Switched Reluctance Motors(SRMs),outfitted with rugged construction,good speed range,high torque density,and rare earth-free nature that outweigh induction motors(IM)and permanent magnet synchronous motor(PMSM),afford...Switched Reluctance Motors(SRMs),outfitted with rugged construction,good speed range,high torque density,and rare earth-free nature that outweigh induction motors(IM)and permanent magnet synchronous motor(PMSM),afford a broad range of applications in the domain of electric vehicles(EVs).Standard copper magnetic wire and low-carbon steel laminations are used to construct SRMs,which give them high efficiency in the range of 85-95%.Despite SRM's desirable features over traditional motor-speed drives,high torque ripples and radial distortions constrain their deployment in EVs.Precise rotor position is imperative for effective management of the speed and torque of SRMs.This paper provides an illustrative compendium on review of the torque-speed control and ripple mitigation techniques using design enhancements and control methods for SRM drives for EV applications.The various schemes were evaluated on their performance metricsoperational speed range,control complexity,practical realization,need for pre-stored parameters(look-up tables of current,inductance and torque profiles)and motor controller memory requirements.The findings provide valuable insights into balancing the gains and trade-offs associated with EV applications.Furthermore,they pinpoint opportunities for enhancement by analyzing the cost and technical aspects of different SRM controllers.展开更多
Design and experimental studies on a hybrid excitation flux switching motor as a traction motor for hybrid electric vehicles drive are presented.A stator body of the motor consists of not only laminated silicon-iron e...Design and experimental studies on a hybrid excitation flux switching motor as a traction motor for hybrid electric vehicles drive are presented.A stator body of the motor consists of not only laminated silicon-iron electromagnetic steel and three-phase armature windings,but also both of field excitation coils and permanent magnets working together as a variable field magnetomotive force source.On the other hand,a rotor is composed of just laminated silicon-iron electromagnetic steel with salient poles like switched reluctance motor.To bring out the best in drive performances of the hybrid excitation flux switching motor as a variable flux motor for the application,each material adopted for the stator and rotor body should be designed properly in terms of motor efficiency,maximum torque and power densities and so forth.As some of them,in this paper,thinner silicon-iron electromagnetic steel sheet and permanent magnets with high remanent and low amount of Dysprosium used are applied for achieving higher motor efficiency.Moreover,all coils wound flatwise and edgewise using rectangular wires are introduced to realizing high filling factor for reduced copper losses.Experimental tests using a 60kW prototype of the motor demonstrates the designed motor has good motor efficiency under frequent operating points expected for the target vehicle drive.展开更多
This paper proposes a coordinated switching power system stabilizer(SPSS)to enhance the stability of multimachine power systems.The SPSS switches between a bang-bang power system stabilizer(BPSS)and a conventional pow...This paper proposes a coordinated switching power system stabilizer(SPSS)to enhance the stability of multimachine power systems.The SPSS switches between a bang-bang power system stabilizer(BPSS)and a conventional power system stabilizer(CPSS)based on a state-dependent switching strategy.The BPSS is designed as a bang-bang constant funnel controller(BCFC).It is able to provide fast damping of rotor speed oscillations in a bang-bang manner.The closed-loop stability of the power system controlled by the SPSSs and the CPSSs is analyzed.To verify the control performance of the SPSS,simulation studies are carried out in a 4-generator 11-bus power system and the IEEE 16-generator 68-bus power system.The damping ability of the SPSS is evaluated in aspects of small-signal oscillation damping and transient stability enhancement,respectively.Meanwhile,the coordination between different SPSSs and the coordination between the SPSS and the CPSS are investigated therein.展开更多
This paper proposes a switching structure excitation controller(SSEC)to enhance the transient stability of multimachine power systems.The SSEC switches between a bangbang funnel excitation controller(BFEC)and a conven...This paper proposes a switching structure excitation controller(SSEC)to enhance the transient stability of multimachine power systems.The SSEC switches between a bangbang funnel excitation controller(BFEC)and a conventional excitation controller(CEC),based on an appropriately designed state-dependent switching strategy.Only the tracking error of rotor angle is required to realize the BFEC in a bang-bang manner with two control values.If the feasibility assumptions of the BFEC are satisfied,the tracking error of rotor angle can be regulated within the predefined error funnels.The power system having the SSEC installed can achieve faster convergence performance compared to that having the CEC implemented only.Simulation studies are carried out in the New England 10-generator 39-bus power system.The control performance of the SSEC is evaluated in the cases that three-phase-to-ground fault and transmission line outage occur in the power system,respectively.展开更多
基金supported in part by the Universitat Politècnica de València under grant PAID-10-21supported through AMRITA Seed Grant(Proposal ID:ASG2022188)。
文摘Switched Reluctance Motors(SRMs),outfitted with rugged construction,good speed range,high torque density,and rare earth-free nature that outweigh induction motors(IM)and permanent magnet synchronous motor(PMSM),afford a broad range of applications in the domain of electric vehicles(EVs).Standard copper magnetic wire and low-carbon steel laminations are used to construct SRMs,which give them high efficiency in the range of 85-95%.Despite SRM's desirable features over traditional motor-speed drives,high torque ripples and radial distortions constrain their deployment in EVs.Precise rotor position is imperative for effective management of the speed and torque of SRMs.This paper provides an illustrative compendium on review of the torque-speed control and ripple mitigation techniques using design enhancements and control methods for SRM drives for EV applications.The various schemes were evaluated on their performance metricsoperational speed range,control complexity,practical realization,need for pre-stored parameters(look-up tables of current,inductance and torque profiles)and motor controller memory requirements.The findings provide valuable insights into balancing the gains and trade-offs associated with EV applications.Furthermore,they pinpoint opportunities for enhancement by analyzing the cost and technical aspects of different SRM controllers.
