Purpose–The study aims to build a high-precision longitudinal dynamics model for heavy-haul trains and validate it with line test data,present an optimization method for multi-stage cyclic brakes based on the model a...Purpose–The study aims to build a high-precision longitudinal dynamics model for heavy-haul trains and validate it with line test data,present an optimization method for multi-stage cyclic brakes based on the model and conduct a multi-objective detailed evaluation of the driver’s manipulation during cyclic braking.Design/methodology/approach–The high-precision longitudinal train dynamics model was established and verified by the cyclic braking test data of the 20,000 t heavy-haul combination train on the long and steep downgrade.Then the genetic algorithm is employed for optimization subsequent to decoupling multiple cyclic braking procedures,with due consideration of driver operation rules.For evaluation,key manipulation assessments in the scenario are prioritized,supplemented by multi-objective evaluation requirements,and the computational model is employed for detailed evaluation analysis.Findings–Based on the model,experimental data reveal that the probability of longitudinal force error being less than 64.6 kN is approximately 68%,95%for less than 129.2 kN and 99.7%for less than 193.8 kN.Upon optimizing manipulations during the cyclic braking,the maximum reduction in coupler force spans from 21%∼23.9%.Andtheevaluation scoresimply that a proper elevationof the releasingspeed favorssafety.A high electric braking force,although beneficial to some extent for energy-saving,is detrimental to reducing coupler force.Originality/value–The results will provide a theoretical basis and practical guidance for further ensuring the safety and energy-efficient operation of heavy haul trains on long downhill sections and improving the operational quality of heavy-haul trains.展开更多
Partitioning is a fundamental problem with applications to many areas including data mining, parellel processing and Very-large-scale integration (VLSI) design. An effective multi-level algorithm for bisecting graph...Partitioning is a fundamental problem with applications to many areas including data mining, parellel processing and Very-large-scale integration (VLSI) design. An effective multi-level algorithm for bisecting graph is proposed. During its coarsening phase, an improved matching approach based on the global information of the graph core is developed with its guidance function. During the refinement phase, the vertex gain is exploited as ant's heuristic information and a positive feedback method based on pheromone trails is used to find the global approximate bipartitioning. It is implemented with American National Standards Institute (ANSI) C and compared to MeTiS. The experimental evaluation shows that it performs well and produces encouraging solutions on 18 different graphs benchmarks.展开更多
In order to explore the potential of profit margin improvement,a novel three-scale integrated optimization model of furnace simulation,cyclic scheduling,and supply chain of ethylene plants is proposed and evaluated.A ...In order to explore the potential of profit margin improvement,a novel three-scale integrated optimization model of furnace simulation,cyclic scheduling,and supply chain of ethylene plants is proposed and evaluated.A decoupling strategy is proposed for the solution of the three-scale model,which uses our previously proposed reactor scale model for operation optimization and then transfers the obtained results as a parameter table in the joint MILP optimization of plant-supply chain scale for cyclic scheduling.This optimization framework simplifies the fundamental mixed-integer nonlinear programming(MINLP)into several sub-models,and improves the interpretability and extendibility.In the evaluation of an industrial case,a profit increase at a percentage of 3.25%is attained in optimization compared to the practical operations.Further sensitivity analysis is carried out for strategy evolving study when price policy,supply chain,and production requirement parameters are varied.These results could provide useful suggestions for petrochemical enterprises on thermal cracking production.展开更多
Based on the idea that modules are independent of machines, different combinations of modules and machines result in different configurations and the system performances differ under different configurations, a kind o...Based on the idea that modules are independent of machines, different combinations of modules and machines result in different configurations and the system performances differ under different configurations, a kind of cyclic reconfigurable flow shops are proposed for the new manufacturing paradigm-reconfigurable manufacturing system. The cyclic reconfigurable flow shop is modeled as a timed event graph. The optimal configuration is defined as the one under which the cyclic reconfigurable flow shop functions with the minimum cycle time and the minimum number of pallets. The optimal configuration, the minimum cycle time and the minimum number of pallets can be obtained in two steps.展开更多
