The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,...The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,photovoltaic power generation is unstable and random,resulting in a low utilization rate and directly affecting the stability of the power grid.To solve this problem,this paper proposes a coordinated control strategy for a newenergy power generation system with a hybrid energy storage unit based on the lithium iron phosphate-supercapacitor hybrid energy storage unit.Firstly,the variational mode decomposition algorithm is used to separate the high and low frequencies of the power signal,which is conducive to the rapid and accurate suppression of the power fluctuation of the energy storage system.Secondly,the fuzzy control algorithm is introduced to balance the power between energy storage.In this paper,the actual data is used for simulation,and the simulation results show that the strategy realizes the effective suppression of the bus voltage fluctuation and the accurate control of the internal state of the energy storage unit,effectively avoiding problems such as overshoot and over-discharge,and can significantly improve the stability of the photovoltaic power generation systemand the stability of the Direct Current bus.It is of great significance to promote the development of collaborative control technology for photovoltaic hybrid energy storage units.展开更多
In this paper,a strength-constrained unit commitment(UC)model incorporating system strength constraints based on the weighted short-circuit ratio(WSCR)is proposed.This model facilitates the comprehensive assessment of...In this paper,a strength-constrained unit commitment(UC)model incorporating system strength constraints based on the weighted short-circuit ratio(WSCR)is proposed.This model facilitates the comprehensive assessment of area-wide system strength in power systems with high inverter-based resource(IBR)penetration,thereby contributing to the mitigation of weak grid issues.Unlike traditional models,this approach considers the interactions among multiple IBRs.The UC problem is initially formulated as a mixed-integer nonlinear programming(MINLP)model,reflecting WSCR and bus impedance matrix modification constraints.To enhance computational tractability,the model is transformed into a mixed-integer linear programming(MILP)form.The effectiveness of the proposed approach is validated through simulations on the IEEE 5-bus,IEEE 39-bus,and a modified Korean power system,demonstrating the ability of the proposed UC model enhancing system strength compared to the conventional methodologies.展开更多
In this paper,a multi-bus distributed Power Conditioning Unit(PCU)is proposed for the Space Solar Power Station with large scale photovoltaic(PV)array and power levels reaching MW level.In this unit,there are multiple...In this paper,a multi-bus distributed Power Conditioning Unit(PCU)is proposed for the Space Solar Power Station with large scale photovoltaic(PV)array and power levels reaching MW level.In this unit,there are multiple independent PV arrays.In each PV array,there are multiple independent PV subarrays.In this paper,a V-P droop control method with adaptive droop coefficient is proposed,which modifies the droop intercept based on the bus voltage deviation and the power per unit value of the PV array.This method ensures the accuracy of bus voltage and achieves proportional distribution of power between PV arrays based on the proposed topology structure in this paper.When the load changes or the output power of the PV array fluctuates,this method can ensure that power is distributed proportionally.The principle and control method of the proposed droop control method is analyzed in this paper.The effectiveness of the method is verified through MATLAB/Simulink simulation and experiment.Simulation and experimental results show that the proposed method can achieve power distributed proportionally when load changes and PV output power fluctuates,reduce bus voltage error caused by line impedance and differences in rated power of different PV arrays,and improve the performance of PV power generation system applied to space.展开更多
To mitigate the impact of wind power volatility on power system scheduling,this paper adopts the wind-storage combined unit to improve the dispatchability of wind energy.And a three-level optimal scheduling and power ...To mitigate the impact of wind power volatility on power system scheduling,this paper adopts the wind-storage combined unit to improve the dispatchability of wind energy.And a three-level optimal scheduling and power allocation strategy is proposed for the system containing the wind-storage combined unit.The strategy takes smoothing power output as themain objectives.The first level is the wind-storage joint scheduling,and the second and third levels carry out the unit combination optimization of thermal power and the power allocation of wind power cluster(WPC),respectively,according to the scheduling power of WPC and ESS obtained from the first level.This can ensure the stability,economy and environmental friendliness of the whole power system.Based on the roles of peak shaving-valley filling and fluctuation smoothing of the energy storage system(ESS),this paper decides the charging and discharging intervals of ESS,so that the energy storage and wind power output can be further coordinated.Considering the prediction error and the output uncertainty of wind power,the planned scheduling output of wind farms(WFs)is first optimized on a long timescale,and then the rolling correction optimization of the scheduling output of WFs is carried out on a short timescale.Finally,the effectiveness of the proposed optimal scheduling and power allocation strategy is verified through case analysis.展开更多
