期刊文献+
共找到406篇文章
< 1 2 21 >
每页显示 20 50 100
Joint Feature Encoding and Task Alignment Mechanism for Emotion-Cause Pair Extraction
1
作者 Shi Li Didi Sun 《Computers, Materials & Continua》 SCIE EI 2025年第1期1069-1086,共18页
With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions... With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions and their triggers within a text,facilitating a deeper understanding of expressed sentiments and their underlying reasons.This comprehension is crucial for making informed strategic decisions in various business and societal contexts.However,recent research approaches employing multi-task learning frameworks for modeling often face challenges such as the inability to simultaneouslymodel extracted features and their interactions,or inconsistencies in label prediction between emotion-cause pair extraction and independent assistant tasks like emotion and cause extraction.To address these issues,this study proposes an emotion-cause pair extraction methodology that incorporates joint feature encoding and task alignment mechanisms.The model consists of two primary components:First,joint feature encoding simultaneously generates features for emotion-cause pairs and clauses,enhancing feature interactions between emotion clauses,cause clauses,and emotion-cause pairs.Second,the task alignment technique is applied to reduce the labeling distance between emotion-cause pair extraction and the two assistant tasks,capturing deep semantic information interactions among tasks.The proposed method is evaluated on a Chinese benchmark corpus using 10-fold cross-validation,assessing key performance metrics such as precision,recall,and F1 score.Experimental results demonstrate that the model achieves an F1 score of 76.05%,surpassing the state-of-the-art by 1.03%.The proposed model exhibits significant improvements in emotion-cause pair extraction(ECPE)and cause extraction(CE)compared to existing methods,validating its effectiveness.This research introduces a novel approach based on joint feature encoding and task alignment mechanisms,contributing to advancements in emotion-cause pair extraction.However,the study’s limitation lies in the data sources,potentially restricting the generalizability of the findings. 展开更多
关键词 Emotion-cause pair extraction interactive information enhancement joint feature encoding label consistency task alignment mechanisms
在线阅读 下载PDF
Multi-Modal Pre-Synergistic Fusion Entity Alignment Based on Mutual Information Strategy Optimization
2
作者 Huayu Li Xinxin Chen +3 位作者 Lizhuang Tan Konstantin I.Kostromitin Athanasios V.Vasilakos Peiying Zhang 《Computers, Materials & Continua》 2025年第11期4133-4153,共21页
To address the challenge of missing modal information in entity alignment and to mitigate information loss or bias arising frommodal heterogeneity during fusion,while also capturing shared information acrossmodalities... To address the challenge of missing modal information in entity alignment and to mitigate information loss or bias arising frommodal heterogeneity during fusion,while also capturing shared information acrossmodalities,this paper proposes a Multi-modal Pre-synergistic Entity Alignmentmodel based on Cross-modalMutual Information Strategy Optimization(MPSEA).The model first employs independent encoders to process multi-modal features,including text,images,and numerical values.Next,a multi-modal pre-synergistic fusion mechanism integrates graph structural and visual modal features into the textual modality as preparatory information.This pre-fusion strategy enables unified perception of heterogeneous modalities at the model’s initial stage,reducing discrepancies during the fusion process.Finally,using cross-modal deep perception reinforcement learning,the model achieves adaptive multilevel feature fusion between modalities,supporting learningmore effective alignment strategies.Extensive experiments on multiple public datasets show that the MPSEA method achieves gains of up to 7% in Hits@1 and 8.2% in MRR on the FBDB15K dataset,and up to 9.1% in Hits@1 and 7.7% in MRR on the FBYG15K dataset,compared to existing state-of-the-art methods.These results confirm the effectiveness of the proposed model. 展开更多
关键词 Knowledge graph multi-modal entity alignment feature fusion pre-synergistic fusion
在线阅读 下载PDF
Self-FAGCFN:Graph-Convolution Fusion Network Based on Feature Fusion and Self-Supervised Feature Alignment for Pneumonia and Tuberculosis Diagnosis
3
作者 Junding Sun Wenhao Tang +5 位作者 Lei Zhao Chaosheng Tang Xiaosheng Wu Zhaozhao Xu Bin Pu Yudong Zhang 《Journal of Bionic Engineering》 2025年第4期2012-2029,共18页