A new multi-level analysis method of introducing the super-element modeling method, derived from the multi-level analysis method first proposed by O. F. Hughes, has been proposed in this paper to solve the problem of ...A new multi-level analysis method of introducing the super-element modeling method, derived from the multi-level analysis method first proposed by O. F. Hughes, has been proposed in this paper to solve the problem of high time cost in adopting a rational-based optimal design method for ship structural design. Furthermore,the method was verified by its effective application in optimization of the mid-ship section of a container ship. A full 3-D FEM model of a ship,suffering static and quasi-static loads, was used as the analyzing object for evaluating the structural performance of the mid-ship module, including static strength and buckling performance. Research results reveal that this new method could substantially reduce the computational cost of the rational-based optimization problem without decreasing its accuracy, which increases the feasibility and economic efficiency of using a rational-based optimal design method in ship structural design.展开更多
Weight reduction has attracted much attention among ship designers and ship owners.In the present work,based on an improved bi-directional evolutionary structural optimization(BESO) method and surrogate model method,w...Weight reduction has attracted much attention among ship designers and ship owners.In the present work,based on an improved bi-directional evolutionary structural optimization(BESO) method and surrogate model method,we propose a hybrid optimization method for the structural design optimization of beam-plate structures,which covers three optimization levels:dimension optimization,topology optimization and section optimization.The objective of the proposed optimization method is to minimize the weight of design object under a group of constraints.The kernel optimization procedure(KOP) uses BESO to obtain the optimal topology from a ground structure.To deal with beam-plate structures,the traditional BESO method is improved by using cubic box as the unit cell instead of solid unit to construct periodic lattice structure.In the first optimization level,a series of ground structures are generated based on different dimensional parameter combinations,the KOP is performed to all the ground structures,the response surface model of optimal objective values and dimension parameters is created,and then the optimal dimension parameters can be obtained.In the second optimization level,the optimal topology is obtained by using the KOP according to the optimal dimension parameters.In the third optimization level,response surface method(RSM) is used to determine the section parameters.The proposed method is applied to a hatch cover structure design.The locations and shapes of all the structural members are determined from an oversized ground structure.The results show that the proposed method leads to a greater weight saving,compared with the original design and genetic algorithm(GA) based optimization results.展开更多
For training the present Neural Network(NN)models,the standard technique is to utilize decaying Learning Rates(LR).While the majority of these techniques commence with a large LR,they will decay multiple times over ti...For training the present Neural Network(NN)models,the standard technique is to utilize decaying Learning Rates(LR).While the majority of these techniques commence with a large LR,they will decay multiple times over time.Decaying has been proved to enhance generalization as well as optimization.Other parameters,such as the network’s size,the number of hidden layers,drop-outs to avoid overfitting,batch size,and so on,are solely based on heuristics.This work has proposed Adaptive Teaching Learning Based(ATLB)Heuristic to identify the optimal hyperparameters for diverse networks.Here we consider three architec-tures Recurrent Neural Networks(RNN),Long Short Term Memory(LSTM),Bidirectional Long Short Term Memory(BiLSTM)of Deep Neural Networks for classification.The evaluation of the proposed ATLB is done through the various learning rate schedulers Cyclical Learning Rate(CLR),Hyperbolic Tangent Decay(HTD),and Toggle between Hyperbolic Tangent Decay and Triangular mode with Restarts(T-HTR)techniques.Experimental results have shown the performance improvement on the 20Newsgroup,Reuters Newswire and IMDB dataset.展开更多
An analysis model to simplify the shearing and blanking process was developed. Based on the simplified model, the shearing process was simulated by FEM and analyzed for various clearances. An optimum clearance in the ...An analysis model to simplify the shearing and blanking process was developed. Based on the simplified model, the shearing process was simulated by FEM and analyzed for various clearances. An optimum clearance in the process was determined by new approach based on orientation of the maximum shearing stress on the characteristic line linking two blades, according to the law of crack propagation and experiments. The optimum clearance determined by this method can be used to dictate the range of reasonable clearance. By the new approach, the optimum clearance can be obtained conveniently and accurately even if there is some difference between the selected points, where the initial crack is assumed originated, and the actual one, where the initial crack occurs really.展开更多
By converting an optimal control problem for nonlinear systems to a Hamiltonian system,a symplecitc-preserving method is proposed.The state and costate variables are approximated by the Lagrange polynomial.The state v...By converting an optimal control problem for nonlinear systems to a Hamiltonian system,a symplecitc-preserving method is proposed.The state and costate variables are approximated by the Lagrange polynomial.The state variables at two ends of the time interval are taken as independent variables.Based on the dual variable principle,nonlinear optimal control problems are replaced with nonlinear equations.Furthermore,in the implementation of the symplectic algorithm,based on the 2N algorithm,a multilevel method is proposed.When the time grid is refined from low level to high level,the initial state and costate variables of the nonlinear equations can be obtained from the Lagrange interpolation at the low level grid to improve efficiency.Numerical simulations show the precision and the efficiency of the proposed algorithm in this paper.展开更多
