Accurate prediction of landslide displacement is crucial for effective early warning of landslide disasters.While most existing prediction methods focus on time-series forecasting for individual monitoring points,ther...Accurate prediction of landslide displacement is crucial for effective early warning of landslide disasters.While most existing prediction methods focus on time-series forecasting for individual monitoring points,there is limited research on the spatiotemporal characteristics of landslide deformation.This paper proposes a novel Multi-Relation Spatiotemporal Graph Residual Network with Multi-Level Feature Attention(MFA-MRSTGRN)that effectively improves the prediction performance of landslide displacement through spatiotemporal fusion.This model integrates internal seepage factors as data feature enhancements with external triggering factors,allowing for accurate capture of the complex spatiotemporal characteristics of landslide displacement and the construction of a multi-source heterogeneous dataset.The MFA-MRSTGRN model incorporates dynamic graph theory and four key modules:multilevel feature attention,temporal-residual decomposition,spatial multi-relational graph convolution,and spatiotemporal fusion prediction.This comprehensive approach enables the efficient analyses of multi-source heterogeneous datasets,facilitating adaptive exploration of the evolving multi-relational,multi-dimensional spatiotemporal complexities in landslides.When applying this model to predict the displacement of the Liangshuijing landslide,we demonstrate that the MFA-MRSTGRN model surpasses traditional models,such as random forest(RF),long short-term memory(LSTM),and spatial temporal graph convolutional networks(ST-GCN)models in terms of various evaluation metrics including mean absolute error(MAE=1.27 mm),root mean square error(RMSE=1.49 mm),mean absolute percentage error(MAPE=0.026),and R-squared(R^(2)=0.88).Furthermore,feature ablation experiments indicate that incorporating internal seepage factors improves the predictive performance of landslide displacement models.This research provides an advanced and reliable method for landslide displacement prediction.展开更多
Seismic permanent displacement of the soil walls plays an important role in design of these structures. Due to the increase in growth of urban areas and the limitations in use of flat grounds, many structures are buil...Seismic permanent displacement of the soil walls plays an important role in design of these structures. Due to the increase in growth of urban areas and the limitations in use of flat grounds, many structures are built near slopes and retaining walls. During earthquakes, these structures can apply an additional surcharge on the wall. The intensity and location of the surcharge is of considerable importance on the seismic displacements of the soil wall. In this study, by using the limit analysis and upper bound theorem, seismic permanent displacement of the soil wall under surcharge has been analyzed. Thus, a formulation is presented for calculating the yield acceleration and seismic displacement for different surcharge conditions. The effect of seismic acceleration, surcharge intensity, its location and soil properties is investigated. A parameter called the "displacement coefficient" is proposed, and is a potential modification for Newmark’s sliding-block method.展开更多
A radial crack emanating from a semi-circular notch is of significant engineering importance. Accurate determination of key fracture mechanics parameters is essential for damage tolerance design and fatigue crack grow...A radial crack emanating from a semi-circular notch is of significant engineering importance. Accurate determination of key fracture mechanics parameters is essential for damage tolerance design and fatigue crack growth life predictions. The purpose of this paper is to provide an efficient and accurate closed-form weight function approach to the calculation of crack surface displacements for a radial crack emanating from a semi-circular notch in a semi-infinite plate. Results are presented for two load conditions: remote applied stress and uniform stress segment applied to crack surfaces. Based on a correction of stress intensity factor ratio, highly accurate analytical equations of crack surface displacements under the two load conditions are developed by fitting the data obtained with the weight function method. It is demonstrated that the Wu- Carlsson closed-form weight functions are very efficient, accurate and easy-to-use for calculating crack surface displacements for arbitrary load conditions. The method will facilitate fatigue crack closure and other fracture mechanics analyses where accurate crack surface displacements are required.展开更多
Aiming at the problem of large energy consumption in hydraulic control system with large load and variable working conditions,based on the multi-level pressure switching control system(MPSCS),a multi-level pressure sw...Aiming at the problem of large energy consumption in hydraulic control system with large load and variable working conditions,based on the multi-level pressure switching control system(MPSCS),a multi-level pressure switching control system based on independent metering control is proposed combined with the independent metering control technology.The configuration principle of the system is given,the mathematical model of this system is established,and the control strategy of the system under 4 different working quadrants is put forward.Finally,the control performance and energy saving characteristics of the system are tested.The test results show that the switching of high and low pressure power supply has a certain effect on the response of step position and ramp position under impedance working condition.The displacement curves show slow climbing or abrupt change of ramp position,and the position accuracy is less than 1 mm.The multi-level pressure switching control system based on independent metering control can recover and store energy under the transcendence working conditions.The control accuracy is about 1 mm,and the energy recovery rate is about 70%~80%.展开更多
基金the funding support from the National Natural Science Foundation of China(Grant No.52308340)Chongqing Talent Innovation and Entrepreneurship Demonstration Team Project(Grant No.cstc2024ycjh-bgzxm0012)the Science and Technology Projects supported by China Coal Technology and Engineering Chongqing Design and Research Institute(Group)Co.,Ltd.(Grant No.H20230317).