Feature fusion is an important technique in medical image classification that can improve diagnostic accuracy by integrating complementary information from multiple sources.Recently,Deep Learning(DL)has been widely us... Feature fusion is an important technique in medical image classification that can improve diagnostic accuracy by integrating complementary information from multiple sources.Recently,Deep Learning(DL)has been widely used in pulmonary disease diagnosis,such as pneumonia and tuberculosis.However,traditional feature fusion methods often suffer from feature disparity,information loss,redundancy,and increased complexity,hindering the further extension of DL algorithms.To solve this problem,we propose a Graph-Convolution Fusion Network with Self-Supervised Feature Alignment(Self-FAGCFN)to address the limitations of traditional feature fusion methods in deep learning-based medical image classification for respiratory diseases such as pneumonia and tuberculosis.The network integrates Convolutional Neural Networks(CNNs)for robust feature extraction from two-dimensional grid structures and Graph Convolutional Networks(GCNs)within a Graph Neural Network branch to capture features based on graph structure,focusing on significant node representations.Additionally,an Attention-Embedding Ensemble Block is included to capture critical features from GCN outputs.To ensure effective feature alignment between pre-and post-fusion stages,we introduce a feature alignment loss that minimizes disparities.Moreover,to address the limitations of proposed methods,such as inappropriate centroid discrepancies during feature alignment and class imbalance in the dataset,we develop a Feature-Centroid Fusion(FCF)strategy and a Multi-Level Feature-Centroid Update(MLFCU)algorithm,respectively.Extensive experiments on public datasets LungVision and Chest-Xray demonstrate that the Self-FAGCFN model significantly outperforms existing methods in diagnosing pneumonia and tuberculosis,highlighting its potential for practical medical applications. 展开更多
关键词 feature fusion Self-supervised feature alignment Convolutional neural networks Graph convolutional networks Class imbalance feature-centroid fusion
在线阅读 下载PDF
Tomato Growth Height Prediction Method by Phenotypic Feature Extraction Using Multi-modal Data
4
作者 GONG Yu WANG Ling +3 位作者 ZHAO Rongqiang YOU Haibo ZHOU Mo LIU Jie 《智慧农业(中英文)》 2025年第1期97-110,共14页
[Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-base... [Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-based models that utilize either images data or environmental data.These methods fail to fully leverage multi-modal data to capture the diverse aspects of plant growth comprehensively.[Methods]To address this limitation,a two-stage phenotypic feature extraction(PFE)model based on deep learning algorithm of recurrent neural network(RNN)and long short-term memory(LSTM)was developed.The model integrated environment and plant information to provide a holistic understanding of the growth process,emploied phenotypic and temporal feature extractors to comprehensively capture both types of features,enabled a deeper understanding of the interaction between tomato plants and their environment,ultimately leading to highly accurate predictions of growth height.[Results and Discussions]The experimental results showed the model's ef‐fectiveness:When predicting the next two days based on the past five days,the PFE-based RNN and LSTM models achieved mean absolute percentage error(MAPE)of 0.81%and 0.40%,respectively,which were significantly lower than the 8.00%MAPE of the large language model(LLM)and 6.72%MAPE of the Transformer-based model.In longer-term predictions,the 10-day prediction for 4 days ahead and the 30-day prediction for 12 days ahead,the PFE-RNN model continued to outperform the other two baseline models,with MAPE of 2.66%and 14.05%,respectively.[Conclusions]The proposed method,which leverages phenotypic-temporal collaboration,shows great potential for intelligent,data-driven management of tomato cultivation,making it a promising approach for enhancing the efficiency and precision of smart tomato planting management. 展开更多
关键词 tomato growth prediction deep learning phenotypic feature extraction multi-modal data recurrent neural net‐work long short-term memory large language model
在线阅读 下载PDF
Multi-modal face parts fusion based on Gabor feature for face recognition 被引量:1
5
作者 相燕 《High Technology Letters》 EI CAS 2009年第1期70-74,共5页
A novel face recognition method, which is a fusion of muhi-modal face parts based on Gabor feature (MMP-GF), is proposed in this paper. Firstly, the bare face image detached from the normalized image was convolved w... A novel face recognition method, which is a fusion of muhi-modal face parts based on Gabor feature (MMP-GF), is proposed in this paper. Firstly, the bare face image detached from the normalized image was convolved with a family of Gabor kernels, and then according to the face structure and the key-points locations, the calculated Gabor images were divided into five parts: Gabor face, Gabor eyebrow, Gabor eye, Gabor nose and Gabor mouth. After that multi-modal Gabor features were spatially partitioned into non-overlapping regions and the averages of regions were concatenated to be a low dimension feature vector, whose dimension was further reduced by principal component analysis (PCA). In the decision level fusion, match results respectively calculated based on the five parts were combined according to linear discriminant analysis (LDA) and a normalized matching algorithm was used to improve the performance. Experiments on FERET database show that the proposed MMP-GF method achieves good robustness to the expression and age variations. 展开更多
