期刊文献+
共找到32,655篇文章
< 1 2 250 >
每页显示 20 50 100
Temperature control for liquid-cooled fuel cells based on fuzzy logic and variable-gain generalized supertwisting algorithm
1
作者 CHEN Lin JIA Zhi-huan +1 位作者 DING Tian-wei GAO Jin-wu 《控制理论与应用》 北大核心 2025年第8期1596-1605,共10页
The liquid cooling system(LCS)of fuel cells is challenged by significant time delays,model uncertainties,pump and fan coupling,and frequent disturbances,leading to overshoot and control oscillations that degrade tempe... The liquid cooling system(LCS)of fuel cells is challenged by significant time delays,model uncertainties,pump and fan coupling,and frequent disturbances,leading to overshoot and control oscillations that degrade temperature regulation performance.To address these challenges,we propose a composite control scheme combining fuzzy logic and a variable-gain generalized supertwisting algorithm(VG-GSTA).Firstly,a one-dimensional(1D)fuzzy logic controler(FLC)for the pump ensures stable coolant flow,while a two-dimensional(2D)FLC for the fan regulates the stack temperature near the reference value.The VG-GSTA is then introduced to eliminate steady-state errors,offering resistance to disturbances and minimizing control oscillations.The equilibrium optimizer is used to fine-tune VG-GSTA parameters.Co-simulation verifies the effectiveness of our method,demonstrating its advantages in terms of disturbance immunity,overshoot suppression,tracking accuracy and response speed. 展开更多
关键词 liquid-cooled fuel cell temperature control generalized supertwisting algorithm fuzzy control equilibrium optimizer
在线阅读 下载PDF
Dynamic temperature control of dividing wall batch distillation with middle vessel based on neural network soft-sensor and fuzzy control
2
作者 Xiaoyu Zhou Erwei Song +1 位作者 Mingmei Wang Erqiang Wang 《Chinese Journal of Chemical Engineering》 2025年第3期200-211,共12页
Dividing wall batch distillation with middle vessel(DWBDM)is a new type of batch distillation column,with outstanding advantages of low capital cost,energy saving and flexible operation.However,temperature control of ... Dividing wall batch distillation with middle vessel(DWBDM)is a new type of batch distillation column,with outstanding advantages of low capital cost,energy saving and flexible operation.However,temperature control of DWBDM process is challenging,since inherently dynamic and highly nonlinear,which make it difficult to give the controller reasonable set value or optimal temperature profile for temperature control scheme.To overcome this obstacle,this study proposes a new strategy to develop temperature control scheme for DWBDM combining neural network soft-sensor with fuzzy control.Dynamic model of DWBDM was firstly developed and numerically solved by Python,with three control schemes:composition control by PID and fuzzy control respectively,and temperature control by fuzzy control with neural network soft-sensor.For dynamic process,the neural networks with memory functions,such as RNN,LSTM and GRU,are used to handle with time-series data.The results from a case example show that the new control scheme can perform a good temperature control of DWBDM with the same or even better product purities as traditional PID or fuzzy control,and fuzzy control could reduce the effect of prediction error from neural network,indicating that it is a highly feasible and effective control approach for DWBDM,and could even be extended to other dynamic processes. 展开更多
关键词 Dividing wall batch distillation column Middle-vessel Temperature control Neural network soft-sensor fuzzy control
在线阅读 下载PDF
Autonomous Spacecraft Formation Flying Implementation Near Mars Synchronous Orbit Based on Fuzzy Logic Control
3
作者 BIYOGO NCHAMA Vicente Angel Obama HASAN Mehedi +1 位作者 MASUM Sajjad Hossain SHI Peng 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第S1期1-11,共11页