Northern China has rich wind power and photovoltaic renewable resources. Combined Heat and Power (CHP) Units to meet the load demand and limit its peaking capacity in winter, to a certain extent, it results in structu...Northern China has rich wind power and photovoltaic renewable resources. Combined Heat and Power (CHP) Units to meet the load demand and limit its peaking capacity in winter, to a certain extent, it results in structural problems of wind-solar power and thermoelectric. To solve these problems, this paper proposes a plurality of units together to ensure supply of heat load on the premise, by building a thermoelectric power peaking considering thermal load unit group dynamic scheduling model, to achieve the potential of different thermoelectric properties peaking units of the excavation. Simulation examples show, if the unit group exists obvious relationship thermoelectric individual differences, the thermal load dynamic scheduling can be more significantly improved overall performance peaking unit group, effectively increase clean energy consumptive.展开更多
This paper is concerned with the development of electronic controller for turbine POwer units. In order to increase the reliability of the POwer unit, three control loops working in the hi-backup mode have been employ...This paper is concerned with the development of electronic controller for turbine POwer units. In order to increase the reliability of the POwer unit, three control loops working in the hi-backup mode have been employed. This control strategy is able to satisfy the demands of the application of the power unit to the aviation fields.展开更多
Considering units starting and network constraints and the concept of optimization period,a optimization model which is a typical multi-constraint knapsack problem is established to solve the selection optimization pr...Considering units starting and network constraints and the concept of optimization period,a optimization model which is a typical multi-constraint knapsack problem is established to solve the selection optimization problem of units starting in power system restoration period in this paper, and the objective of the model is to maximize the total power generation capability. A relative effectiveness assessment based on a improving data envelopment analysis is adopted to select the initial units to be started, genetic algorithms are employed to solve the knapsack problem to determine the most reasonable units be started at the current time. Finally, IEEE-39 bus system simulation result proves that the proposed model is feasible and effective.展开更多
China’s electric power industry as a basic industry, plays an important role in the longterm, sustained and healthy development of the whole national economy. China’s electric power industry attained great achieveme...China’s electric power industry as a basic industry, plays an important role in the longterm, sustained and healthy development of the whole national economy. China’s electric power industry attained great achievement in technology and economical results during the past eight years from 1987-1995. The total national installed generating capacity increased from 102.897 GW in 1987 to more than 200 GW in March, 1995.展开更多
Located at the intersection of the east,west,south and north,Central Asia has attracted the attention of major international actors due to its unique geographical location.On one hand,major powers and actors outside t...Located at the intersection of the east,west,south and north,Central Asia has attracted the attention of major international actors due to its unique geographical location.On one hand,major powers and actors outside the region such as the European Union(EU)and the Gulf Cooperation Council have strengthened their ties with Central Asian countries,significantly intensifying the power struggles and institutional competition in the region.On the other hand,Central Asian countries have become increasingly active,developing their foreign relations while seeking strategic autonomy and promoting regional cooperation.展开更多
The stable operation of thermal power plants is the core condition to ensure the stable power supply. Therefore, the application of unit centralized control technology around the three parts of the electromechanical f...The stable operation of thermal power plants is the core condition to ensure the stable power supply. Therefore, the application of unit centralized control technology around the three parts of the electromechanical furnace system layout, system principle, fixed value parameters, operation mode, logic and operation procedures control can improve the power generation stability of thermal power plants. Based on this, this paper first summarizes the concept of centralized control of thermal power plants and generating units, and then focuses on the principles and technical solutions of the application of centralized control technology of generating units.展开更多
The reliability of the on-wing aircraft Auxiliary Power Unit(APU)decides the cost and the comfort of flight to a large degree.The most important function of APU is to help start main engines by providing compressed ai...The reliability of the on-wing aircraft Auxiliary Power Unit(APU)decides the cost and the comfort of flight to a large degree.The most important function of APU is to help start main engines by providing compressed air.Especially on the condition of sudden shutdown in the air,APU can offer additional thrust for landing.Therefore,its condition monitoring has drawn much attention from the academic and industrial field.Among the on-wing sensing data which can reflect its condition,Exhaust Gas Temperature(EGT)is one of the most important parameters.To ensure the reliability of EGT,one kind of data-driven anomaly detection framework for EGT sensing data is proposed based on the Gaussian Process Regression and Kernel Principal Component Analysis.The situations of one-dimensional and two-dimensional input data for EGT anomaly detection are considered,respectively.The cross-validation experiments are carried out by utilizing the real condition data of APU,which are provided by China Southern Airlines Company Limited Shenyang Maintenance Base.The anomalous stuck condition of EGT sensing data is also detected.Experimental results show that the proposed EGT sensing data anomaly detection method can achieve better performance of false positive ratio,false negative ratio and accuracy.展开更多
