Carbon dots(CDs)-based composites have shown impressive performance in fields of information encryption and sensing,however,a great challenge is to simultaneously implement multi-mode luminescence and room-temperature...Carbon dots(CDs)-based composites have shown impressive performance in fields of information encryption and sensing,however,a great challenge is to simultaneously implement multi-mode luminescence and room-temperature phosphorescence(RTP)detection in single system due to the formidable synthesis.Herein,a multifunctional composite of Eu&CDs@p RHO has been designed by co-assembly strategy and prepared via a facile calcination and impregnation treatment.Eu&CDs@p RHO exhibits intense fluorescence(FL)and RTP coming from two individual luminous centers,Eu3+in the free pores and CDs in the interrupted structure of RHO zeolite.Unique four-mode color outputs including pink(Eu^(3+),ex.254 nm),light violet(CDs,ex.365 nm),blue(CDs,254 nm off),and green(CDs,365 nm off)could be realized,on the basis of it,a preliminary application of advanced information encoding has been demonstrated.Given the free pores of matrix and stable RTP in water of confined CDs,a visual RTP detection of Fe^(3+)ions is achieved with the detection limit as low as 9.8μmol/L.This work has opened up a new perspective for the strategic amalgamation of luminous vips with porous zeolite to construct the advanced functional materials.展开更多
As the number and complexity of sensors in autonomous vehicles continue to rise,multimodal fusionbased object detection algorithms are increasingly being used to detect 3D environmental information,significantly advan...As the number and complexity of sensors in autonomous vehicles continue to rise,multimodal fusionbased object detection algorithms are increasingly being used to detect 3D environmental information,significantly advancing the development of perception technology in autonomous driving.To further promote the development of fusion algorithms and improve detection performance,this paper discusses the advantages and recent advancements of multimodal fusion-based object detection algorithms.Starting fromsingle-modal sensor detection,the paper provides a detailed overview of typical sensors used in autonomous driving and introduces object detection methods based on images and point clouds.For image-based detection methods,they are categorized into monocular detection and binocular detection based on different input types.For point cloud-based detection methods,they are classified into projection-based,voxel-based,point cluster-based,pillar-based,and graph structure-based approaches based on the technical pathways for processing point cloud features.Additionally,multimodal fusion algorithms are divided into Camera-LiDAR fusion,Camera-Radar fusion,Camera-LiDAR-Radar fusion,and other sensor fusion methods based on the types of sensors involved.Furthermore,the paper identifies five key future research directions in this field,aiming to provide insights for researchers engaged in multimodal fusion-based object detection algorithms and to encourage broader attention to the research and application of multimodal fusion-based object detection.展开更多
Prostate cancer(PCa)is characterized by high incidence and propensity for easy metastasis,presenting significant challenges in clinical diagnosis and treatment.Tumor microenvironment(TME)-responsive nanomaterials prov...Prostate cancer(PCa)is characterized by high incidence and propensity for easy metastasis,presenting significant challenges in clinical diagnosis and treatment.Tumor microenvironment(TME)-responsive nanomaterials provide a promising prospect for imaging-guided precision therapy.Considering that tumor-derived alkaline phosphatase(ALP)is over-expressed in metastatic PCa,it makes a great chance to develop a theranostics system with ALP responsive in the TME.Herein,an ALP-responsive aggregationinduced emission luminogens(AIEgens)nanoprobe AMNF self-assembly was designed for enhancing the diagnosis and treatment of metastatic PCa.The nanoprobe exhibited self-aggregation in the presence of ALP resulted in aggregation-induced fluorescence,and enhanced accumulation and prolonged retention period at the tumor site.In terms of detection,the fluorescence(FL)/computed tomography(CT)/magnetic resonance(MR)multi-mode imaging effect of nanoprobe was significantly improved post-aggregation,enabling precise diagnosis through the amalgamation of multiple imaging modes.Enhanced CT/MR imaging can achieve assist preoperative tumor diagnosis,and enhanced FL imaging technology can achieve“intraoperative visual navigation”,showing its potential application value in clinical tumor detection and surgical guidance.In terms of treatment,AMNF showed strong absorption in the near infrared region after aggregation,which improved the photothermal treatment effect.Overall,our work developed an effective aggregation-enhanced theranostic strategy for ALP-related cancers.展开更多