In response to the need for a supportive on-orbit platform for future Mars exploration missions,this paper proposes the design and implementation of an autonomous spacecraft formation flying system near the Martian sy... In response to the need for a supportive on-orbit platform for future Mars exploration missions,this paper proposes the design and implementation of an autonomous spacecraft formation flying system near the Martian synchronous orbit using fuzzy learning-based intelligent control.A detailed analysis of spacecraft relative motion in the Mars environment is conducted,deducing the necessary conditions to reach the Martian synchronous orbit constraints.The modified Clohessy-Wiltshire(C-W)equation with Martian J_(2)(Oblateness index)perturbation is used as a reference to design a fuzzy learning-based intelligent and robust nonlinear control approach,which helps to autonomously track the desired formation configuration and stabilizes it.An introduction to spacecraft propulsion mechanisms is provided to analyze the feasibility of using electrical thrusters for spacecraft formation configuration tracking and stabilization in Martian synchronous orbits.The simulations show the effectiveness of the proposed control system for long-term on-orbit operations and reveal its reliability for designing intelligent deep-space formation flying configurations,such as an autonomous Mars observatory,a Martian telescope,or an interferometer. 展开更多
关键词 Mars space station spacecraft formation flying fuzzy logic-based spacecraft formation control intelligent control
在线阅读 下载PDF
Computational Design of Interval Type-2 Fuzzy Control for Formation and Containment of Multi-Agent Systems with Collision Avoidance Capability
4
作者 Yann-Horng Lin Wen-Jer Chang +2 位作者 Yi-Chen Lee Muhammad Shamrooz Aslam Cheung-Chieh Ku 《Computer Modeling in Engineering & Sciences》 2025年第8期2231-2262,共32页
An Interval Type-2(IT-2)fuzzy controller design approach is proposed in this research to simultaneously achievemultiple control objectives inNonlinearMulti-Agent Systems(NMASs),including formation,containment,and coll... An Interval Type-2(IT-2)fuzzy controller design approach is proposed in this research to simultaneously achievemultiple control objectives inNonlinearMulti-Agent Systems(NMASs),including formation,containment,and collision avoidance.However,inherent nonlinearities and uncertainties present in practical control systems contribute to the challenge of achieving precise control performance.Based on the IT-2 Takagi-Sugeno Fuzzy Model(T-SFM),the fuzzy control approach can offer a more effective solution for NMASs facing uncertainties.Unlike existing control methods for NMASs,the Formation and Containment(F-and-C)control problem with collision avoidance capability under uncertainties based on the IT-2 T-SFM is discussed for the first time.Moreover,an IT-2 fuzzy tracking control approach is proposed to solve the formation task for leaders in NMASs without requiring communication.This control scheme makes the design process of the IT-2 fuzzy Formation Controller(FC)more straightforward and effective.According to the communication interaction protocol,the IT-2 Containment Controller(CC)design approach is proposed for followers to ensure convergence into the region defined by the leaders.Leveraging the IT-2 T-SFM representation,the analysis methods developed for linear Multi-Agent Systems(MASs)are successfully extended to perform containment analysis without requiring the additional assumptions imposed in existing research.Notably,the IT-2 fuzzy tracking controller can also be applied in collision avoidance situations to track the desired trajectories calculated by the avoidance algorithm under the Artificial Potential Field(APF).Benefiting from the combination of vortex and source APFs,the leaders can properly adjust the system dynamics to prevent potential collision risk.Integrating the fuzzy theory and APFs avoidance algorithm,an IT-2 fuzzy controller design approach is proposed to achieve the F-and-C purposewhile ensuring collision avoidance capability.Finally,amulti-ship simulation is conducted to validate the feasibility and effectiveness of the designed IT-2 fuzzy controller. 展开更多