关键词 Gabor filter multi-modal Gabor features principal component analysis (PCA) linear discriminant analysis (IDA) normalized matching algorithm
在线阅读 下载PDF
Unsupervised multi-modal image translation based on the squeeze-and-excitation mechanism and feature attention module 被引量:1
6
作者 胡振涛 HU Chonghao +1 位作者 YANG Haoran SHUAI Weiwei 《High Technology Letters》 EI CAS 2024年第1期23-30,共8页
The unsupervised multi-modal image translation is an emerging domain of computer vision whose goal is to transform an image from the source domain into many diverse styles in the target domain.However,the multi-genera... The unsupervised multi-modal image translation is an emerging domain of computer vision whose goal is to transform an image from the source domain into many diverse styles in the target domain.However,the multi-generator mechanism is employed among the advanced approaches available to model different domain mappings,which results in inefficient training of neural networks and pattern collapse,leading to inefficient generation of image diversity.To address this issue,this paper introduces a multi-modal unsupervised image translation framework that uses a generator to perform multi-modal image translation.Specifically,firstly,the domain code is introduced in this paper to explicitly control the different generation tasks.Secondly,this paper brings in the squeeze-and-excitation(SE)mechanism and feature attention(FA)module.Finally,the model integrates multiple optimization objectives to ensure efficient multi-modal translation.This paper performs qualitative and quantitative experiments on multiple non-paired benchmark image translation datasets while demonstrating the benefits of the proposed method over existing technologies.Overall,experimental results have shown that the proposed method is versatile and scalable. 展开更多
关键词 multi-modal image translation generative adversarial network(GAN) squeezeand-excitation(SE)mechanism feature attention(FA)module
在线阅读 下载PDF
Hierarchical Optimization Method for Federated Learning with Feature Alignment and Decision Fusion
7
作者 Ke Li Xiaofeng Wang Hu Wang 《Computers, Materials & Continua》 SCIE EI 2024年第10期1391-1407,共17页
In the realm of data privacy protection,federated learning aims to collaboratively train a global model.However,heterogeneous data between clients presents challenges,often resulting in slow convergence and inadequate... In the realm of data privacy protection,federated learning aims to collaboratively train a global model.However,heterogeneous data between clients presents challenges,often resulting in slow convergence and inadequate accuracy of the global model.Utilizing shared feature representations alongside customized classifiers for individual clients emerges as a promising personalized solution.Nonetheless,previous research has frequently neglected the integration of global knowledge into local representation learning and the synergy between global and local classifiers,thereby limiting model performance.To tackle these issues,this study proposes a hierarchical optimization method for federated learning with feature alignment and the fusion of classification decisions(FedFCD).FedFCD regularizes the relationship between global and local feature representations to achieve alignment and incorporates decision information from the global classifier,facilitating the late fusion of decision outputs from both global and local classifiers.Additionally,FedFCD employs a hierarchical optimization strategy to flexibly optimize model parameters.Through experiments on the Fashion-MNIST,CIFAR-10 and CIFAR-100 datasets,we demonstrate the effectiveness and superiority of FedFCD.For instance,on the CIFAR-100 dataset,FedFCD exhibited a significant improvement in average test accuracy by 6.83%compared to four outstanding personalized federated learning approaches.Furthermore,extended experiments confirm the robustness of FedFCD across various hyperparameter values. 展开更多
关键词 Federated learning data heterogeneity feature alignment decision fusion hierarchical optimization
在线阅读 下载PDF
Robust Symmetry Prediction with Multi-Modal Feature Fusion for Partial Shapes
8
作者 Junhua Xi Kouquan Zheng +3 位作者 Yifan Zhong Longjiang Li Zhiping Cai Jinjing Chen 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3099-3111,共13页