Low-carbon smart parks achieve selfbalanced carbon emission and absorption through the cooperative scheduling of direct current(DC)-based distributed photovoltaic,energy storage units,and loads.Direct current power li...Low-carbon smart parks achieve selfbalanced carbon emission and absorption through the cooperative scheduling of direct current(DC)-based distributed photovoltaic,energy storage units,and loads.Direct current power line communication(DC-PLC)enables real-time data transmission on DC power lines.With traffic adaptation,DC-PLC can be integrated with other complementary media such as 5G to reduce transmission delay and improve reliability.However,traffic adaptation for DC-PLC and 5G integration still faces the challenges such as coupling between traffic admission control and traffic partition,dimensionality curse,and the ignorance of extreme event occurrence.To address these challenges,we propose a deep reinforcement learning(DRL)-based delay sensitive and reliable traffic adaptation algorithm(DSRTA)to minimize the total queuing delay under the constraints of traffic admission control,queuing delay,and extreme events occurrence probability.DSRTA jointly optimizes traffic admission control and traffic partition,and enables learning-based intelligent traffic adaptation.The long-term constraints are incorporated into both state and bound of drift-pluspenalty to achieve delay awareness and enforce reliability guarantee.Simulation results show that DSRTA has lower queuing delay and more reliable quality of service(QoS)guarantee than other state-of-the-art algorithms.展开更多
With the rapid development of economy,air pollution caused by industrial expansion has caused serious harm to human health and social development.Therefore,establishing an effective air pollution concentration predict...With the rapid development of economy,air pollution caused by industrial expansion has caused serious harm to human health and social development.Therefore,establishing an effective air pollution concentration prediction system is of great scientific and practical significance for accurate and reliable predictions.This paper proposes a combination of pointinterval prediction system for pollutant concentration prediction by leveraging neural network,meta-heuristic optimization algorithm,and fuzzy theory.Fuzzy information granulation technology is used in data preprocessing to transform numerical sequences into fuzzy particles for comprehensive feature extraction.The golden Jackal optimization algorithm is employed in the optimization stage to fine-tune model hyperparameters.In the prediction stage,an ensemble learning method combines training results frommultiplemodels to obtain final point predictions while also utilizing quantile regression and kernel density estimation methods for interval predictions on the test set.Experimental results demonstrate that the combined model achieves a high goodness of fit coefficient of determination(R^(2))at 99.3% and a maximum difference between prediction accuracy mean absolute percentage error(MAPE)and benchmark model at 12.6%.This suggests that the integrated learning system proposed in this paper can provide more accurate deterministic predictions as well as reliable uncertainty analysis compared to traditionalmodels,offering practical reference for air quality early warning.展开更多
The all-wheel drive(AWD)hybrid system is a research focus on high-performance new energy vehicles that can meet the demands of dynamic performance and passing ability.Simultaneous optimization of the power and economy...The all-wheel drive(AWD)hybrid system is a research focus on high-performance new energy vehicles that can meet the demands of dynamic performance and passing ability.Simultaneous optimization of the power and economy of hybrid vehicles becomes an issue.A unique multi-mode coupling(MMC)AWD hybrid system is presented to realize the distributed and centralized driving of the front and rear axles to achieve vectored distribution and full utilization of the system power between the axles of vehicles.Based on the parameters of the benchmarking model of a hybrid vehicle,the best model-predictive control-based energy management strategy is proposed.First,the drive system model was built after the analysis of the MMC-AWD’s drive modes.Next,three fundamental strategies were established to address power distribution adjustment and battery SOC maintenance when the SOC changed,which was followed by the design of a road driving force observer.Then,the energy consumption rate in the average time domain was processed before designing the minimum fuel consumption controller based on the equivalent fuel consumption coefficient.Finally,the advantage of the MMC-AWD was confirmed by comparison with the dynamic performance and economy of the BYD Song PLUS DMI-AWD.The findings indicate that,in comparison to the comparative hybrid system at road adhesion coefficients of 0.8 and 0.6,the MMC-AWD’s capacity to accelerate increases by 5.26%and 7.92%,respectively.When the road adhesion coefficient is 0.8,0.6,and 0.4,the maximum climbing ability increases by 14.22%,12.88%,and 4.55%,respectively.As a result,the dynamic performance is greatly enhanced,and the fuel savings rate per 100 km of mileage reaches 12.06%,which is also very economical.The proposed control strategies for the new hybrid AWD vehicle can optimize the power and economy simultaneously.展开更多