关键词 Interval type-2 Takagi-Sugeno fuzzy model multi-agent systems formation and containment control fuzzy collision avoidance artificial potential field
在线阅读 下载PDF
Inverse Reinforcement Learning Optimal Control for Takagi-Sugeno Fuzzy Systems
5
作者 Wenting SONG Shaocheng TONG 《Artificial Intelligence Science and Engineering》 2025年第2期134-146,共13页
Inverse reinforcement learning optimal control is under the framework of learner-expert.The learner system can imitate the expert system's demonstrated behaviors and does not require the predefined cost function,s... Inverse reinforcement learning optimal control is under the framework of learner-expert.The learner system can imitate the expert system's demonstrated behaviors and does not require the predefined cost function,so it can handle optimal control problems effectively.This paper proposes an inverse reinforcement learning optimal control method for Takagi-Sugeno(T-S)fuzzy systems.Based on learner systems,an expert system is constructed,where the learner system only knows the expert system's optimal control policy.To reconstruct the unknown cost function,we firstly develop a model-based inverse reinforcement learning algorithm for the case that systems dynamics are known.The developed model-based learning algorithm is consists of two learning stages:an inner reinforcement learning loop and an outer inverse optimal control loop.The inner loop desires to obtain optimal control policy via learner's cost function and the outer loop aims to update learner's state-penalty matrices via only using expert's optimal control policy.Then,to eliminate the requirement that the system dynamics must be known,a data-driven integral learning algorithm is presented.It is proved that the presented two algorithms are convergent and the developed inverse reinforcement learning optimal control scheme can ensure the controlled fuzzy learner systems to be asymptotically stable.Finally,we apply the proposed fuzzy optimal control to the truck-trailer system,and the computer simulation results verify the effectiveness of the presented approach. 展开更多
关键词 Takagi-Sugeno fuzzy systems learnerexpert framework inverse reinforcement learning algorithm optimal control
在线阅读 下载PDF
Fuzzy Logic-Based Robust Global Consensus in Leader-Follower Robotic Systems under Sensor and Actuator Attacks Using Hybrid Control Strategy
6
作者 Asad Khan Fathia Moh.Al Samman +4 位作者 Waqar Ul Hassan Mohammed M.A.Almazah A.Y.Al-Rezami Azmat Ullah Khan Niazi Adnan Manzor 《Computer Modeling in Engineering & Sciences》 2025年第8期1971-1999,共29页
This research paper tackles the complexities of achieving global fuzzy consensus in leader-follower systems in robotic systems,focusing on robust control systems against an advanced signal attack that integrates senso... This research paper tackles the complexities of achieving global fuzzy consensus in leader-follower systems in robotic systems,focusing on robust control systems against an advanced signal attack that integrates sensor and actuator disturbances within the dynamics of follower robots.Each follower robot has unknown dynamics and control inputs,which expose it to the risks of both sensor and actuator attacks.The leader robot,described by a secondorder,time-varying nonlinear model,transmits its position,velocity,and acceleration information to follower robots through a wireless connection.To handle the complex setup and communication among robots in the network,we design a robust hybrid distributed adaptive control strategy combining the effect of sensor and actuator attack,which ensures asymptotic consensus,extending beyond conventional bounded consensus results.The proposed framework employs fuzzy logic systems(FLSs)as proactive controllers to estimate unknown nonlinear behaviors,while also effectively managing sensor and actuator attacks,ensuring stable consensus among all agents.To counter the impact of the combined signal attack on follower dynamics,a specialized robust control mechanism is designed,sustaining system stability and performance under adversarial conditions.The efficiency of this control strategy is demonstrated through simulations conducted across two different directed communication topologies,underscoring the protocol’s adaptability,resilience,and effectiveness in maintaining global consensus under complex attack scenarios. 展开更多