In geometry processing,symmetry research benefits from global geo-metric features of complete shapes,but the shape of an object captured in real-world applications is often incomplete due to the limited sensor resoluti... In geometry processing,symmetry research benefits from global geo-metric features of complete shapes,but the shape of an object captured in real-world applications is often incomplete due to the limited sensor resolution,single viewpoint,and occlusion.Different from the existing works predicting symmetry from the complete shape,we propose a learning approach for symmetry predic-tion based on a single RGB-D image.Instead of directly predicting the symmetry from incomplete shapes,our method consists of two modules,i.e.,the multi-mod-al feature fusion module and the detection-by-reconstruction module.Firstly,we build a channel-transformer network(CTN)to extract cross-fusion features from the RGB-D as the multi-modal feature fusion module,which helps us aggregate features from the color and the depth separately.Then,our self-reconstruction net-work based on a 3D variational auto-encoder(3D-VAE)takes the global geo-metric features as input,followed by a prediction symmetry network to detect the symmetry.Our experiments are conducted on three public datasets:ShapeNet,YCB,and ScanNet,we demonstrate that our method can produce reliable and accurate results. 展开更多
关键词 Symmetry prediction multi-modal feature fusion partial shapes
在线阅读 下载PDF
Adaptive multi-modal feature fusion for far and hard object detection
9
作者 LI Yang GE Hongwei 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第2期232-241,共10页
In order to solve difficult detection of far and hard objects due to the sparseness and insufficient semantic information of LiDAR point cloud,a 3D object detection network with multi-modal data adaptive fusion is pro... In order to solve difficult detection of far and hard objects due to the sparseness and insufficient semantic information of LiDAR point cloud,a 3D object detection network with multi-modal data adaptive fusion is proposed,which makes use of multi-neighborhood information of voxel and image information.Firstly,design an improved ResNet that maintains the structure information of far and hard objects in low-resolution feature maps,which is more suitable for detection task.Meanwhile,semantema of each image feature map is enhanced by semantic information from all subsequent feature maps.Secondly,extract multi-neighborhood context information with different receptive field sizes to make up for the defect of sparseness of point cloud which improves the ability of voxel features to represent the spatial structure and semantic information of objects.Finally,propose a multi-modal feature adaptive fusion strategy which uses learnable weights to express the contribution of different modal features to the detection task,and voxel attention further enhances the fused feature expression of effective target objects.The experimental results on the KITTI benchmark show that this method outperforms VoxelNet with remarkable margins,i.e.increasing the AP by 8.78%and 5.49%on medium and hard difficulty levels.Meanwhile,our method achieves greater detection performance compared with many mainstream multi-modal methods,i.e.outperforming the AP by 1%compared with that of MVX-Net on medium and hard difficulty levels. 展开更多
关键词 3D object detection adaptive fusion multi-modal data fusion attention mechanism multi-neighborhood features
在线阅读 下载PDF
Feature pyramid attention network for audio-visual scene classification 被引量:1
10
作者 Liguang Zhou Yuhongze Zhou +3 位作者 Xiaonan Qi Junjie Hu Tin Lun Lam Yangsheng Xu 《CAAI Transactions on Intelligence Technology》 2025年第2期359-374,共16页
Audio-visual scene classification(AVSC)poses a formidable challenge owing to the intricate spatial-temporal relationships exhibited by audio-visual signals,coupled with the complex spatial patterns of objects and text... Audio-visual scene classification(AVSC)poses a formidable challenge owing to the intricate spatial-temporal relationships exhibited by audio-visual signals,coupled with the complex spatial patterns of objects and textures found in visual images.The focus of recent studies has predominantly revolved around extracting features from diverse neural network structures,inadvertently neglecting the acquisition of semantically meaningful regions and crucial components within audio-visual data.The authors present a feature pyramid attention network(FPANet)for audio-visual scene understanding,which extracts semantically significant characteristics from audio-visual data.The authors’approach builds multi-scale hierarchical features of sound spectrograms and visual images using a feature pyramid representation and localises the semantically relevant regions with a feature pyramid attention module(FPAM).A dimension alignment(DA)strategy is employed to align feature maps from multiple layers,a pyramid spatial attention(PSA)to spatially locate essential regions,and a pyramid channel attention(PCA)to pinpoint significant temporal frames.Experiments on visual scene classification(VSC),audio scene classification(ASC),and AVSC tasks demonstrate that FPANet achieves performance on par with state-of-the-art(SOTA)approaches,with a 95.9 F1-score on the ADVANCE dataset and a relative improvement of 28.8%.Visualisation results show that FPANet can prioritise semantically meaningful areas in audio-visual signals. 展开更多
关键词 dimension alignment feature pyramid attention network pyramid channel attention pyramid spatial attention semantic relevant regions
在线阅读 下载PDF
MMGC-Net: Deep neural network for classification of mineral grains using multi-modal polarization images
11
作者 Jun Shu Xiaohai He +3 位作者 Qizhi Teng Pengcheng Yan Haibo He Honggang Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3894-3909,共16页
The multi-modal characteristics of mineral particles play a pivotal role in enhancing the classification accuracy,which is critical for obtaining a profound understanding of the Earth's composition and ensuring ef... The multi-modal characteristics of mineral particles play a pivotal role in enhancing the classification accuracy,which is critical for obtaining a profound understanding of the Earth's composition and ensuring effective exploitation utilization of its resources.However,the existing methods for classifying mineral particles do not fully utilize these multi-modal features,thereby limiting the classification accuracy.Furthermore,when conventional multi-modal image classification methods are applied to planepolarized and cross-polarized sequence images of mineral particles,they encounter issues such as information loss,misaligned features,and challenges in spatiotemporal feature extraction.To address these challenges,we propose a multi-modal mineral particle polarization image classification network(MMGC-Net)for precise mineral particle classification.Initially,MMGC-Net employs a two-dimensional(2D)backbone network with shared parameters to extract features from two types of polarized images to ensure feature alignment.Subsequently,a cross-polarized intra-modal feature fusion module is designed to refine the spatiotemporal features from the extracted features of the cross-polarized sequence images.Ultimately,the inter-modal feature fusion module integrates the two types of modal features to enhance the classification precision.Quantitative and qualitative experimental results indicate that when compared with the current state-of-the-art multi-modal image classification methods,MMGC-Net demonstrates marked superiority in terms of mineral particle multi-modal feature learning and four classification evaluation metrics.It also demonstrates better stability than the existing models. 展开更多
关键词 Mineral particles multi-modal image classification Shared parameters feature fusion Spatiotemporal feature
暂未订购
A Dual Stream Multimodal Alignment and Fusion Network for Classifying Short Videos
12
作者 ZHOU Ming WANG Tong 《Journal of Donghua University(English Edition)》 2025年第1期88-95,共8页
Video classification is an important task in video understanding and plays a pivotal role in intelligent monitoring of information content.Most existing methods do not consider the multimodal nature of the video,and t... Video classification is an important task in video understanding and plays a pivotal role in intelligent monitoring of information content.Most existing methods do not consider the multimodal nature of the video,and the modality fusion approach tends to be too simple,often neglecting modality alignment before fusion.This research introduces a novel dual stream multimodal alignment and fusion network named DMAFNet for classifying short videos.The network uses two unimodal encoder modules to extract features within modalities and exploits a multimodal encoder module to learn interaction between modalities.To solve the modality alignment problem,contrastive learning is introduced between two unimodal encoder modules.Additionally,masked language modeling(MLM)and video text matching(VTM)auxiliary tasks are introduced to improve the interaction between video frames and text modalities through backpropagation of loss functions.Diverse experiments prove the efficiency of DMAFNet in multimodal video classification tasks.Compared with other two mainstream baselines,DMAFNet achieves the best results on the 2022 WeChat Big Data Challenge dataset. 展开更多
关键词 video classification multimodal fusion feature alignment
在线阅读 下载PDF
Tri-M2MT:Multi-modalities based effective acute bilirubin encephalopathy diagnosis through multi-transformer using neonatal Magnetic Resonance Imaging
13
作者 Kumar Perumal Rakesh Kumar Mahendran +1 位作者 Arfat Ahmad Khan Seifedine Kadry 《CAAI Transactions on Intelligence Technology》 2025年第2期434-449,共16页