A memetic algorithm (MA) for a multi-mode resourceconstrained project scheduling problem (MRCPSP) is proposed. We use a new fitness function and two very effective local search procedures in the proposed MA. The f...A memetic algorithm (MA) for a multi-mode resourceconstrained project scheduling problem (MRCPSP) is proposed. We use a new fitness function and two very effective local search procedures in the proposed MA. The fitness function makes use of a mechanism called "strategic oscillation" to make the search process have a higher probability to visit solutions around a "feasible boundary". One of the local search procedures aims at improving the lower bound of project makespan to be less than a known upper bound, and another aims at improving a solution of an MRCPSP instance accepting infeasible solutions based on the new fitness function in the search process. A detailed computational experiment is set up using instances from the problem instance library PSPLIB. Computational results show that the proposed MA is very competitive with the state-of-the-art algorithms. The MA obtains improved solutions for one instance of set J30.展开更多
This work evaluates the viability of a cutting-edge flexible wing prototype actuated by Shape Memory Alloy(SMA)wire actuators.Such flexible wings have garnered significant interest for their potential to enhance aerod...This work evaluates the viability of a cutting-edge flexible wing prototype actuated by Shape Memory Alloy(SMA)wire actuators.Such flexible wings have garnered significant interest for their potential to enhance aerodynamic efficiency by mitigating noise and delaying flow separation.SMA actuators are particularly advantageous due to their superior power-to-weight ratio and adaptive response,making them increasingly favored in morphing aircraft applications.Our methodology begins with a detailed delineation of the fishbone camber morphing wing rib structure,followed by the construction of a multi-mode morphing wing segment through 3D-printed rib assembly.Comprehensive testing of the SMA wire actuators’actuation capacity and efficiency was conducted to establish their operational parameters.Subsequent experimental analyses focused on the bi-directional and reciprocating morphing performance of the fishbone wing rib,which incorporates SMA wires on the upper and lower sides.These experiments confirmed the segment’s multi-mode morphing abilities.Aerodynamic assessments have demonstrated that our design substantially improves the Lift-to-Drag ratio(L/D)when compared to conventional rigid wings.Finally,two phases of flight tests demonstrated the feasibility of SMA as an aircraft actuator and the validity of flexible wing structures to adjust the aircraft attitude,respectively.展开更多
In recent years,how to efficiently and accurately identify multi-model fake news has become more challenging.First,multi-model data provides more evidence but not all are equally important.Secondly,social structure in...In recent years,how to efficiently and accurately identify multi-model fake news has become more challenging.First,multi-model data provides more evidence but not all are equally important.Secondly,social structure information has proven to be effective in fake news detection and how to combine it while reducing the noise information is critical.Unfortunately,existing approaches fail to handle these problems.This paper proposes a multi-model fake news detection framework based on Tex-modal Dominance and fusing Multiple Multi-model Cues(TD-MMC),which utilizes three valuable multi-model clues:text-model importance,text-image complementary,and text-image inconsistency.TD-MMC is dominated by textural content and assisted by image information while using social network information to enhance text representation.To reduce the irrelevant social structure’s information interference,we use a unidirectional cross-modal attention mechanism to selectively learn the social structure’s features.A cross-modal attention mechanism is adopted to obtain text-image cross-modal features while retaining textual features to reduce the loss of important information.In addition,TD-MMC employs a new multi-model loss to improve the model’s generalization ability.Extensive experiments have been conducted on two public real-world English and Chinese datasets,and the results show that our proposed model outperforms the state-of-the-art methods on classification evaluation metrics.展开更多