关键词 Robotic systems CONSENSUS sensor dynamic control strategy leader-follower framework system stand actuator attacks:fuzzy logic systems(FLSs)
在线阅读 下载PDF
基于BAS—Smith—Fuzzy PID的物联网水肥控制系统研究 被引量:2
7
作者 丁筱玲 王克林 +3 位作者 李军台 郭冰 李志勇 赵立新 《中国农机化学报》 北大核心 2025年第4期240-247,共8页
针对水肥控制难度大,传统灌溉施肥方法智能化程度较低的问题,设计一种基于BAS—Smith—Fuzzy PID的物联网水肥一体化控制系统。以控制混合肥液的EC(电导率)值为目标,在传统模糊PID控制算法的基础上引入BAS(天牛须搜索)算法和Smith预估... 针对水肥控制难度大,传统灌溉施肥方法智能化程度较低的问题,设计一种基于BAS—Smith—Fuzzy PID的物联网水肥一体化控制系统。以控制混合肥液的EC(电导率)值为目标,在传统模糊PID控制算法的基础上引入BAS(天牛须搜索)算法和Smith预估器。通过MATLAB/Simulink软件仿真,验证其寻优和优化能力,对比常规PID、BAS—PID模型,结果表明,BAS—Smith—Fuzzy PID控制器拥有优异控制性能。基于STM32主控平台搭建单通道混肥装置,配置MCGS触摸屏上位机并基于Android平台开发客户端进行人机交互,试验结果表明,BAS—Smith—Fuzzy PID的调节时间对比常规PID、BAS—PID缩短17.1%、63%、超调量降低82.1%、87.2%。 展开更多
关键词 水肥一体化 BAS算法 模糊PID控制 物联网 SIMULINK仿真
在线阅读 下载PDF
基于AW-CPSO-Fuzzy-PID的茶鲜叶分级输送速度控制器研究 被引量:1
8
作者 胡永光 靳筱天 +2 位作者 张志 鹿永宗 潘庆民 《农业机械学报》 北大核心 2025年第4期275-283,共9页
为解决基于机器视觉的茶鲜叶分级输送速度控制精度低的问题,本文设计一种引入自适应权重与Circle混沌映射的PSO优化模糊PID控制器(AW-CPSO-Fuzzy-PID),并开展基于改进模糊PID的茶鲜叶分级输送速度控制。在茶鲜叶输送传动系统作业过程中... 为解决基于机器视觉的茶鲜叶分级输送速度控制精度低的问题,本文设计一种引入自适应权重与Circle混沌映射的PSO优化模糊PID控制器(AW-CPSO-Fuzzy-PID),并开展基于改进模糊PID的茶鲜叶分级输送速度控制。在茶鲜叶输送传动系统作业过程中,当设定输送速度为78.5 mm/s时,每1 ms记录一次,输送速度波动可控制在0.7 mm/s内;改进模糊PID茶鲜叶输送传动系统响应时间比传统PID与模糊PID分别减少81.41%、61.74%;超调量分别降低81.24%、41.82%;采集目标图像平均峰值信噪比分别提高5.8、10.4 dB。结果表明,本文提出的方法具有更好的寻优性能和收敛速度。研究结果为基于机器视觉的茶鲜叶自动分级系统精确而稳定的控制奠定了理论基础,为解决由输送速度波动导致的图像模糊问题提供了技术方案。 展开更多
关键词 茶鲜叶分级 输送速度 模糊PID控制 粒子群算法
在线阅读 下载PDF
IDBO-Fuzzy-PID控制器在立磨机液压控制中的应用
9
作者 李玲 刘佳芸 +2 位作者 李瑶 程福安 解妙霞 《中南大学学报(自然科学版)》 北大核心 2025年第9期3724-3736,共13页
为解决立磨机液压控制系统存在的非线性、时变性问题,本文提出了一种基于改进蜣螂算法(improved dung beetle optimizer,IDBO)的模糊PID控制器(IDBO-Fuzzy-PID)。首先,基于立磨机液压位置控制系统模型,设计模糊PID控制器以实时调整控制... 为解决立磨机液压控制系统存在的非线性、时变性问题,本文提出了一种基于改进蜣螂算法(improved dung beetle optimizer,IDBO)的模糊PID控制器(IDBO-Fuzzy-PID)。首先,基于立磨机液压位置控制系统模型,设计模糊PID控制器以实时调整控制参数;其次,针对DBO算法存在的种群多样性匮乏、全局搜索能力弱、易陷局部最优等不足,引入佳点集与反向学习、自适应繁殖偷窃及自适应混合变异3种策略进行改进,并通过多类型测试函数验证IDBO收敛速度及求解精度;最后,构建联合仿真平台,验证控制器在随机干扰与系统参数波动条件下的控制性能。研究结果表明:本文提出的IDBO-Fuzzy-PID控制器具有良好的跟踪性能与时变适应性,系统平衡点附近上升、调节时间最短,基本无超调至目标位移;在外界扰动条件下,液压杆振幅降至0.252 mm,较PID控制器降幅达71.3%,其抗干扰性能最优;在系统参数波动条件下,其稳定性未受显著影响,正弦波跟踪性能最优。该控制器通过动态调整参数以快速补偿液压杆位移的偏差,有效抑制了磨辊的波动,提升了磨粉工艺的稳定性。 展开更多
关键词 立磨机 液压控制 模糊PID控制 蜣螂优化算法 联合仿真
在线阅读 下载PDF
A finite-time fuzzy adaptive output-feedback fault-tolerant control for underactuated wheeled mobile robots systems 被引量:3
10
作者 Pingfan Liu Shaocheng Tong 《Journal of Automation and Intelligence》 2024年第2期111-118,共8页
This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. ... This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach. 展开更多
关键词 Underactuated wheeled mobile robots system FINITE-TIME fuzzy adaptive fault-tolerant control OUTPUT-FEEDBACK Intermittent actuator faults
在线阅读 下载PDF
A Stable Fuzzy-Based Computational Model and Control for Inductions Motors 被引量:1
11
作者 Yongqiu Liu Shaohui Zhong +3 位作者 Nasreen Kausar Chunwei Zhang Ardashir Mohammadzadeh Dragan Pamucar 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期793-812,共20页