基金This paper is based on results obtained from the future pioneering program"Development of Magnetic Material Technology for High-efficiency Motors"commissioned by the New Energy and Industrial Technology Development Organization(NEDO)。
文摘Design and experimental studies on a hybrid excitation flux switching motor as a traction motor for hybrid electric vehicles drive are presented.A stator body of the motor consists of not only laminated silicon-iron electromagnetic steel and three-phase armature windings,but also both of field excitation coils and permanent magnets working together as a variable field magnetomotive force source.On the other hand,a rotor is composed of just laminated silicon-iron electromagnetic steel with salient poles like switched reluctance motor.To bring out the best in drive performances of the hybrid excitation flux switching motor as a variable flux motor for the application,each material adopted for the stator and rotor body should be designed properly in terms of motor efficiency,maximum torque and power densities and so forth.As some of them,in this paper,thinner silicon-iron electromagnetic steel sheet and permanent magnets with high remanent and low amount of Dysprosium used are applied for achieving higher motor efficiency.Moreover,all coils wound flatwise and edgewise using rectangular wires are introduced to realizing high filling factor for reduced copper losses.Experimental tests using a 60kW prototype of the motor demonstrates the designed motor has good motor efficiency under frequent operating points expected for the target vehicle drive.
基金funded by State Key Program of National Natural Science of China(No.51437006)Guangdong Innovative Research Team Program(No.201001N0104744201),China.
文摘This paper proposes a coordinated switching power system stabilizer(SPSS)to enhance the stability of multimachine power systems.The SPSS switches between a bang-bang power system stabilizer(BPSS)and a conventional power system stabilizer(CPSS)based on a state-dependent switching strategy.The BPSS is designed as a bang-bang constant funnel controller(BCFC).It is able to provide fast damping of rotor speed oscillations in a bang-bang manner.The closed-loop stability of the power system controlled by the SPSSs and the CPSSs is analyzed.To verify the control performance of the SPSS,simulation studies are carried out in a 4-generator 11-bus power system and the IEEE 16-generator 68-bus power system.The damping ability of the SPSS is evaluated in aspects of small-signal oscillation damping and transient stability enhancement,respectively.Meanwhile,the coordination between different SPSSs and the coordination between the SPSS and the CPSS are investigated therein.
基金funded by State Key Program of National Natural Science of China(NO.51437006)Guangdong Innovative Research Team Program(NO.201001N0104744201),China。
文摘This paper proposes a switching structure excitation controller(SSEC)to enhance the transient stability of multimachine power systems.The SSEC switches between a bangbang funnel excitation controller(BFEC)and a conventional excitation controller(CEC),based on an appropriately designed state-dependent switching strategy.Only the tracking error of rotor angle is required to realize the BFEC in a bang-bang manner with two control values.If the feasibility assumptions of the BFEC are satisfied,the tracking error of rotor angle can be regulated within the predefined error funnels.The power system having the SSEC installed can achieve faster convergence performance compared to that having the CEC implemented only.Simulation studies are carried out in the New England 10-generator 39-bus power system.The control performance of the SSEC is evaluated in the cases that three-phase-to-ground fault and transmission line outage occur in the power system,respectively.