Lanthanum-doped double halide perovskite has attracted increasing interest due to its distinctive upconversion and near-infrared(NIR) luminous characteristics.Here,erbium ion(Er^(3+)) doped Cs_(2)(Na/Ag)BiCl_(6) micro...Lanthanum-doped double halide perovskite has attracted increasing interest due to its distinctive upconversion and near-infrared(NIR) luminous characteristics.Here,erbium ion(Er^(3+)) doped Cs_(2)(Na/Ag)BiCl_(6) microcrystals(MCs) were synthesized and proved to be one of the most prospective candidates for optical thermometry.The enhancement of both white light from self-trapped exciton emission and NIR emission from Er^(3+) ion of Cs_(2)AgBiCl_(6) microcrystals is caused by lattice distortion due to Na^(+) ion doping.Fluorescence intensity ratio and lifetime methods provide self-referenced and sensitive thermometry under 405 and/or 980 nm laser excitation at the temperatures from 80 to 480 K.Besides,the maximum values of relative and absolute sensitivity of 3.62%/K and 27//K can be achieved in the low to high temperature range under 980 and 405 nm laser co-excitation.Through the experimental analysis,Er^(3+)doped Cs_(2)(Na/Ag)BiCl_(6) double perovskite is considered to be an ideal self-calibrating thermometric material due to its good long-term stability and multi-mode function of excitation and detection.展开更多
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr...Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%.展开更多
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently...Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.展开更多
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th...Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy.展开更多
Objective To develop a non-invasive predictive model for coronary artery stenosis severity based on adaptive multi-modal integration of traditional Chinese and western medicine data.Methods Clinical indicators,echocar...Objective To develop a non-invasive predictive model for coronary artery stenosis severity based on adaptive multi-modal integration of traditional Chinese and western medicine data.Methods Clinical indicators,echocardiographic data,traditional Chinese medicine(TCM)tongue manifestations,and facial features were collected from patients who underwent coro-nary computed tomography angiography(CTA)in the Cardiac Care Unit(CCU)of Shanghai Tenth People's Hospital between May 1,2023 and May 1,2024.An adaptive weighted multi-modal data fusion(AWMDF)model based on deep learning was constructed to predict the severity of coronary artery stenosis.The model was evaluated using metrics including accura-cy,precision,recall,F1 score,and the area under the receiver operating characteristic(ROC)curve(AUC).Further performance assessment was conducted through comparisons with six ensemble machine learning methods,data ablation,model component ablation,and various decision-level fusion strategies.Results A total of 158 patients were included in the study.The AWMDF model achieved ex-cellent predictive performance(AUC=0.973,accuracy=0.937,precision=0.937,recall=0.929,and F1 score=0.933).Compared with model ablation,data ablation experiments,and various traditional machine learning models,the AWMDF model demonstrated superior per-formance.Moreover,the adaptive weighting strategy outperformed alternative approaches,including simple weighting,averaging,voting,and fixed-weight schemes.Conclusion The AWMDF model demonstrates potential clinical value in the non-invasive prediction of coronary artery disease and could serve as a tool for clinical decision support.展开更多
In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms...In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set.展开更多
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t...In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching.展开更多
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol...Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score.展开更多
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so...Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design.展开更多
To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The...To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks.展开更多
In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base...In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm.展开更多
基金supported by the National Natural Science Foundation of China(No.22288101)the 111 Project(No.B17020)。
文摘Carbon dots(CDs)-based composites have shown impressive performance in fields of information encryption and sensing,however,a great challenge is to simultaneously implement multi-mode luminescence and room-temperature phosphorescence(RTP)detection in single system due to the formidable synthesis.Herein,a multifunctional composite of Eu&CDs@p RHO has been designed by co-assembly strategy and prepared via a facile calcination and impregnation treatment.Eu&CDs@p RHO exhibits intense fluorescence(FL)and RTP coming from two individual luminous centers,Eu3+in the free pores and CDs in the interrupted structure of RHO zeolite.Unique four-mode color outputs including pink(Eu^(3+),ex.254 nm),light violet(CDs,ex.365 nm),blue(CDs,254 nm off),and green(CDs,365 nm off)could be realized,on the basis of it,a preliminary application of advanced information encoding has been demonstrated.Given the free pores of matrix and stable RTP in water of confined CDs,a visual RTP detection of Fe^(3+)ions is achieved with the detection limit as low as 9.8μmol/L.This work has opened up a new perspective for the strategic amalgamation of luminous vips with porous zeolite to construct the advanced functional materials.