In this paper,a stable and adaptive sliding mode control(SMC)method for induction motors is introduced.Determining the parameters of this system has been one of the existing challenges.To solve this challenge,a new se... In this paper,a stable and adaptive sliding mode control(SMC)method for induction motors is introduced.Determining the parameters of this system has been one of the existing challenges.To solve this challenge,a new self-tuning type-2 fuzzy neural network calculates and updates the control system parameters with a fast mechanism.According to the dynamic changes of the system,in addition to the parameters of the SMC,the parameters of the type-2 fuzzy neural network are also updated online.The conditions for guaranteeing the convergence and stability of the control system are provided.In the simulation part,in order to test the proposed method,several uncertain models and load torque have been applied.Also,the results have been compared to the SMC based on the type-1 fuzzy system,the traditional SMC,and the PI controller.The average RMSE in different scenarios,for type-2 fuzzy SMC,is 0.0311,for type-1 fuzzy SMC is 0.0497,for traditional SMC is 0.0778,and finally for PI controller is 0.0997. 展开更多
关键词 Sliding mode control self-tuning type-2 fuzzy systems inductions motor parameters uncertainty
在线阅读 下载PDF
Hybrid Dynamic Variables-Dependent Event-Triggered Fuzzy Model Predictive Control 被引量:2
12
作者 Xiongbo Wan Chaoling Zhang +2 位作者 Fan Wei Chuan-Ke Zhang Min Wu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期723-733,共11页
This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative ... This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance. 展开更多
关键词 Dynamic event-triggered mechanism(DETM) hybrid dynamic variables model predictive control(MPC) robust positive invariant(RPI)set T-S fuzzy systems
在线阅读 下载PDF
Fuzzy Proportional Integral Derivative control of a voice coil actuator system for adaptive deformable mirrors 被引量:1
13
作者 Ziqiang Cui Heng Zuo +4 位作者 Weikang Qiao Hao Li Fujia Du Yifan Wang Jinrui Guo 《Astronomical Techniques and Instruments》 CSCD 2024年第3期179-186,共8页
Research on adaptive deformable mirror technology for voice coil actuators(VCAs)is an important trend in the development of large ground-based telescopes.A voice coil adaptive deformable mirror contains a large number... Research on adaptive deformable mirror technology for voice coil actuators(VCAs)is an important trend in the development of large ground-based telescopes.A voice coil adaptive deformable mirror contains a large number of actuators,and there are problems with structural coupling and large temperature increases in their internal coils.Additionally,parameters of the traditional proportional integral derivative(PID)control cannot be adjusted in real-time to adapt to system changes.These problems can be addressed by introducing fuzzy control methods.A table lookup method is adopted to replace real-time calculations of the regular fuzzy controller during the control process,and a prototype platform has been established to verify the effectiveness and robustness of this process.Experimental tests compare the control performance of traditional and fuzzy proportional integral derivative(Fuzzy-PID)controllers,showing that,in system step response tests,the fuzzy control system reduces rise time by 20.25%,decreases overshoot by 78.24%,and shortens settling time by 67.59%.In disturbance rejection experiments,fuzzy control achieves a 46.09%reduction in the maximum deviation,indicating stronger robustness.The Fuzzy-PID controller,based on table lookup,outperforms the standard controller significantly,showing excellent potential for enhancing the dynamic performance and disturbance rejection capability of the voice coil motor actuator system. 展开更多
关键词 Adaptive optics Deformable mirror Voice coil actuator fuzzy control
在线阅读 下载PDF
Practical prescribed-time fuzzy tracking control for uncertain nonlinear systems with time-varying actuators faults 被引量:1
14
作者 Shuxing Xuan Hongjing Liang Tingwen Huang 《Journal of Automation and Intelligence》 2024年第1期40-49,共10页