A new method of robust damper design is presented for elastic-plastic multi-degree-of-freedom(MDOF)building structures under multi-level ground motions(GMs).This method realizes a design that is effective for various ...A new method of robust damper design is presented for elastic-plastic multi-degree-of-freedom(MDOF)building structures under multi-level ground motions(GMs).This method realizes a design that is effective for various levels of GMs.The robustness of a design is measured by an incremental dynamic analysis(IDA)curve and an ideal drift response curve(IDRC).The IDRC is a plot of the optimized maximum deformation under a constraint on the total damper quantity vs.the design level of the GMs.The total damper quantity corresponds to the total cost of the added dampers.First,a problem of generation of IDRCs is stated.Then,its solution algorithm,which consists of the sensitivity-based algorithm(SBA)and a local search method,is proposed.In the application of the SBA,the passive added dampers are removed sequentially under the specified-level GMs.On the other hand,the proposed local search method can search the optimal solutions for a constant total damper quantity under GMs’increased levels.In this way,combining these two algorithms enables the comprehensive search of the optimal solutions for various conditions of the status of the GMs and the total damper quantity.The influence of selecting the type of added dampers(oil,hysteretic,and so on)and the selection of the input GMs on the IDRCs are investigated.Finally,a robust optimal design problem is formulated,and a simple local search-based algorithm is proposed.A simple index using the IDRC and the IDA curve of the model is used as the objective function.It is demonstrated that the proposed algorithm works well in spite of its simplicity.展开更多
In this paper, two different methods are used to study the cyclic structure solution and the optimal approximation of the quaternion Stein equation AXB - X = F . Firstly, the matrix equation equivalent to the ta...In this paper, two different methods are used to study the cyclic structure solution and the optimal approximation of the quaternion Stein equation AXB - X = F . Firstly, the matrix equation equivalent to the target structure matrix is constructed by using the complex decomposition of the quaternion matrix, to obtain the necessary and sufficient conditions for the existence of the cyclic solution of the equation and the expression of the general solution. Secondly, the Stein equation is converted into the Sylvester equation by adding the necessary parameters, and the condition for the existence of a cyclic solution and the expression of the equation’s solution are then obtained by using the real decomposition of the quaternion matrix and the Kronecker product of the matrix. At the same time, under the condition that the solution set is non-empty, the optimal approximation solution to the given quaternion circulant matrix is obtained by using the property of Frobenius norm property. Numerical examples are given to verify the correctness of the theoretical results and the feasibility of the proposed method. .展开更多
QoS Optimization is an important part of LTE SON, but not yet defined in the specification. We discuss modeling the problem of QoS optimization, improve the fitness function, then provide an algorithm based on MPSO to...QoS Optimization is an important part of LTE SON, but not yet defined in the specification. We discuss modeling the problem of QoS optimization, improve the fitness function, then provide an algorithm based on MPSO to search the optimal QoS parameter value set for LTE networks. Simulation results show that the algorithm converges more quickly and more accurately than the GA which can be applied in LTE SON.展开更多
The combination of nucleic acid and small-molecule drugs in tumor treatment holds significant promise;however,the precise delivery and controlled release of drugs within the cytoplasm encounter substantial obstacles,i...The combination of nucleic acid and small-molecule drugs in tumor treatment holds significant promise;however,the precise delivery and controlled release of drugs within the cytoplasm encounter substantial obstacles,impeding the advancement of formulations.To surmount the challenges associated with precise drug delivery and controlled release,we have developed a multi-level p H-responsive co-loaded drug lipid nanoplatform.This platform first employs cyclic cell-penetrating peptides to exert a multi-level pH response,thereby enhancing the uptake efficiency of tumor cells and endow the nanosystem with effective endosomal/lysosomal escape.Subsequently,small interferring RNA(siRNA)complexes are formed by compacting siRNA with stearic acid octahistidine,which is capable of responding to the lysosome-tocytoplasm pH gradient and facilitate siRNA release.The siRNA complexes and docetaxel are simultaneously encapsulated into liposomes,thereby creating a lipid nanoplatform capable of co-delivering nucleic acid and small-molecule drugs.The efficacy of this platform has been validated through both in vitro and in vivo experiments,affirming its significant potential for practical applications in the co-delivery of nucleic acids and small-molecule drugs.展开更多