基金funded by the Yangtze River Delta Science and Technology Innovation Community Joint Research Project(2023CSJGG1600)the Natural Science Foundation of Anhui Province(2208085MF173)Wuhu“ChiZhu Light”Major Science and Technology Project(2023ZD01,2023ZD03).
文摘As the number and complexity of sensors in autonomous vehicles continue to rise,multimodal fusionbased object detection algorithms are increasingly being used to detect 3D environmental information,significantly advancing the development of perception technology in autonomous driving.To further promote the development of fusion algorithms and improve detection performance,this paper discusses the advantages and recent advancements of multimodal fusion-based object detection algorithms.Starting fromsingle-modal sensor detection,the paper provides a detailed overview of typical sensors used in autonomous driving and introduces object detection methods based on images and point clouds.For image-based detection methods,they are categorized into monocular detection and binocular detection based on different input types.For point cloud-based detection methods,they are classified into projection-based,voxel-based,point cluster-based,pillar-based,and graph structure-based approaches based on the technical pathways for processing point cloud features.Additionally,multimodal fusion algorithms are divided into Camera-LiDAR fusion,Camera-Radar fusion,Camera-LiDAR-Radar fusion,and other sensor fusion methods based on the types of sensors involved.Furthermore,the paper identifies five key future research directions in this field,aiming to provide insights for researchers engaged in multimodal fusion-based object detection algorithms and to encourage broader attention to the research and application of multimodal fusion-based object detection.
基金supported by Natural Science Foundation of Jilin Province(No.SKL202302002)Key Research and Development project of Jilin Provincial Science and Technology Department(No.20210204142YY)+2 种基金The Science and Technology Development Program of Jilin Province(No.2020122256JC)Beijing Kechuang Medical Development Foundation Fund of China(No.KC2023-JX-0186BQ079)Talent Reserve Program(TRP),the First Hospital of Jilin University(No.JDYY-TRP-2024007)。
文摘Prostate cancer(PCa)is characterized by high incidence and propensity for easy metastasis,presenting significant challenges in clinical diagnosis and treatment.Tumor microenvironment(TME)-responsive nanomaterials provide a promising prospect for imaging-guided precision therapy.Considering that tumor-derived alkaline phosphatase(ALP)is over-expressed in metastatic PCa,it makes a great chance to develop a theranostics system with ALP responsive in the TME.Herein,an ALP-responsive aggregationinduced emission luminogens(AIEgens)nanoprobe AMNF self-assembly was designed for enhancing the diagnosis and treatment of metastatic PCa.The nanoprobe exhibited self-aggregation in the presence of ALP resulted in aggregation-induced fluorescence,and enhanced accumulation and prolonged retention period at the tumor site.In terms of detection,the fluorescence(FL)/computed tomography(CT)/magnetic resonance(MR)multi-mode imaging effect of nanoprobe was significantly improved post-aggregation,enabling precise diagnosis through the amalgamation of multiple imaging modes.Enhanced CT/MR imaging can achieve assist preoperative tumor diagnosis,and enhanced FL imaging technology can achieve“intraoperative visual navigation”,showing its potential application value in clinical tumor detection and surgical guidance.In terms of treatment,AMNF showed strong absorption in the near infrared region after aggregation,which improved the photothermal treatment effect.Overall,our work developed an effective aggregation-enhanced theranostic strategy for ALP-related cancers.