Acute Bilirubin Encephalopathy(ABE)is a significant threat to neonates and it leads to disability and high mortality rates.Detecting and treating ABE promptly is important to prevent further complications and long-ter... Acute Bilirubin Encephalopathy(ABE)is a significant threat to neonates and it leads to disability and high mortality rates.Detecting and treating ABE promptly is important to prevent further complications and long-term issues.Recent studies have explored ABE diagnosis.However,they often face limitations in classification due to reliance on a single modality of Magnetic Resonance Imaging(MRI).To tackle this problem,the authors propose a Tri-M2MT model for precise ABE detection by using tri-modality MRI scans.The scans include T1-weighted imaging(T1WI),T2-weighted imaging(T2WI),and apparent diffusion coefficient maps to get indepth information.Initially,the tri-modality MRI scans are collected and preprocessesed by using an Advanced Gaussian Filter for noise reduction and Z-score normalisation for data standardisation.An Advanced Capsule Network was utilised to extract relevant features by using Snake Optimization Algorithm to select optimal features based on feature correlation with the aim of minimising complexity and enhancing detection accuracy.Furthermore,a multi-transformer approach was used for feature fusion and identify feature correlations effectively.Finally,accurate ABE diagnosis is achieved through the utilisation of a SoftMax layer.The performance of the proposed Tri-M2MT model is evaluated across various metrics,including accuracy,specificity,sensitivity,F1-score,and ROC curve analysis,and the proposed methodology provides better performance compared to existing methodologies. 展开更多
关键词 Acute Bilirubin Encephalopathy(ABE)Diagnosis feature extraction MRI multi-modalITY multi-transformer NEONATAL
在线阅读 下载PDF
Advanced Feature Selection Techniques in Medical Imaging--A Systematic Literature Review
14
作者 Sunawar Khan Tehseen Mazhar +5 位作者 Naila Sammar Naz Fahed Ahmed Tariq Shahzad Atif Ali Muhammad Adnan Khan Habib Hamam 《Computers, Materials & Continua》 2025年第11期2347-2401,共55页
Feature selection(FS)plays a crucial role in medical imaging by reducing dimensionality,improving computational efficiency,and enhancing diagnostic accuracy.Traditional FS techniques,including filter,wrapper,and embed... Feature selection(FS)plays a crucial role in medical imaging by reducing dimensionality,improving computational efficiency,and enhancing diagnostic accuracy.Traditional FS techniques,including filter,wrapper,and embedded methods,have been widely used but often struggle with high-dimensional and heterogeneous medical imaging data.Deep learning-based FS methods,particularly Convolutional Neural Networks(CNNs)and autoencoders,have demonstrated superior performance but lack interpretability.Hybrid approaches that combine classical and deep learning techniques have emerged as a promising solution,offering improved accuracy and explainability.Furthermore,integratingmulti-modal imaging data(e.g.,MagneticResonance Imaging(MRI),ComputedTomography(CT),Positron Emission Tomography(PET),and Ultrasound(US))poses additional challenges in FS,necessitating advanced feature fusion strategies.Multi-modal feature fusion combines information fromdifferent imagingmodalities to improve diagnostic accuracy.Recently,quantum computing has gained attention as a revolutionary approach for FS,providing the potential to handle high-dimensional medical data more efficiently.This systematic literature review comprehensively examines classical,Deep Learning(DL),hybrid,and quantum-based FS techniques inmedical imaging.Key outcomes include a structured taxonomy of FS methods,a critical evaluation of their performance across modalities,and identification of core challenges such as computational burden,interpretability,and ethical considerations.Future research directions—such as explainable AI(XAI),federated learning,and quantum-enhanced FS—are also emphasized to bridge the current gaps.This review provides actionable insights for developing scalable,interpretable,and clinically applicable FS methods in the evolving landscape of medical imaging. 展开更多
关键词 feature selection medical imaging deep learning hybrid approaches multi-modal imaging quantum computing explainable AI computational efficiency dimensionality reduction
在线阅读 下载PDF
A Comprehensive Survey on Deep Learning Multi-Modal Fusion:Methods,Technologies and Applications 被引量:6
15
作者 Tianzhe Jiao Chaopeng Guo +2 位作者 Xiaoyue Feng Yuming Chen Jie Song 《Computers, Materials & Continua》 SCIE EI 2024年第7期1-35,共35页