The paper investigates the practical prescribed-time fuzzy tracking control problem for a category of nonlinear system subject to time-varying actuator faults.The presence of unknown nonlinear dynamics and actuator fa... The paper investigates the practical prescribed-time fuzzy tracking control problem for a category of nonlinear system subject to time-varying actuator faults.The presence of unknown nonlinear dynamics and actuator faults makes achieving tracking control within a prescribed-time challenging.To tackle this issue,we propose a novel practical prescribed-time fuzzy tracking control strategy,which is independent of the initial state of the system and does not rely on precise modeling of the system and actuators.We apply the approximation capabilities of fuzzy logic systems to handle the unknown nonlinear functions and unidentified actuator faults in the system.The piecewise controller and adaptive law constructed based on piecewise prescribed time-varying function and backstepping technique method establish the theoretical framework of practical prescribed-time tracking control,and extend the range of prescribed-time tracking control to infinity.Regardless of the initial conditions,the proposed control strategy can guarantee that all signals remain uniformly bounded within the practical prescribed time in the presence of unknown nonlinear item and time-varying actuator faults.Simulation example is presented to demonstrate the effectiveness of the proposed control strategy. 展开更多
关键词 Prescribed-time tracking control Adaptive fuzzy control Actuator faults Uncertain nonlinear system
在线阅读 下载PDF
A fuzzy compensation-Koopman model predictive control design for pressure regulation in proten exchange membrane electrolyzer
15
作者 Haokun Xiong Lei Xie +1 位作者 Cheng Hu Hongye Su 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第12期251-263,共13页
Proton exchange membrane(PEM)electrolyzer have attracted increasing attention from the industrial and researchers in recent years due to its excellent hydrogen production performance.Developing accurate models to pred... Proton exchange membrane(PEM)electrolyzer have attracted increasing attention from the industrial and researchers in recent years due to its excellent hydrogen production performance.Developing accurate models to predict their performance is crucial for promoting and accelerating the design and optimization of electrolysis systems.This work developed a Koopman model predictive control(MPC)method incorporating fuzzy compensation for regulating the anode and cathode pressures in a PEM electrolyzer.A PEM electrolyzer is then built to study pressure control and provide experimental data for the identification of the Koopman linear predictor.The identified linear predictors are used to design the Koopman MPC.In addition,the developed fuzzy compensator can effectively solve the Koopman MPC model mismatch problem.The effectiveness of the proposed method is verified through the hydrogen production process in PEM simulation. 展开更多
关键词 Hydrogen production PEM electrolyzer Nonlinear control Model predictive control Koopman operator fuzzy logic system
在线阅读 下载PDF
A Survey on Type-3 Fuzzy Logic Systems and Their Control Applications
16
作者 Oscar Castillo Fevrier Valdez +1 位作者 Patricia Melin Weiping Ding 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第8期1744-1756,共13页
In this paper,we offer a review of type-3 fuzzy logic systems and their applications in control.The main objective of this work is to observe and analyze in detail the applications in the control area using type-3 fuz... In this paper,we offer a review of type-3 fuzzy logic systems and their applications in control.The main objective of this work is to observe and analyze in detail the applications in the control area using type-3 fuzzy logic systems.In this case,we review their most important applications in control and other related topics with type-3 fuzzy systems.Intelligent algorithms have been receiving increasing attention in control and for this reason a review in this area is important.This paper reviews the main applications that make use of Intelligent Computing methods.Specifically,type-3 fuzzy logic systems.The aim of this research is to be able to appreciate,in detail,the applications in control systems and to point out the scientific trends in the use of Intelligent Computing techniques.This is done with the construction and visualization of bibliometric networks,developed with VosViewer Software,which it is a free Java-based program,mainly intended to be used for analyzing and visualizing bibliometric networks.With this tool,we can create maps of publications,authors,or journals based on a co-citation network or construct maps of keywords,countries based on a co-occurrence networks,research groups,etc. 展开更多