The umbilical,a key component in offshore energy extraction,plays a vital role in ensuring the stable operation of the entire production system.The extensive variety of cross-sectional components creates highly comple...The umbilical,a key component in offshore energy extraction,plays a vital role in ensuring the stable operation of the entire production system.The extensive variety of cross-sectional components creates highly complex layout combinations.Furthermore,due to constraints in component quantity and geometry within the cross-sectional layout,filler bodies must be incorporated to maintain cross-section performance.Conventional design approaches based on manual experience suffer from inefficiency,high variability,and difficulties in quantification.This paper presents a multi-level automatic filling optimization design method for umbilical cross-sectional layouts to address these limitations.Initially,the research establishes a multi-objective optimization model that considers compactness,balance,and wear resistance of the cross-section,employing an enhanced genetic algorithm to achieve a near-optimal layout.Subsequently,the study implements an image processing-based vacancy detection technique to accurately identify cross-sectional gaps.To manage the variability and diversity of these vacant regions,the research introduces a multi-level filling method that strategically selects and places filler bodies of varying dimensions,overcoming the constraints of uniform-size fillers.Additionally,the method incorporates a hierarchical strategy that subdivides the complex cross-section into multiple layers,enabling layer-by-layer optimization and filling.This approach reduces manufac-turing equipment requirements while ensuring practical production process feasibility.The methodology is validated through a specific umbilical case study.The results demonstrate improvements in compactness,balance,and wear resistance compared with the initial cross-section,offering novel insights and valuable references for filler design in umbilical cross-sections.展开更多
To realize low-cost freight transport in the logistics network and improve the network operation efficiency,a multi-objective optimization model and the corresponding algorithm for a hub-and-spoke logistics network ar...To realize low-cost freight transport in the logistics network and improve the network operation efficiency,a multi-objective optimization model and the corresponding algorithm for a hub-and-spoke logistics network are proposed based on the multi-level location of hub points and channels layout.By considering the structure of the multi-level hub-andspoke logistics network and the features of the connectivity between the hub and spoke points,the multi-objective optimization model is constructed with two objectives of minimizing the total network operation costs and the total network service time.By considering the characteristics of decision variables and models,a variable neighborhood search(VNS)-niched Pareto genetic algorithm(NPGA)approach with a three-stage encoding structure chromosome is proposed,where the VNS algorithm nested in NPGA is used for individual variable neighborhood search to optimize individual channel level genes,and NPGA is adopted to solve the multi-objective optimization model.To evaluate the performance of the proposed VNS-NPGA approach,a real-life case study based on a smallscale Australia Post data set was conducted,and 25 nodes of the Australia Post and 14nodes of the Gansu Province 3-level hub-and-spoke logistics networks were established,respectively.The analysis results indicated that the network structure of multi-level hub points could avoid the detour problem existing in the traditional hub-and-spoke network,and showed better applicability in the narrow geographical structure.Compared to the traditional multi-objective evolutionary algorithms,VNS-NPGA can obtain better solutions through the distributed optimization of channel levels,avoiding the problem that a single algorithm cannot effectively deal with coupling relationships in genes.展开更多
The Distributed Propulsion Wing(DPW)presents prominent advantages in terms of energy conservation during flight,but the intense integration of propulsive internal flow with aerodynamic external flow brings significant...The Distributed Propulsion Wing(DPW)presents prominent advantages in terms of energy conservation during flight,but the intense integration of propulsive internal flow with aerodynamic external flow brings significant design challenges.To tackle this issue,this paper undertakes a comprehensive investigation of the aero-propulsive coupling performance of the DPW under both hovering and cruising conditions,and subsequently proposes a multi-level collaboration optimization design method based on the decomposition principle.Specifically,the complex 3D surfaces of DPW are systematically dissociated into simple 2D curves with inherent relationships for design.The decomposition is achieved based on the analysis results of the aero-propulsive coupling characteristics.And a DPW design case is conducted and subsequently analyzed in order to further validate the effectiveness and feasibility of the proposed design method.It is shown that a 115.75%drag reduction of DPW can be achieved at cruise under a specified thrust level.Furthermore,the DPW exhibits inherent characteristics of consistent lift-to-drag ratio with the thrust-drag balance constraint,regardless of variations in incoming flow velocity or total thrust.展开更多