基金supported by the Science and Technology Project of State Grid Corporation of China under grant 52094021N010(5400-202199534A-0-5-ZN)。
文摘Low-carbon smart parks achieve selfbalanced carbon emission and absorption through the cooperative scheduling of direct current(DC)-based distributed photovoltaic,energy storage units,and loads.Direct current power line communication(DC-PLC)enables real-time data transmission on DC power lines.With traffic adaptation,DC-PLC can be integrated with other complementary media such as 5G to reduce transmission delay and improve reliability.However,traffic adaptation for DC-PLC and 5G integration still faces the challenges such as coupling between traffic admission control and traffic partition,dimensionality curse,and the ignorance of extreme event occurrence.To address these challenges,we propose a deep reinforcement learning(DRL)-based delay sensitive and reliable traffic adaptation algorithm(DSRTA)to minimize the total queuing delay under the constraints of traffic admission control,queuing delay,and extreme events occurrence probability.DSRTA jointly optimizes traffic admission control and traffic partition,and enables learning-based intelligent traffic adaptation.The long-term constraints are incorporated into both state and bound of drift-pluspenalty to achieve delay awareness and enforce reliability guarantee.Simulation results show that DSRTA has lower queuing delay and more reliable quality of service(QoS)guarantee than other state-of-the-art algorithms.
基金supported by General Scientific Research Funding of the Science and Technology Development Fund(FDCT)in Macao(No.0150/2022/A)the Faculty Research Grants of Macao University of Science and Technology(No.FRG-22-074-FIE).
文摘With the rapid development of economy,air pollution caused by industrial expansion has caused serious harm to human health and social development.Therefore,establishing an effective air pollution concentration prediction system is of great scientific and practical significance for accurate and reliable predictions.This paper proposes a combination of pointinterval prediction system for pollutant concentration prediction by leveraging neural network,meta-heuristic optimization algorithm,and fuzzy theory.Fuzzy information granulation technology is used in data preprocessing to transform numerical sequences into fuzzy particles for comprehensive feature extraction.The golden Jackal optimization algorithm is employed in the optimization stage to fine-tune model hyperparameters.In the prediction stage,an ensemble learning method combines training results frommultiplemodels to obtain final point predictions while also utilizing quantile regression and kernel density estimation methods for interval predictions on the test set.Experimental results demonstrate that the combined model achieves a high goodness of fit coefficient of determination(R^(2))at 99.3% and a maximum difference between prediction accuracy mean absolute percentage error(MAPE)and benchmark model at 12.6%.This suggests that the integrated learning system proposed in this paper can provide more accurate deterministic predictions as well as reliable uncertainty analysis compared to traditionalmodels,offering practical reference for air quality early warning.
基金Supported by Hebei Provincial Natural Science Foundation of China(Grant Nos.E2020203174,E2020203078)S&T Program of Hebei Province of China(Grant No.226Z2202G)Science Research Project of Hebei Provincial Education Department of China(Grant No.ZD2022029).
文摘The all-wheel drive(AWD)hybrid system is a research focus on high-performance new energy vehicles that can meet the demands of dynamic performance and passing ability.Simultaneous optimization of the power and economy of hybrid vehicles becomes an issue.A unique multi-mode coupling(MMC)AWD hybrid system is presented to realize the distributed and centralized driving of the front and rear axles to achieve vectored distribution and full utilization of the system power between the axles of vehicles.Based on the parameters of the benchmarking model of a hybrid vehicle,the best model-predictive control-based energy management strategy is proposed.First,the drive system model was built after the analysis of the MMC-AWD’s drive modes.Next,three fundamental strategies were established to address power distribution adjustment and battery SOC maintenance when the SOC changed,which was followed by the design of a road driving force observer.Then,the energy consumption rate in the average time domain was processed before designing the minimum fuel consumption controller based on the equivalent fuel consumption coefficient.Finally,the advantage of the MMC-AWD was confirmed by comparison with the dynamic performance and economy of the BYD Song PLUS DMI-AWD.The findings indicate that,in comparison to the comparative hybrid system at road adhesion coefficients of 0.8 and 0.6,the MMC-AWD’s capacity to accelerate increases by 5.26%and 7.92%,respectively.When the road adhesion coefficient is 0.8,0.6,and 0.4,the maximum climbing ability increases by 14.22%,12.88%,and 4.55%,respectively.As a result,the dynamic performance is greatly enhanced,and the fuel savings rate per 100 km of mileage reaches 12.06%,which is also very economical.The proposed control strategies for the new hybrid AWD vehicle can optimize the power and economy simultaneously.