The control of ultra-supercritical(USC) power unit is a difficult issue for its characteristic of the nonlinearity, large dead time and coupling of the unit. In this paper, model predictive control(MPC) based on multi...The control of ultra-supercritical(USC) power unit is a difficult issue for its characteristic of the nonlinearity, large dead time and coupling of the unit. In this paper, model predictive control(MPC) based on multi-model and double layered optimization is introduced for coordinated control of USC unit. The linear programming(LP) combined with quadratic programming(QP) is used in steady optimization for computation of the ideal value of dynamic optimization. Three inputs(i.e. valve opening, coal flow and feedwater flow) are employed to control three outputs(i.e. load, main steam temperature and main steam pressure). The step response models for the dynamic matrix control(DMC) are constructed using the three inputs and the three outputs. Piecewise models are built at selected operation points. Double-layered multi-model predictive controller is implemented in simulation with satisfactory performance.展开更多
Galloping of power transmission lines might bring about huge damage such as massive power outage and collapse of the transmission towers. To realize forecast of the galloping and provide data for study on the gallopin...Galloping of power transmission lines might bring about huge damage such as massive power outage and collapse of the transmission towers. To realize forecast of the galloping and provide data for study on the galloping mechanism, this paper proposes an online monitoring system for tracking galloping profile of power transmission lines based on wireless inertial measurement units (WIMUs). The system is composed of three modules: wireless inertial measurement nodes, monitoring base station, and remote monitoring station. After detailing the hardware system, the corresponding software which positions and displays galloping profile of the transmission line in real-time is outlined. The feasibility of the proposed on-line monitoring system is demonstrated through a series of experiments at the State Grid Key Laboratory of Power Overhead Transmission Line Galloping (Zhengzhou, China) by taking into account different vibration patterns.展开更多
A power management unit (PMU) chip supplying dual panel supply voltage, which has a low electro-magnetic interference (EMI) characteristic and is favorable for miniaturization, is designed. A two-phase charge pump...A power management unit (PMU) chip supplying dual panel supply voltage, which has a low electro-magnetic interference (EMI) characteristic and is favorable for miniaturization, is designed. A two-phase charge pump circuit using external pumping capacitor increases its pumping current and works out the charge-loss problem by using bulk-potential biasing circuit. A low-power start-up circuit is also proposed to reduce the power consumption of the band-gap reference voltage generator. And the ring oscillator used in the ELVSS power circuit is designed with logic devices by supplying the logic power supply to reduce the layout area. The PMU chip is designed with MagnaChip's 0.25 μ high-voltage process. The driving currents of ELVDD and ELVSS are more than 50 mA when a SPICE simulation is done.展开更多
Bilateral electric power contract is settled based on contract output curve. This paper considered the bilateral transactions execution, new energy accommodation, power grid security and generation economy, considerin...Bilateral electric power contract is settled based on contract output curve. This paper considered the bilateral transactions execution, new energy accommodation, power grid security and generation economy, considering the executive priority of different power components to establish a multi-objective coordination unit commitment model. Through an example to verify the effectiveness of the model in promoting wind power consumption, guaranteeing trade execution, and improving power generation efficiency, and analyzed the interactions to each other among the factors of wind power, trading and blocking. According to the results, when wind power causes reverse power flow in the congestion line, it will promote the implementation of contracts, the influence of wind power accommodation to trade execution should be analyzed combined with the grid block, the results can provide reference for wind power planning.展开更多
A hydraulic power unit (HPU) is the driving "heart" of deep-sea working equipment. It is critical to predict its dynamic performances in deep-water before being immerged in the seawater, while the experimental tes...A hydraulic power unit (HPU) is the driving "heart" of deep-sea working equipment. It is critical to predict its dynamic performances in deep-water before being immerged in the seawater, while the experimental tests by simulating deep-sea environment have many disadvantages, such as expensive cost, long test cycles, and difficult to achieve low-temperature simulation, which is only used as a supplementary means for confirmatory experiment. This paper proposes a novel theoretical approach based on the linear varying parameters (LVP) modeling to foresee the dynamic performances of the driving unit. Firstly, based on the varying environment features, dynamic expressions of the compressibility and viscosity of hydranlic oil are derived to reveal the fluid performances changing. Secondly, models of hydraulic system and electrical system are accomplished respectively through studying the control process and energy transfer, and then LVP models of the pressure and flow rate control is obtained through the electro-hydraulic models integration. Thirdly, dynamic characteristics of HPU are obtained by the model simulating within bounded closed sets of varying parameters. Finally, the developed HPU is tested in a deep-sea imitating hull, and the experimental results are well consistent with the theoretical analysis outcomes, which clearly declare that the LVP modeling is a rational way to foresee dynamic performances of HPU. The research approach and model analysis results can be applied to the predictions of working properties and product designs for other deep-sea hydraulic pump.展开更多
基金supported by the State Grid Corporation of China Science and Technology Project,grant number 52270723000900K.