文摘Purpose–The study aims to build a high-precision longitudinal dynamics model for heavy-haul trains and validate it with line test data,present an optimization method for multi-stage cyclic brakes based on the model and conduct a multi-objective detailed evaluation of the driver’s manipulation during cyclic braking.Design/methodology/approach–The high-precision longitudinal train dynamics model was established and verified by the cyclic braking test data of the 20,000 t heavy-haul combination train on the long and steep downgrade.Then the genetic algorithm is employed for optimization subsequent to decoupling multiple cyclic braking procedures,with due consideration of driver operation rules.For evaluation,key manipulation assessments in the scenario are prioritized,supplemented by multi-objective evaluation requirements,and the computational model is employed for detailed evaluation analysis.Findings–Based on the model,experimental data reveal that the probability of longitudinal force error being less than 64.6 kN is approximately 68%,95%for less than 129.2 kN and 99.7%for less than 193.8 kN.Upon optimizing manipulations during the cyclic braking,the maximum reduction in coupler force spans from 21%∼23.9%.Andtheevaluation scoresimply that a proper elevationof the releasingspeed favorssafety.A high electric braking force,although beneficial to some extent for energy-saving,is detrimental to reducing coupler force.Originality/value–The results will provide a theoretical basis and practical guidance for further ensuring the safety and energy-efficient operation of heavy haul trains on long downhill sections and improving the operational quality of heavy-haul trains.
基金the International Cooperation Project of Ministry of Science and Technology of P. R. China (GrantNo.CB7-2-01)SEC E-Institute: Shanghai High Institutions Grid
文摘Partitioning is a fundamental problem with applications to many areas including data mining, parellel processing and Very-large-scale integration (VLSI) design. An effective multi-level algorithm for bisecting graph is proposed. During its coarsening phase, an improved matching approach based on the global information of the graph core is developed with its guidance function. During the refinement phase, the vertex gain is exploited as ant's heuristic information and a positive feedback method based on pheromone trails is used to find the global approximate bipartitioning. It is implemented with American National Standards Institute (ANSI) C and compared to MeTiS. The experimental evaluation shows that it performs well and produces encouraging solutions on 18 different graphs benchmarks.
基金the National Natural Science Foundation of China for its financial support(U1462206,21991100,21991104)。
文摘In order to explore the potential of profit margin improvement,a novel three-scale integrated optimization model of furnace simulation,cyclic scheduling,and supply chain of ethylene plants is proposed and evaluated.A decoupling strategy is proposed for the solution of the three-scale model,which uses our previously proposed reactor scale model for operation optimization and then transfers the obtained results as a parameter table in the joint MILP optimization of plant-supply chain scale for cyclic scheduling.This optimization framework simplifies the fundamental mixed-integer nonlinear programming(MINLP)into several sub-models,and improves the interpretability and extendibility.In the evaluation of an industrial case,a profit increase at a percentage of 3.25%is attained in optimization compared to the practical operations.Further sensitivity analysis is carried out for strategy evolving study when price policy,supply chain,and production requirement parameters are varied.These results could provide useful suggestions for petrochemical enterprises on thermal cracking production.
基金Supported by National Key Fundamental Research and Development Project of P. R. China (2002CB312200)
文摘Based on the idea that modules are independent of machines, different combinations of modules and machines result in different configurations and the system performances differ under different configurations, a kind of cyclic reconfigurable flow shops are proposed for the new manufacturing paradigm-reconfigurable manufacturing system. The cyclic reconfigurable flow shop is modeled as a timed event graph. The optimal configuration is defined as the one under which the cyclic reconfigurable flow shop functions with the minimum cycle time and the minimum number of pallets. The optimal configuration, the minimum cycle time and the minimum number of pallets can be obtained in two steps.
基金Supported by the Project of Ministry of Education and Finance(No.200512)the Project of the State Key Laboratory of ocean engineering(GKZD010053-10)
文摘A new multi-level analysis method of introducing the super-element modeling method, derived from the multi-level analysis method first proposed by O. F. Hughes, has been proposed in this paper to solve the problem of high time cost in adopting a rational-based optimal design method for ship structural design. Furthermore,the method was verified by its effective application in optimization of the mid-ship section of a container ship. A full 3-D FEM model of a ship,suffering static and quasi-static loads, was used as the analyzing object for evaluating the structural performance of the mid-ship module, including static strength and buckling performance. Research results reveal that this new method could substantially reduce the computational cost of the rational-based optimization problem without decreasing its accuracy, which increases the feasibility and economic efficiency of using a rational-based optimal design method in ship structural design.