基金supported by the National Natural Science Foundation of China(71171038)
文摘A memetic algorithm (MA) for a multi-mode resourceconstrained project scheduling problem (MRCPSP) is proposed. We use a new fitness function and two very effective local search procedures in the proposed MA. The fitness function makes use of a mechanism called "strategic oscillation" to make the search process have a higher probability to visit solutions around a "feasible boundary". One of the local search procedures aims at improving the lower bound of project makespan to be less than a known upper bound, and another aims at improving a solution of an MRCPSP instance accepting infeasible solutions based on the new fitness function in the search process. A detailed computational experiment is set up using instances from the problem instance library PSPLIB. Computational results show that the proposed MA is very competitive with the state-of-the-art algorithms. The MA obtains improved solutions for one instance of set J30.
基金co-supported by the National Key R&D Program of China(No.2022YFB3402200)the National Natural Science Foundation of China(Nos.12372123,12272305 and 12372156)+2 种基金the Key Project of NSFC,China(Nos.92271205,12032018 and 12220101002)the Fundamental Research Funds for the Central Universities of China(No.G2022KY0606)the Basic Research Program of China(No.JCKY2022603C016).
文摘This work evaluates the viability of a cutting-edge flexible wing prototype actuated by Shape Memory Alloy(SMA)wire actuators.Such flexible wings have garnered significant interest for their potential to enhance aerodynamic efficiency by mitigating noise and delaying flow separation.SMA actuators are particularly advantageous due to their superior power-to-weight ratio and adaptive response,making them increasingly favored in morphing aircraft applications.Our methodology begins with a detailed delineation of the fishbone camber morphing wing rib structure,followed by the construction of a multi-mode morphing wing segment through 3D-printed rib assembly.Comprehensive testing of the SMA wire actuators’actuation capacity and efficiency was conducted to establish their operational parameters.Subsequent experimental analyses focused on the bi-directional and reciprocating morphing performance of the fishbone wing rib,which incorporates SMA wires on the upper and lower sides.These experiments confirmed the segment’s multi-mode morphing abilities.Aerodynamic assessments have demonstrated that our design substantially improves the Lift-to-Drag ratio(L/D)when compared to conventional rigid wings.Finally,two phases of flight tests demonstrated the feasibility of SMA as an aircraft actuator and the validity of flexible wing structures to adjust the aircraft attitude,respectively.
基金This research was funded by the General Project of Philosophy and Social Science of Heilongjiang Province,Grant Number:20SHB080.
文摘In recent years,how to efficiently and accurately identify multi-model fake news has become more challenging.First,multi-model data provides more evidence but not all are equally important.Secondly,social structure information has proven to be effective in fake news detection and how to combine it while reducing the noise information is critical.Unfortunately,existing approaches fail to handle these problems.This paper proposes a multi-model fake news detection framework based on Tex-modal Dominance and fusing Multiple Multi-model Cues(TD-MMC),which utilizes three valuable multi-model clues:text-model importance,text-image complementary,and text-image inconsistency.TD-MMC is dominated by textural content and assisted by image information while using social network information to enhance text representation.To reduce the irrelevant social structure’s information interference,we use a unidirectional cross-modal attention mechanism to selectively learn the social structure’s features.A cross-modal attention mechanism is adopted to obtain text-image cross-modal features while retaining textual features to reduce the loss of important information.In addition,TD-MMC employs a new multi-model loss to improve the model’s generalization ability.Extensive experiments have been conducted on two public real-world English and Chinese datasets,and the results show that our proposed model outperforms the state-of-the-art methods on classification evaluation metrics.