关键词 Applications control systems optimization REVIEW type-3 fuzzy logic.
在线阅读 下载PDF
Coordinated Control Strategy of New Energy Power Generation System with Hybrid Energy Storage Unit 被引量:1
17
作者 Yun Zhang Zifen Han +2 位作者 Biao Tian Ning Chen Yi Fan 《Energy Engineering》 EI 2025年第1期167-184,共18页
The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,... The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,photovoltaic power generation is unstable and random,resulting in a low utilization rate and directly affecting the stability of the power grid.To solve this problem,this paper proposes a coordinated control strategy for a newenergy power generation system with a hybrid energy storage unit based on the lithium iron phosphate-supercapacitor hybrid energy storage unit.Firstly,the variational mode decomposition algorithm is used to separate the high and low frequencies of the power signal,which is conducive to the rapid and accurate suppression of the power fluctuation of the energy storage system.Secondly,the fuzzy control algorithm is introduced to balance the power between energy storage.In this paper,the actual data is used for simulation,and the simulation results show that the strategy realizes the effective suppression of the bus voltage fluctuation and the accurate control of the internal state of the energy storage unit,effectively avoiding problems such as overshoot and over-discharge,and can significantly improve the stability of the photovoltaic power generation systemand the stability of the Direct Current bus.It is of great significance to promote the development of collaborative control technology for photovoltaic hybrid energy storage units. 展开更多
关键词 Photovoltaic power suppression hybrid energy storage unit variationalmodal decomposition fuzzy control power distribution control
在线阅读 下载PDF
Fuzzy Control Optimization of Loading Paths for Hydroforming of Variable Diameter Tubes
18
作者 Yong Xu Xuewei Zhang +4 位作者 Wenlong Xie Shihong Zhang Xinyue Huang Yaqiang Tian Liansheng Chen 《Computers, Materials & Continua》 SCIE EI 2024年第11期2753-2768,共16页
The design of the loading path is one of the important research contents of the tube hydroforming process.Optimization of loading paths using optimization algorithms has received attention due to the inefficiency of o... The design of the loading path is one of the important research contents of the tube hydroforming process.Optimization of loading paths using optimization algorithms has received attention due to the inefficiency of only finite element optimization.In this paper,the hydroforming process of 5A02 aluminum alloy variable diameter tube was as the research object.Fuzzy control was used to optimize the loading path,and the fuzzy rule base was established based on FEM.The minimum wall thickness and wall thickness reduction rate were determined as input membership functions,and the axial feeds variable value of the next step was used as output membership functions.The results show that the optimized loading path greatly improves the uniformity of wall thickness and the forming effect compared with the linear loading path.The round corner lamination rate of the tube is 91.2%under the fuzzy control optimized loading path,which was increased by 47.1%and 22.6%compared with linear loading Path 1 and Path 2,respectively.Based on the optimized loading path in the experiment,the minimum wall thickness of the variable diameter tube was 1.32 mm and the maximum thinning rate was 12.4%.The experimental results were consistent with the simulation results,which verified the accuracy of fuzzy control.The research results provide a reference for improving the forming quality of thin-walled tubes and plates. 展开更多
