is based on preamble and synchronous data transmission, where the receiver adjusts the receiving baud rate in the range from min. 300 to max. 2400 bps. The most important contribution of this work is using the virtual PicoBlaze Soft-Core Processor for controlling the data transmission through the RF modules. The proposed system has been evaluated based on logic utilization, in terms of the number of slice flip flops, the number of 4 input LUTs (Look-Up Tables) and the number of bonded lOBs (Input Output Blocks). The results for capacity usage are very promising as compared to other similar research.
基金HI-tech Research and Development Program of China
文摘Along with the progress of sciences and technologies, a lot of explorations are taken in many countries or organizations in succession. Lunar, the natural satellite of the earth, become a focus of the space discovery again recently because of its abundant resource and high value in use. Lunar exploration is also one of the most important projects in China. A primary objective of the probe in lunar is to soft-land a manned spacecraft on the lunar surface. The soft-landing system is the key composition of the lunar lander. In the overall design of lunar lander, the analysis of touchdown dynamics during landing stage is an important work. The rigid-flexible coupling dynamics of a system with flexible cantilevers attached to the main lander is analyzed. The equations are derived from the subsystem method. Results show that the deformations of cantilevers have considerable effect on the overloading of the lunar lander system.
基金supported by the National Key Research and Development Program of China(No.2019YFA0706500)。
文摘Flexible lander,composed of multiple nodes connected by flexible material,can reducethe bouncing and overturning during the asteroid landing.To satisfy the complex constraints inthe node cooperation of the flexible landing,an intelligent cooperative guidance method is pro-posed.The method consists of a double-layer cooperative guidance structure,a guidance parameterdetermination approach,and an action priority strategy.The double-layer contains a basic guid-ance used to satisfy the terminal state constraints,and a compensatory guidance used to satisfythe lander's attitude constraint.For the compensatory guidance,the parameters are determinedby multi-agent system,which are trained according to the performance index of flexible landing tra-jectories.The action priority strategy is used to reduce the detrimental effect of parameter inconsis-tency on the node cooperation.The simulation of flexible landing shows that the cooperativeguidance method is effective in improving the landing accuracy while satisfying the constraints.Meanwhile,the method is robust to the disturbance in the navigation and control.
文摘China Completes First Manned Lunar Lander Landing and Takeoff Test China announced that it has successfully completed a comprehensive landing and takeoff test on August 7 for its manned lunar lander at a test site in Huailai County,north China's Hebei Province.The test which was completed on August 6 represents a key step in the development of China’s manned lunar exploration program,and also marks the first time that China has carried out a test of extraterrestrial landing and takeoff capabilities of a manned spacecraft,the China Manned Space Agency said.
文摘Focused on the dynamics problems of a lunar lander during landing process, the whole process was analysed in detail, and the linear elastic model of the moon soil was established by means of experiments-analogic method. Combining the way of elastic impact with the way of velocity replacement, the dynamics model of damping free vibration dynamics model with 3-degree of freedom(DOF) for lunar lander is obtained according to the vibration mechanics elementary theory. Based on Lagrange equations and the energy principle, the damping free vibration differential equations for the lunar lander with 3-DOF are derived and the equations are solved in simulation ways by means of ADAMS software. The conclusions obtained can be used for the design and manufacture of lunar lander.
基金National Natural Science Foundation of China (40374012) and National Basic Key Project (2002CCA04500).
文摘The displacement field generated by aftershocks in Landers earthquake fault zone and its adjacent areas is calculated in this study. The result is compared with the displacement field of the main shock calculated by co-seismic slip model of Wald and Heaton (1994). The result shows that the direction of displacement generated by aftershocks in Landers seismic fault plane and its adjacent areas is consistent with that generated by main shock. The rupture of aftershock is generally inherited from main shock. The displacement generated by aftershocks is up to an order of centimeter and can be measured by GPS sites nearby. So when we use geodetic data measured after earthquake to study the geophysical problems such as crustal viscosity structure, afterslip distribution, etc., only the displacement field generated by aftershocks considered, can uncertainty be reduced to minimum and realistic result be obtained.
基金supported by the Joint Fund of Advanced Aerospace Manufacturing Technology Research(No.U2037602)。
文摘Safe soft landing of the lander is vital to the Mars surface exploration mission. Analysis and verification of the landing stability under uncertain terrain play an important role in lander design. However, the effect of uncertain terrain is ignored in most existing studies, making the analysis incomprehensive and increasing the risk of landing failure in practice. In this paper, a Mars lander with 10 attitude control thrusters is introduced and its dynamics model is then established considering plastic deformation parts and nonlinear contact forces. The effectiveness and accuracy of the dynamics modeling method are verified by experiments with an average relative error of 10%.In order to carry out the dynamics simulation with high-fidelity terrain, a terrain generation method based on statistical data is proposed. Through Monte Carlo simulation under a 50 m × 50 m randomly generated landing terrain, the stability of the lander and the effects of attitude control thrusters are analyzed. The results show that the failure rate is 5.5%, in which the primary failure forms are overturning and abnormal attitude. When the landing simulations are repeated without thrusters, the stable ratio decreases from 94.5% to 90.7%, suggesting the positive effects of attitude control thrusters in improving landing stability under rough terrain.
文摘The Chang'e-3 (CE-3) lander and rover mission to the Moon was an in- termediate step in China's lunar exploration program, which will be followed by a sample return mission. The lander was equipped with a number of remote-sensing instruments including a pair of cameras (Landing Camera and Terrain Camera) for recording the landing process and surveying terrain, an extreme ultraviolet camera for monitoring activities in the Earth's plasmasphere, and a first-ever Moon-based ultravi- olet telescope for astronomical observations. The Yutu rover successfully carried out close-up observations with the Panoramic Camera, mineralogical investigations with the VIS-NIR Imaging Spectrometer, study of elemental abundances with the Active Particle-induced X-ray Spectrometer, and pioneering measurements of the lunar sub- surface with Lunar Penetrating Radar. This special issue provides a collection of key information on the instrumental designs, calibration methods and data processing pro- cedures used by these experiments with a perspective of facilitating further analyses of scientific data from CE-3 in preparation for future missions.
基金Supported by Fundamental Research Funds for the Central Universities of China(Grant No.2021JBM021)National Natural Science Foundation of China(Grant Nos.52202431,52172353).
文摘The footpad structure of a deep space exploration lander is a critical system that makes the initial contact with the ground,and thereby plays a crucial role in determining the stability and energy absorption characteristics during the impact process.The conventional footpad is typically designed with an aluminum honeycomb structure that dissipates energy through plastic deformation.Nevertheless,its effectiveness in providing cushioning and energy absorption becomes significantly compromised when the structure is crushed,rendering it unusable for reusable landers in the future.This study presents a methodology for designing and evaluating structural energy absorption systems incorporating recoverable strain constraints of shape memory alloys(SMA).The topological configuration of the energy absorbing structure is derived using an equivalent static load method(ESL),and three lightweight footpad designs featuring honeycomb-like Ni-Ti shape memory alloys structures and having variable stiffness skins are proposed.To verify the accuracy of the numerical modelling,a honeycomb-like structure subjected to compression load is modeled and then compared with experimental results.Moreover,the influence of the configurations and thickness distribution of the proposed structures on their energy absorption performance is comprehensively evaluated using finite element simulations.The results demonstrate that the proposed design approach effectively regulates the strain threshold to maintain the SMA within the constraint of maximum recoverable strain,resulting in a structural energy absorption capacity of 362 J/kg with a crushing force efficiency greater than 63%.
基金Sponsored by the Project on Absorption of Intellects by Institutions of Higher Education for Academic Disciplinary Innovations(Grant No. B07018)
文摘Three kinds of possible structures of legged lander including monocoqe, semi-monocoqe and space frame are compared, and the lightest space frame structure is selected as the lander's structure. Then, a new lander with four-legged truss structure is proposed. In the premise of ensuring that the main and assistant structures of landing legs are not changed, six possible lander body structures of the new lander are put forward. Taking the section size of each component of lander as design variables, and taking the total mass of the structure as the objective function, the six structures are analyzed by using the software Altair. OptiStruct and the results show that the mass of the basic structure is the lightest, and it is selected as the final design scheme of lander due to its simple structure and convenient manufacture. The optimization on the selected lander structure is conducted, and the detailed results are presented.
基金supported by the European Union under Grant No. EASME/EMFF/2016/1.2.1.4/03/SI2.750419the AMALIA-Algae-to-Market Lab Ideas Project。
文摘The colonization of underwater environments by exotic seaweeds is causing major ecological problems around the world.This project,referred to AMALIA,aims to transform this current ocean threat into an opportunity by adding value to the macroalgae present off the northwest of the Iberian Peninsula.To do so and to observe the presence of seaweeds in situ,an ocean modular submersible platform was developed.This platform was designed to be capable of detecting and surveying surges of invasive seaweeds while withstanding sea conditions.Conceptual designs followed by a screening process were performed,taking into consideration criteria such as operational range and modularity.An open-frame lander was considered and further developed using buckling criteria.In parallel,a state-of-the-art monitoring system was created using spectral imaging,allowing for the future creation of a macroalgae identification system.In addition,sensorial systems for characterizing growth conditions were introduced.Laboratory trials were executed to assess the capability of the system,and sea trials are currently being performed.Numerical simulations and laboratory trials indicate that the structure is fully capable of being deployed for shallow-water environments with a state-of-the-art invasive seaweed monitoring system while maintaining a high degree of modularity.