基金Project supported by the Heilongjiang Provincial Key Laboratory of Micro-nano Sensitive Devices and SystemsBasic Research Project for Outstanding Young Teachers of Heilongjiang Province (YQJH2023128)Cultivation Project of Double First-class Initiative Discipline by Heilongjiang Province(LJGXCG2022-061)。
文摘Lanthanum-doped double halide perovskite has attracted increasing interest due to its distinctive upconversion and near-infrared(NIR) luminous characteristics.Here,erbium ion(Er^(3+)) doped Cs_(2)(Na/Ag)BiCl_(6) microcrystals(MCs) were synthesized and proved to be one of the most prospective candidates for optical thermometry.The enhancement of both white light from self-trapped exciton emission and NIR emission from Er^(3+) ion of Cs_(2)AgBiCl_(6) microcrystals is caused by lattice distortion due to Na^(+) ion doping.Fluorescence intensity ratio and lifetime methods provide self-referenced and sensitive thermometry under 405 and/or 980 nm laser excitation at the temperatures from 80 to 480 K.Besides,the maximum values of relative and absolute sensitivity of 3.62%/K and 27//K can be achieved in the low to high temperature range under 980 and 405 nm laser co-excitation.Through the experimental analysis,Er^(3+)doped Cs_(2)(Na/Ag)BiCl_(6) double perovskite is considered to be an ideal self-calibrating thermometric material due to its good long-term stability and multi-mode function of excitation and detection.
基金supported by the National Natural Science Foundation of China(NSFC)under Grant(No.51677058).
文摘Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%.
基金National Natural Science Foundation of China(11971211,12171388).
文摘Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.
基金supported by Yunnan Provincial Basic Research Project(202401AT070344,202301AT070443)National Natural Science Foundation of China(62263014,52207105)+1 种基金Yunnan Lancang-Mekong International Electric Power Technology Joint Laboratory(202203AP140001)Major Science and Technology Projects in Yunnan Province(202402AG050006).
文摘Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy.
基金Construction Program of the Key Discipline of State Administration of Traditional Chinese Medicine of China(ZYYZDXK-2023069)Research Project of Shanghai Municipal Health Commission (2024QN018)Shanghai University of Traditional Chinese Medicine Science and Technology Development Program (23KFL005)。
文摘Objective To develop a non-invasive predictive model for coronary artery stenosis severity based on adaptive multi-modal integration of traditional Chinese and western medicine data.Methods Clinical indicators,echocardiographic data,traditional Chinese medicine(TCM)tongue manifestations,and facial features were collected from patients who underwent coro-nary computed tomography angiography(CTA)in the Cardiac Care Unit(CCU)of Shanghai Tenth People's Hospital between May 1,2023 and May 1,2024.An adaptive weighted multi-modal data fusion(AWMDF)model based on deep learning was constructed to predict the severity of coronary artery stenosis.The model was evaluated using metrics including accura-cy,precision,recall,F1 score,and the area under the receiver operating characteristic(ROC)curve(AUC).Further performance assessment was conducted through comparisons with six ensemble machine learning methods,data ablation,model component ablation,and various decision-level fusion strategies.Results A total of 158 patients were included in the study.The AWMDF model achieved ex-cellent predictive performance(AUC=0.973,accuracy=0.937,precision=0.937,recall=0.929,and F1 score=0.933).Compared with model ablation,data ablation experiments,and various traditional machine learning models,the AWMDF model demonstrated superior per-formance.Moreover,the adaptive weighting strategy outperformed alternative approaches,including simple weighting,averaging,voting,and fixed-weight schemes.Conclusion The AWMDF model demonstrates potential clinical value in the non-invasive prediction of coronary artery disease and could serve as a tool for clinical decision support.
基金supported by the National Natural Science Foundation of China(No.62373027).
文摘In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set.
基金Supported by the Natural Science Foundation of Chongqing(General Program,NO.CSTB2022NSCQ-MSX0884)Discipline Teaching Special Project of Yangtze Normal University(csxkjx14)。
文摘In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching.
基金supported by Science and Technology Innovation Programfor Postgraduate Students in IDP Subsidized by Fundamental Research Funds for the Central Universities(Project No.ZY20240335)support of the Research Project of the Key Technology of Malicious Code Detection Based on Data Mining in APT Attack(Project No.2022IT173)the Research Project of the Big Data Sensitive Information Supervision Technology Based on Convolutional Neural Network(Project No.2022011033).
文摘Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score.
文摘Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design.
文摘To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks.
基金Shanxi Province Higher Education Science and Technology Innovation Fund Project(2022-676)Shanxi Soft Science Program Research Fund Project(2016041008-6)。
文摘In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm.