针对观测器估计精度偏低及高速列车系统的强耦合、受外界扰动、参数时变等问题,提出一种基于补偿函数观测器的分数阶非奇异快速终端滑模控制算法(Compensating Function Observer-Fractional Order Non-singular Fast Terminal Sliding ...针对观测器估计精度偏低及高速列车系统的强耦合、受外界扰动、参数时变等问题,提出一种基于补偿函数观测器的分数阶非奇异快速终端滑模控制算法(Compensating Function Observer-Fractional Order Non-singular Fast Terminal Sliding Mode Control,CFO-FONFTSMC),以提高高速列车速度控制的鲁棒性和控制精度.首先,建立高速列车纵向多质点动力学模型,设计高精度的补偿函数观测器对系统的总扰动进行实时估计并补偿;然后,设计一种带状态负指数控制律的分数阶非奇异快速终端滑模控制算法,用于对列车的运行曲线进行跟踪控制,并通过李雅普诺夫稳定性理论证明系统在有限时间内的收敛性;最后,以CRH3型高速列车参数和合肥站-蚌埠南站的实际线路为实例,分别跟踪理想运行曲线和节能优化运行曲线进行实验验证.仿真结果表明:所提算法跟踪理想运行速度曲线的平均误差为0.01377 km/h,跟踪带干扰的节能优化运行速度曲线的平均误差为0.0364 km/h,相较于基于扩张状态观测器的滑模和非奇异快速终端滑模控制方法,所提方法具有最小的跟踪误差和更高的跟踪精度,验证了其有效性和可行性,可为列车速度跟踪控制领域的研究提供参考.展开更多
针对电池电气特性与热特性之间复杂的耦合关系、温度对电池功率性能的影响以及荷电状态(state of charge,SOC)、温度状态(stateoftemperature,SOT)与峰值功率状态(state of power,SOP)之间的复杂关联等问题,该文提出一种考虑电热耦合特...针对电池电气特性与热特性之间复杂的耦合关系、温度对电池功率性能的影响以及荷电状态(state of charge,SOC)、温度状态(stateoftemperature,SOT)与峰值功率状态(state of power,SOP)之间的复杂关联等问题,该文提出一种考虑电热耦合特性的电池模组多状态协同估计方法。首先,分析电池电气特性与热特性之间的耦合关系,将分数阶等效电路模型与集总参数双态热模型结合,构建电池模组电热耦合模型。其次,针对电热耦合关系需要准确的SOC与SOT来维持的问题,采用自适应扩展卡尔曼算法(adaptive extended Kalman filter,AEKF)实现电池模组SOC与SOT估计。最后,分析不同状态之间的关联特性,将电池的SOC、SOT引入到多约束条件下的峰值SOP估计中,实现电池模组多状态协同估计,提高电池状态估计的准确性。仿真结果表明,所提方法在SOC初始误差为20%情况下,能够快速收敛至真实值,且均方根误差在0.52%以内,核心温度与表面温度估计误差分别在0.36和0.31℃以内。在40℃时,核心温度约束起作用,峰值功率估计结果显著降低,为动力电池的实时安全监控提供了有力保障。展开更多
Functional networks(FNs)hold significant promise in understanding brain function.Independent component analysis(ICA)has been applied in estimating FNs from functional magnetic resonance imaging(fMRI).However,determini...Functional networks(FNs)hold significant promise in understanding brain function.Independent component analysis(ICA)has been applied in estimating FNs from functional magnetic resonance imaging(fMRI).However,determining an optimal model order for ICA remains challenging,leading to criticism about the reliability of FN estimation.Here,we propose a SMART(splitting-merging assisted reliable)ICA method that automatically extracts reliable FNs by clustering independent components(ICs)obtained from multi-model-order ICA using a simplified graph while providing linkages among FNs deduced from different-model orders.We extend SMART ICA to multi-subject fMRI analysis,validating its effectiveness using simulated and real fMRI data.Based on simulated data,the method accurately estimates both group-common and group-unique components and demonstrates robustness to parameters.Using two age-matched cohorts of resting fMRI data comprising 1,950 healthy subjects,the resulting reliable group-level FNs are greatly similar between the two cohorts,and interestingly the subject-specific FNs show progressive changes while age increases.Furthermore,both small-scale and large-scale brain FN templates are provided as benchmarks for future studies.Taken together,SMART ICA can automatically obtain reliable FNs in analyzing multi-subject fMRI data,while also providing linkages between different FNs.展开更多
分布式资源(distributed energy resources,DERs)的随机元素会引起多虚拟电厂(multi-virtual power plant,MVPP)系统内虚拟电厂(virtual power plant,VPP)策略频繁变化。对于某主体,如何感知其他主体策略突然变化时对自身收益的影响趋势...分布式资源(distributed energy resources,DERs)的随机元素会引起多虚拟电厂(multi-virtual power plant,MVPP)系统内虚拟电厂(virtual power plant,VPP)策略频繁变化。对于某主体,如何感知其他主体策略突然变化时对自身收益的影响趋势,并快速调整自身策略,是亟需解决的难点。该文提出基于二阶随机动力学的多虚拟电厂自趋优能量管理策略,旨在提升VPP应对其他主体策略变化时的自治能力。首先,针对DERs异质运行特性,聚焦可调空间构建VPP聚合运行模型;然后,基于随机图描绘VPP策略变化的随机特性;其次,用二阶随机动力学方程(stochastic dynamic equation,SDE)探索VPP收益结构的自发演化信息,修正其他主体策略变化时自身综合收益;再次,将修正收益作为融合软动作-评价(integrated soft actor–critic,ISAC)强化学习算法的奖励搭建多智能体求解框架。最后,设计多算法对比实验,验证了该文策略的自趋优性能。展开更多
文摘针对观测器估计精度偏低及高速列车系统的强耦合、受外界扰动、参数时变等问题,提出一种基于补偿函数观测器的分数阶非奇异快速终端滑模控制算法(Compensating Function Observer-Fractional Order Non-singular Fast Terminal Sliding Mode Control,CFO-FONFTSMC),以提高高速列车速度控制的鲁棒性和控制精度.首先,建立高速列车纵向多质点动力学模型,设计高精度的补偿函数观测器对系统的总扰动进行实时估计并补偿;然后,设计一种带状态负指数控制律的分数阶非奇异快速终端滑模控制算法,用于对列车的运行曲线进行跟踪控制,并通过李雅普诺夫稳定性理论证明系统在有限时间内的收敛性;最后,以CRH3型高速列车参数和合肥站-蚌埠南站的实际线路为实例,分别跟踪理想运行曲线和节能优化运行曲线进行实验验证.仿真结果表明:所提算法跟踪理想运行速度曲线的平均误差为0.01377 km/h,跟踪带干扰的节能优化运行速度曲线的平均误差为0.0364 km/h,相较于基于扩张状态观测器的滑模和非奇异快速终端滑模控制方法,所提方法具有最小的跟踪误差和更高的跟踪精度,验证了其有效性和可行性,可为列车速度跟踪控制领域的研究提供参考.
文摘针对电池电气特性与热特性之间复杂的耦合关系、温度对电池功率性能的影响以及荷电状态(state of charge,SOC)、温度状态(stateoftemperature,SOT)与峰值功率状态(state of power,SOP)之间的复杂关联等问题,该文提出一种考虑电热耦合特性的电池模组多状态协同估计方法。首先,分析电池电气特性与热特性之间的耦合关系,将分数阶等效电路模型与集总参数双态热模型结合,构建电池模组电热耦合模型。其次,针对电热耦合关系需要准确的SOC与SOT来维持的问题,采用自适应扩展卡尔曼算法(adaptive extended Kalman filter,AEKF)实现电池模组SOC与SOT估计。最后,分析不同状态之间的关联特性,将电池的SOC、SOT引入到多约束条件下的峰值SOP估计中,实现电池模组多状态协同估计,提高电池状态估计的准确性。仿真结果表明,所提方法在SOC初始误差为20%情况下,能够快速收敛至真实值,且均方根误差在0.52%以内,核心温度与表面温度估计误差分别在0.36和0.31℃以内。在40℃时,核心温度约束起作用,峰值功率估计结果显著降低,为动力电池的实时安全监控提供了有力保障。
基金supported by the National Natural Science Foundation of China(62076157 and 61703253)the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province(20210033)the National Institutes of Health(R01MH123610 and R01EB006841).
文摘Functional networks(FNs)hold significant promise in understanding brain function.Independent component analysis(ICA)has been applied in estimating FNs from functional magnetic resonance imaging(fMRI).However,determining an optimal model order for ICA remains challenging,leading to criticism about the reliability of FN estimation.Here,we propose a SMART(splitting-merging assisted reliable)ICA method that automatically extracts reliable FNs by clustering independent components(ICs)obtained from multi-model-order ICA using a simplified graph while providing linkages among FNs deduced from different-model orders.We extend SMART ICA to multi-subject fMRI analysis,validating its effectiveness using simulated and real fMRI data.Based on simulated data,the method accurately estimates both group-common and group-unique components and demonstrates robustness to parameters.Using two age-matched cohorts of resting fMRI data comprising 1,950 healthy subjects,the resulting reliable group-level FNs are greatly similar between the two cohorts,and interestingly the subject-specific FNs show progressive changes while age increases.Furthermore,both small-scale and large-scale brain FN templates are provided as benchmarks for future studies.Taken together,SMART ICA can automatically obtain reliable FNs in analyzing multi-subject fMRI data,while also providing linkages between different FNs.
文摘分布式资源(distributed energy resources,DERs)的随机元素会引起多虚拟电厂(multi-virtual power plant,MVPP)系统内虚拟电厂(virtual power plant,VPP)策略频繁变化。对于某主体,如何感知其他主体策略突然变化时对自身收益的影响趋势,并快速调整自身策略,是亟需解决的难点。该文提出基于二阶随机动力学的多虚拟电厂自趋优能量管理策略,旨在提升VPP应对其他主体策略变化时的自治能力。首先,针对DERs异质运行特性,聚焦可调空间构建VPP聚合运行模型;然后,基于随机图描绘VPP策略变化的随机特性;其次,用二阶随机动力学方程(stochastic dynamic equation,SDE)探索VPP收益结构的自发演化信息,修正其他主体策略变化时自身综合收益;再次,将修正收益作为融合软动作-评价(integrated soft actor–critic,ISAC)强化学习算法的奖励搭建多智能体求解框架。最后,设计多算法对比实验,验证了该文策略的自趋优性能。