关键词 Variable diameter tubes finite element simulation HYDROFORMING fuzzy control
在线阅读 下载PDF
Novel Adaptive Memory Event-Triggered-Based Fuzzy Robust Control for Nonlinear Networked Systems via the Differential Evolution Algorithm
19
作者 Wei Qian Yanmin Wu Bo Shen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第8期1836-1848,共13页
This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide... This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide a more reasonable utilization of the constrained communication channel,a novel adaptive memory event-triggered(AMET)mechanism is developed,where two event-triggered thresholds can be dynamically adjusted in the light of the current system information and the transmitted historical data.Sufficient conditions with less conservative design of the fuzzy imperfect premise matching(IPM)controller are presented by introducing the Wirtinger-based integral inequality,the information of membership functions(MFs)and slack matrices.Subsequently,under the IPM policy,a new MFs intelligent optimization technique that takes advantage of the differential evolution algorithm is first provided for IT2 TakagiSugeno(T-S)fuzzy systems to update the fuzzy controller MFs in real-time and achieve a better system control effect.Finally,simulation results demonstrate that the proposed control scheme can obtain better system performance in the case of using fewer communication resources. 展开更多
关键词 Adaptive memory event-triggered(AMET) differential evolution algorithm fuzzy optimization robust control interval type-2(IT2)fuzzy technique.
在线阅读 下载PDF
Frequency Regulation of Alternating Current Microgrid Based on Hierarchical Control Using Fuzzy Logic
20
作者 WU Xueyang SHAN Yinghao SHEN Bo 《Journal of Donghua University(English Edition)》 CAS 2024年第5期536-544,共9页
An alternating current(AC)microgrid is a system that integrates renewable power,power converters,controllers and loads.Hierarchical control can manage the frequency of the microgrid to prevent imbalance and collapse o... An alternating current(AC)microgrid is a system that integrates renewable power,power converters,controllers and loads.Hierarchical control can manage the frequency of the microgrid to prevent imbalance and collapse of the system.The existing frequency control methods use traditional proportion integration(PI)controllers,which cannot adjust PI parameters in real-time to respond to the status changes of the system.Hierarchical control driven by fuzzy logic allows real-time adjustment of the PI parameters and the method used a two-layer control structure.The primary control used droop control to adjust power distribution,and fuzzy logic was used in the voltage loop of the primary control.The secondary control was added to make up for frequency deviation caused by droop control,and fuzzy logic was used in the secondary frequency control to deal with the dynamic change of frequency caused by the disturbances of loads.The proposed method was simulated in Matlab/Simulink.In the primary control,the proposed method reduced the total harmonic distortion(THD)of two cycles of the output voltage from 4.19%to 3.89%;in the secondary control,the proposed method reduced the frequency fluctuation of the system by about 0.03 Hz and 0.04 Hz when the load was increased and decreased,respectively.The results show that the proposed methods have a better effect on frequency maintenance and voltage control of the AC microgrid. 展开更多
关键词 fuzzy logic hierarchical control frequency regulation droop control alternating current(AC)microgrid
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部