Multi-modal fusion technology gradually become a fundamental task in many fields,such as autonomous driving,smart healthcare,sentiment analysis,and human-computer interaction.It is rapidly becoming the dominant resear... Multi-modal fusion technology gradually become a fundamental task in many fields,such as autonomous driving,smart healthcare,sentiment analysis,and human-computer interaction.It is rapidly becoming the dominant research due to its powerful perception and judgment capabilities.Under complex scenes,multi-modal fusion technology utilizes the complementary characteristics of multiple data streams to fuse different data types and achieve more accurate predictions.However,achieving outstanding performance is challenging because of equipment performance limitations,missing information,and data noise.This paper comprehensively reviews existing methods based onmulti-modal fusion techniques and completes a detailed and in-depth analysis.According to the data fusion stage,multi-modal fusion has four primary methods:early fusion,deep fusion,late fusion,and hybrid fusion.The paper surveys the three majormulti-modal fusion technologies that can significantly enhance the effect of data fusion and further explore the applications of multi-modal fusion technology in various fields.Finally,it discusses the challenges and explores potential research opportunities.Multi-modal tasks still need intensive study because of data heterogeneity and quality.Preserving complementary information and eliminating redundant information between modalities is critical in multi-modal technology.Invalid data fusion methods may introduce extra noise and lead to worse results.This paper provides a comprehensive and detailed summary in response to these challenges. 展开更多
关键词 multi-modal fusion REPRESENTATION TRANSLATION alignment deep learning comparative analysis
在线阅读 下载PDF
Feature Extraction of Kernel Regress Reconstruction for Fault Diagnosis Based on Self-organizing Manifold Learning 被引量:3
16
作者 CHEN Xiaoguang LIANG Lin +1 位作者 XU Guanghua LIU Dan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第5期1041-1049,共9页
The feature space extracted from vibration signals with various faults is often nonlinear and of high dimension.Currently,nonlinear dimensionality reduction methods are available for extracting low-dimensional embeddi... The feature space extracted from vibration signals with various faults is often nonlinear and of high dimension.Currently,nonlinear dimensionality reduction methods are available for extracting low-dimensional embeddings,such as manifold learning.However,these methods are all based on manual intervention,which have some shortages in stability,and suppressing the disturbance noise.To extract features automatically,a manifold learning method with self-organization mapping is introduced for the first time.Under the non-uniform sample distribution reconstructed by the phase space,the expectation maximization(EM) iteration algorithm is used to divide the local neighborhoods adaptively without manual intervention.After that,the local tangent space alignment(LTSA) algorithm is adopted to compress the high-dimensional phase space into a more truthful low-dimensional representation.Finally,the signal is reconstructed by the kernel regression.Several typical states include the Lorenz system,engine fault with piston pin defect,and bearing fault with outer-race defect are analyzed.Compared with the LTSA and continuous wavelet transform,the results show that the background noise can be fully restrained and the entire periodic repetition of impact components is well separated and identified.A new way to automatically and precisely extract the impulsive components from mechanical signals is proposed. 展开更多
关键词 feature extraction manifold learning self-organize mapping kernel regression local tangent space alignment
在线阅读 下载PDF
Class conditional distribution alignment for domain adaptation 被引量:2
17
作者 Kai CAO Zhipeng TU Yang MING 《Control Theory and Technology》 EI CSCD 2020年第1期72-80,共9页
In this paper,we study the problem of domain adaptation,which is a crucial ingredient in transfer learning with two domains,that is,the source domain with labeled data and the target domain with none or few labels.Dom... In this paper,we study the problem of domain adaptation,which is a crucial ingredient in transfer learning with two domains,that is,the source domain with labeled data and the target domain with none or few labels.Domain adaptation aims to extract knowledge from the source domain to improve the performance of the learning task in the target domain.A popular approach to handle this problem is via adversarial training,which is explained by the H△H-distance theory.However,traditional adversarial network architectures just align the marginal feature distribution in the feature space.The alignment of class condition distribution is not guaranteed.Therefore,we proposed a novel method based on pseudo labels and the cluster assumption to avoid the incorrect class alignment in the feature space.The experiments demonstrate that our framework improves the accuracy on typical transfer learning tasks. 展开更多
关键词 DOMAIN ADAPTATION distribution alignment feature CLUSTER
原文传递
Multi-modality hierarchical fusion network for lumbar spine segmentation with magnetic resonance images 被引量:1
18
作者 Han Yan Guangtao Zhang +1 位作者 Wei Cui Zhuliang Yu 《Control Theory and Technology》 EI CSCD 2024年第4期612-622,共11页