文摘Accurate prediction of landslide displacement is crucial for effective early warning of landslide disasters.While most existing prediction methods focus on time-series forecasting for individual monitoring points,there is limited research on the spatiotemporal characteristics of landslide deformation.This paper proposes a novel Multi-Relation Spatiotemporal Graph Residual Network with Multi-Level Feature Attention(MFA-MRSTGRN)that effectively improves the prediction performance of landslide displacement through spatiotemporal fusion.This model integrates internal seepage factors as data feature enhancements with external triggering factors,allowing for accurate capture of the complex spatiotemporal characteristics of landslide displacement and the construction of a multi-source heterogeneous dataset.The MFA-MRSTGRN model incorporates dynamic graph theory and four key modules:multilevel feature attention,temporal-residual decomposition,spatial multi-relational graph convolution,and spatiotemporal fusion prediction.This comprehensive approach enables the efficient analyses of multi-source heterogeneous datasets,facilitating adaptive exploration of the evolving multi-relational,multi-dimensional spatiotemporal complexities in landslides.When applying this model to predict the displacement of the Liangshuijing landslide,we demonstrate that the MFA-MRSTGRN model surpasses traditional models,such as random forest(RF),long short-term memory(LSTM),and spatial temporal graph convolutional networks(ST-GCN)models in terms of various evaluation metrics including mean absolute error(MAE=1.27 mm),root mean square error(RMSE=1.49 mm),mean absolute percentage error(MAPE=0.026),and R-squared(R^(2)=0.88).Furthermore,feature ablation experiments indicate that incorporating internal seepage factors improves the predictive performance of landslide displacement models.This research provides an advanced and reliable method for landslide displacement prediction.
文摘Seismic permanent displacement of the soil walls plays an important role in design of these structures. Due to the increase in growth of urban areas and the limitations in use of flat grounds, many structures are built near slopes and retaining walls. During earthquakes, these structures can apply an additional surcharge on the wall. The intensity and location of the surcharge is of considerable importance on the seismic displacements of the soil wall. In this study, by using the limit analysis and upper bound theorem, seismic permanent displacement of the soil wall under surcharge has been analyzed. Thus, a formulation is presented for calculating the yield acceleration and seismic displacement for different surcharge conditions. The effect of seismic acceleration, surcharge intensity, its location and soil properties is investigated. A parameter called the "displacement coefficient" is proposed, and is a potential modification for Newmark’s sliding-block method.
基金Project supported by the National Natural Science Foundation of China(No.11402249)
文摘A radial crack emanating from a semi-circular notch is of significant engineering importance. Accurate determination of key fracture mechanics parameters is essential for damage tolerance design and fatigue crack growth life predictions. The purpose of this paper is to provide an efficient and accurate closed-form weight function approach to the calculation of crack surface displacements for a radial crack emanating from a semi-circular notch in a semi-infinite plate. Results are presented for two load conditions: remote applied stress and uniform stress segment applied to crack surfaces. Based on a correction of stress intensity factor ratio, highly accurate analytical equations of crack surface displacements under the two load conditions are developed by fitting the data obtained with the weight function method. It is demonstrated that the Wu- Carlsson closed-form weight functions are very efficient, accurate and easy-to-use for calculating crack surface displacements for arbitrary load conditions. The method will facilitate fatigue crack closure and other fracture mechanics analyses where accurate crack surface displacements are required.
基金the National Natural Science Foundation of China(No.51575471)the Natural Science Foundation of Hebei Province(No.E2018203028).
文摘Aiming at the problem of large energy consumption in hydraulic control system with large load and variable working conditions,based on the multi-level pressure switching control system(MPSCS),a multi-level pressure switching control system based on independent metering control is proposed combined with the independent metering control technology.The configuration principle of the system is given,the mathematical model of this system is established,and the control strategy of the system under 4 different working quadrants is put forward.Finally,the control performance and energy saving characteristics of the system are tested.The test results show that the switching of high and low pressure power supply has a certain effect on the response of step position and ramp position under impedance working condition.The displacement curves show slow climbing or abrupt change of ramp position,and the position accuracy is less than 1 mm.The multi-level pressure switching control system based on independent metering control can recover and store energy under the transcendence working conditions.The control accuracy is about 1 mm,and the energy recovery rate is about 70%~80%.