文摘The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,photovoltaic power generation is unstable and random,resulting in a low utilization rate and directly affecting the stability of the power grid.To solve this problem,this paper proposes a coordinated control strategy for a newenergy power generation system with a hybrid energy storage unit based on the lithium iron phosphate-supercapacitor hybrid energy storage unit.Firstly,the variational mode decomposition algorithm is used to separate the high and low frequencies of the power signal,which is conducive to the rapid and accurate suppression of the power fluctuation of the energy storage system.Secondly,the fuzzy control algorithm is introduced to balance the power between energy storage.In this paper,the actual data is used for simulation,and the simulation results show that the strategy realizes the effective suppression of the bus voltage fluctuation and the accurate control of the internal state of the energy storage unit,effectively avoiding problems such as overshoot and over-discharge,and can significantly improve the stability of the photovoltaic power generation systemand the stability of the Direct Current bus.It is of great significance to promote the development of collaborative control technology for photovoltaic hybrid energy storage units.
基金partially supported by Korea Electrotechnology Research Institute(KERI)Primary research program through the National Research Council of Science&Technology(NST)funded by the Ministry of Science and ICT(MSIT)(No.25A01038)partially supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.RS-2024-00218377).
文摘In this paper,a strength-constrained unit commitment(UC)model incorporating system strength constraints based on the weighted short-circuit ratio(WSCR)is proposed.This model facilitates the comprehensive assessment of area-wide system strength in power systems with high inverter-based resource(IBR)penetration,thereby contributing to the mitigation of weak grid issues.Unlike traditional models,this approach considers the interactions among multiple IBRs.The UC problem is initially formulated as a mixed-integer nonlinear programming(MINLP)model,reflecting WSCR and bus impedance matrix modification constraints.To enhance computational tractability,the model is transformed into a mixed-integer linear programming(MILP)form.The effectiveness of the proposed approach is validated through simulations on the IEEE 5-bus,IEEE 39-bus,and a modified Korean power system,demonstrating the ability of the proposed UC model enhancing system strength compared to the conventional methodologies.
基金supported by the Civil Aerospace Technology Research Project,China(No.D010103)the National Natural Science Foundation of China(Nos.52022075 and U1937202)the National Key R&D Program of China(No.2021YFB3900300).
文摘In this paper,a multi-bus distributed Power Conditioning Unit(PCU)is proposed for the Space Solar Power Station with large scale photovoltaic(PV)array and power levels reaching MW level.In this unit,there are multiple independent PV arrays.In each PV array,there are multiple independent PV subarrays.In this paper,a V-P droop control method with adaptive droop coefficient is proposed,which modifies the droop intercept based on the bus voltage deviation and the power per unit value of the PV array.This method ensures the accuracy of bus voltage and achieves proportional distribution of power between PV arrays based on the proposed topology structure in this paper.When the load changes or the output power of the PV array fluctuates,this method can ensure that power is distributed proportionally.The principle and control method of the proposed droop control method is analyzed in this paper.The effectiveness of the method is verified through MATLAB/Simulink simulation and experiment.Simulation and experimental results show that the proposed method can achieve power distributed proportionally when load changes and PV output power fluctuates,reduce bus voltage error caused by line impedance and differences in rated power of different PV arrays,and improve the performance of PV power generation system applied to space.
基金supported by the State Grid Jiangsu Electric Power Co.,Ltd.Technology Project(J2023035).