For the analysis of spinal and disc diseases,automated tissue segmentation of the lumbar spine is vital.Due to the continuous and concentrated location of the target,the abundance of edge features,and individual diffe... For the analysis of spinal and disc diseases,automated tissue segmentation of the lumbar spine is vital.Due to the continuous and concentrated location of the target,the abundance of edge features,and individual differences,conventional automatic segmentation methods perform poorly.Since the success of deep learning in the segmentation of medical images has been shown in the past few years,it has been applied to this task in a number of ways.The multi-scale and multi-modal features of lumbar tissues,however,are rarely explored by methodologies of deep learning.Because of the inadequacies in medical images availability,it is crucial to effectively fuse various modes of data collection for model training to alleviate the problem of insufficient samples.In this paper,we propose a novel multi-modality hierarchical fusion network(MHFN)for improving lumbar spine segmentation by learning robust feature representations from multi-modality magnetic resonance images.An adaptive group fusion module(AGFM)is introduced in this paper to fuse features from various modes to extract cross-modality features that could be valuable.Furthermore,to combine features from low to high levels of cross-modality,we design a hierarchical fusion structure based on AGFM.Compared to the other feature fusion methods,AGFM is more effective based on experimental results on multi-modality MR images of the lumbar spine.To further enhance segmentation accuracy,we compare our network with baseline fusion structures.Compared to the baseline fusion structures(input-level:76.27%,layer-level:78.10%,decision-level:79.14%),our network was able to segment fractured vertebrae more accurately(85.05%). 展开更多
关键词 Lumbar spine segmentation Deep learning multi-modality fusion feature fusion
原文传递
A Power Data Anomaly Detection Model Based on Deep Learning with Adaptive Feature Fusion
19
作者 Xiu Liu Liang Gu +3 位作者 Xin Gong Long An Xurui Gao Juying Wu 《Computers, Materials & Continua》 SCIE EI 2024年第6期4045-4061,共17页
With the popularisation of intelligent power,power devices have different shapes,numbers and specifications.This means that the power data has distributional variability,the model learning process cannot achieve suffi... With the popularisation of intelligent power,power devices have different shapes,numbers and specifications.This means that the power data has distributional variability,the model learning process cannot achieve sufficient extraction of data features,which seriously affects the accuracy and performance of anomaly detection.Therefore,this paper proposes a deep learning-based anomaly detection model for power data,which integrates a data alignment enhancement technique based on random sampling and an adaptive feature fusion method leveraging dimension reduction.Aiming at the distribution variability of power data,this paper developed a sliding window-based data adjustment method for this model,which solves the problem of high-dimensional feature noise and low-dimensional missing data.To address the problem of insufficient feature fusion,an adaptive feature fusion method based on feature dimension reduction and dictionary learning is proposed to improve the anomaly data detection accuracy of the model.In order to verify the effectiveness of the proposed method,we conducted effectiveness comparisons through elimination experiments.The experimental results show that compared with the traditional anomaly detection methods,the method proposed in this paper not only has an advantage in model accuracy,but also reduces the amount of parameter calculation of the model in the process of feature matching and improves the detection speed. 展开更多
关键词 Data alignment dimension reduction feature fusion data anomaly detection deep learning
在线阅读 下载PDF
Speed-up Multi-modal Near Duplicate Image Detection
20
作者 Chunlei Yang Jinye Peng Jianping Fan 《Open Journal of Applied Sciences》 2013年第1期16-21,共6页
Near-duplicate image detection is a necessary operation to refine image search results for efficient user exploration. The existences of large amounts of near duplicates require fast and accurate automatic near-duplic... Near-duplicate image detection is a necessary operation to refine image search results for efficient user exploration. The existences of large amounts of near duplicates require fast and accurate automatic near-duplicate detection methods. We have designed a coarse-to-fine near duplicate detection framework to speed-up the process and a multi-modal integra-tion scheme for accurate detection. The duplicate pairs are detected with both global feature (partition based color his-togram) and local feature (CPAM and SIFT Bag-of-Word model). The experiment results on large scale data set proved the effectiveness of the proposed design. 展开更多
关键词 Near-Duplicate Detection Coarse-To-Fine Framework multi-modal feature Integration
在线阅读 下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部