文摘To mitigate the impact of wind power volatility on power system scheduling,this paper adopts the wind-storage combined unit to improve the dispatchability of wind energy.And a three-level optimal scheduling and power allocation strategy is proposed for the system containing the wind-storage combined unit.The strategy takes smoothing power output as themain objectives.The first level is the wind-storage joint scheduling,and the second and third levels carry out the unit combination optimization of thermal power and the power allocation of wind power cluster(WPC),respectively,according to the scheduling power of WPC and ESS obtained from the first level.This can ensure the stability,economy and environmental friendliness of the whole power system.Based on the roles of peak shaving-valley filling and fluctuation smoothing of the energy storage system(ESS),this paper decides the charging and discharging intervals of ESS,so that the energy storage and wind power output can be further coordinated.Considering the prediction error and the output uncertainty of wind power,the planned scheduling output of wind farms(WFs)is first optimized on a long timescale,and then the rolling correction optimization of the scheduling output of WFs is carried out on a short timescale.Finally,the effectiveness of the proposed optimal scheduling and power allocation strategy is verified through case analysis.
文摘Northern China has rich wind power and photovoltaic renewable resources. Combined Heat and Power (CHP) Units to meet the load demand and limit its peaking capacity in winter, to a certain extent, it results in structural problems of wind-solar power and thermoelectric. To solve these problems, this paper proposes a plurality of units together to ensure supply of heat load on the premise, by building a thermoelectric power peaking considering thermal load unit group dynamic scheduling model, to achieve the potential of different thermoelectric properties peaking units of the excavation. Simulation examples show, if the unit group exists obvious relationship thermoelectric individual differences, the thermal load dynamic scheduling can be more significantly improved overall performance peaking unit group, effectively increase clean energy consumptive.
文摘This paper is concerned with the development of electronic controller for turbine POwer units. In order to increase the reliability of the POwer unit, three control loops working in the hi-backup mode have been employed. This control strategy is able to satisfy the demands of the application of the power unit to the aviation fields.
文摘Considering units starting and network constraints and the concept of optimization period,a optimization model which is a typical multi-constraint knapsack problem is established to solve the selection optimization problem of units starting in power system restoration period in this paper, and the objective of the model is to maximize the total power generation capability. A relative effectiveness assessment based on a improving data envelopment analysis is adopted to select the initial units to be started, genetic algorithms are employed to solve the knapsack problem to determine the most reasonable units be started at the current time. Finally, IEEE-39 bus system simulation result proves that the proposed model is feasible and effective.
文摘China’s electric power industry as a basic industry, plays an important role in the longterm, sustained and healthy development of the whole national economy. China’s electric power industry attained great achievement in technology and economical results during the past eight years from 1987-1995. The total national installed generating capacity increased from 102.897 GW in 1987 to more than 200 GW in March, 1995.
文摘Located at the intersection of the east,west,south and north,Central Asia has attracted the attention of major international actors due to its unique geographical location.On one hand,major powers and actors outside the region such as the European Union(EU)and the Gulf Cooperation Council have strengthened their ties with Central Asian countries,significantly intensifying the power struggles and institutional competition in the region.On the other hand,Central Asian countries have become increasingly active,developing their foreign relations while seeking strategic autonomy and promoting regional cooperation.
文摘The stable operation of thermal power plants is the core condition to ensure the stable power supply. Therefore, the application of unit centralized control technology around the three parts of the electromechanical furnace system layout, system principle, fixed value parameters, operation mode, logic and operation procedures control can improve the power generation stability of thermal power plants. Based on this, this paper first summarizes the concept of centralized control of thermal power plants and generating units, and then focuses on the principles and technical solutions of the application of centralized control technology of generating units.
基金partially supported by the National Natural Science Foundation of China(No.61803121)China Postdoctoral Science Foundation(No.2019M651277).
文摘The reliability of the on-wing aircraft Auxiliary Power Unit(APU)decides the cost and the comfort of flight to a large degree.The most important function of APU is to help start main engines by providing compressed air.Especially on the condition of sudden shutdown in the air,APU can offer additional thrust for landing.Therefore,its condition monitoring has drawn much attention from the academic and industrial field.Among the on-wing sensing data which can reflect its condition,Exhaust Gas Temperature(EGT)is one of the most important parameters.To ensure the reliability of EGT,one kind of data-driven anomaly detection framework for EGT sensing data is proposed based on the Gaussian Process Regression and Kernel Principal Component Analysis.The situations of one-dimensional and two-dimensional input data for EGT anomaly detection are considered,respectively.The cross-validation experiments are carried out by utilizing the real condition data of APU,which are provided by China Southern Airlines Company Limited Shenyang Maintenance Base.The anomalous stuck condition of EGT sensing data is also detected.Experimental results show that the proposed EGT sensing data anomaly detection method can achieve better performance of false positive ratio,false negative ratio and accuracy.
基金Supported by the National Natural Science Foundation of China(60974119)
文摘The control of ultra-supercritical(USC) power unit is a difficult issue for its characteristic of the nonlinearity, large dead time and coupling of the unit. In this paper, model predictive control(MPC) based on multi-model and double layered optimization is introduced for coordinated control of USC unit. The linear programming(LP) combined with quadratic programming(QP) is used in steady optimization for computation of the ideal value of dynamic optimization. Three inputs(i.e. valve opening, coal flow and feedwater flow) are employed to control three outputs(i.e. load, main steam temperature and main steam pressure). The step response models for the dynamic matrix control(DMC) are constructed using the three inputs and the three outputs. Piecewise models are built at selected operation points. Double-layered multi-model predictive controller is implemented in simulation with satisfactory performance.
文摘Galloping of power transmission lines might bring about huge damage such as massive power outage and collapse of the transmission towers. To realize forecast of the galloping and provide data for study on the galloping mechanism, this paper proposes an online monitoring system for tracking galloping profile of power transmission lines based on wireless inertial measurement units (WIMUs). The system is composed of three modules: wireless inertial measurement nodes, monitoring base station, and remote monitoring station. After detailing the hardware system, the corresponding software which positions and displays galloping profile of the transmission line in real-time is outlined. The feasibility of the proposed on-line monitoring system is demonstrated through a series of experiments at the State Grid Key Laboratory of Power Overhead Transmission Line Galloping (Zhengzhou, China) by taking into account different vibration patterns.
文摘A power management unit (PMU) chip supplying dual panel supply voltage, which has a low electro-magnetic interference (EMI) characteristic and is favorable for miniaturization, is designed. A two-phase charge pump circuit using external pumping capacitor increases its pumping current and works out the charge-loss problem by using bulk-potential biasing circuit. A low-power start-up circuit is also proposed to reduce the power consumption of the band-gap reference voltage generator. And the ring oscillator used in the ELVSS power circuit is designed with logic devices by supplying the logic power supply to reduce the layout area. The PMU chip is designed with MagnaChip's 0.25 μ high-voltage process. The driving currents of ELVDD and ELVSS are more than 50 mA when a SPICE simulation is done.
文摘Bilateral electric power contract is settled based on contract output curve. This paper considered the bilateral transactions execution, new energy accommodation, power grid security and generation economy, considering the executive priority of different power components to establish a multi-objective coordination unit commitment model. Through an example to verify the effectiveness of the model in promoting wind power consumption, guaranteeing trade execution, and improving power generation efficiency, and analyzed the interactions to each other among the factors of wind power, trading and blocking. According to the results, when wind power causes reverse power flow in the congestion line, it will promote the implementation of contracts, the influence of wind power accommodation to trade execution should be analyzed combined with the grid block, the results can provide reference for wind power planning.
基金supported by the National High Technology Research and Development Program of China (863 Program,Grant Nos. 2006AA09Z226 and 2012AA091104)the Special Fund for Basic Scientific Research of Central Colleges,Chang’an University (Grant No. CHD2011JC151)
文摘A hydraulic power unit (HPU) is the driving "heart" of deep-sea working equipment. It is critical to predict its dynamic performances in deep-water before being immerged in the seawater, while the experimental tests by simulating deep-sea environment have many disadvantages, such as expensive cost, long test cycles, and difficult to achieve low-temperature simulation, which is only used as a supplementary means for confirmatory experiment. This paper proposes a novel theoretical approach based on the linear varying parameters (LVP) modeling to foresee the dynamic performances of the driving unit. Firstly, based on the varying environment features, dynamic expressions of the compressibility and viscosity of hydranlic oil are derived to reveal the fluid performances changing. Secondly, models of hydraulic system and electrical system are accomplished respectively through studying the control process and energy transfer, and then LVP models of the pressure and flow rate control is obtained through the electro-hydraulic models integration. Thirdly, dynamic characteristics of HPU are obtained by the model simulating within bounded closed sets of varying parameters. Finally, the developed HPU is tested in a deep-sea imitating hull, and the experimental results are well consistent with the theoretical analysis outcomes, which clearly declare that the LVP modeling is a rational way to foresee dynamic performances of HPU. The research approach and model analysis results can be applied to the predictions of working properties and product designs for other deep-sea hydraulic pump.