基金the National Natural Science Foundation of China(No.51509033)
文摘Weight reduction has attracted much attention among ship designers and ship owners.In the present work,based on an improved bi-directional evolutionary structural optimization(BESO) method and surrogate model method,we propose a hybrid optimization method for the structural design optimization of beam-plate structures,which covers three optimization levels:dimension optimization,topology optimization and section optimization.The objective of the proposed optimization method is to minimize the weight of design object under a group of constraints.The kernel optimization procedure(KOP) uses BESO to obtain the optimal topology from a ground structure.To deal with beam-plate structures,the traditional BESO method is improved by using cubic box as the unit cell instead of solid unit to construct periodic lattice structure.In the first optimization level,a series of ground structures are generated based on different dimensional parameter combinations,the KOP is performed to all the ground structures,the response surface model of optimal objective values and dimension parameters is created,and then the optimal dimension parameters can be obtained.In the second optimization level,the optimal topology is obtained by using the KOP according to the optimal dimension parameters.In the third optimization level,response surface method(RSM) is used to determine the section parameters.The proposed method is applied to a hatch cover structure design.The locations and shapes of all the structural members are determined from an oversized ground structure.The results show that the proposed method leads to a greater weight saving,compared with the original design and genetic algorithm(GA) based optimization results.
文摘For training the present Neural Network(NN)models,the standard technique is to utilize decaying Learning Rates(LR).While the majority of these techniques commence with a large LR,they will decay multiple times over time.Decaying has been proved to enhance generalization as well as optimization.Other parameters,such as the network’s size,the number of hidden layers,drop-outs to avoid overfitting,batch size,and so on,are solely based on heuristics.This work has proposed Adaptive Teaching Learning Based(ATLB)Heuristic to identify the optimal hyperparameters for diverse networks.Here we consider three architec-tures Recurrent Neural Networks(RNN),Long Short Term Memory(LSTM),Bidirectional Long Short Term Memory(BiLSTM)of Deep Neural Networks for classification.The evaluation of the proposed ATLB is done through the various learning rate schedulers Cyclical Learning Rate(CLR),Hyperbolic Tangent Decay(HTD),and Toggle between Hyperbolic Tangent Decay and Triangular mode with Restarts(T-HTR)techniques.Experimental results have shown the performance improvement on the 20Newsgroup,Reuters Newswire and IMDB dataset.
基金Project( 5 992 2 0 )supportedbyNaturalScienceFoundationofHebeiProvince China
文摘An analysis model to simplify the shearing and blanking process was developed. Based on the simplified model, the shearing process was simulated by FEM and analyzed for various clearances. An optimum clearance in the process was determined by new approach based on orientation of the maximum shearing stress on the characteristic line linking two blades, according to the law of crack propagation and experiments. The optimum clearance determined by this method can be used to dictate the range of reasonable clearance. By the new approach, the optimum clearance can be obtained conveniently and accurately even if there is some difference between the selected points, where the initial crack is assumed originated, and the actual one, where the initial crack occurs really.
基金supported by the National Natural Science Foundation of China(Nos.10632030,10902020,and 10721062)the Research Fund for the Doctoral Program of Higher Education of China(No.20070141067)+2 种基金the Doctoral Fund of Liaoning Province(No.20081091)the Key Laboratory Fund of Liaoning Province of China(No.2009S018)the Young Researcher Funds of Dalian University of Technology(No.SFDUT07002)
文摘By converting an optimal control problem for nonlinear systems to a Hamiltonian system,a symplecitc-preserving method is proposed.The state and costate variables are approximated by the Lagrange polynomial.The state variables at two ends of the time interval are taken as independent variables.Based on the dual variable principle,nonlinear optimal control problems are replaced with nonlinear equations.Furthermore,in the implementation of the symplectic algorithm,based on the 2N algorithm,a multilevel method is proposed.When the time grid is refined from low level to high level,the initial state and costate variables of the nonlinear equations can be obtained from the Lagrange interpolation at the low level grid to improve efficiency.Numerical simulations show the precision and the efficiency of the proposed algorithm in this paper.
基金Part of the present work is supported by the Grant-in-Aid for Scientific Research(KAKENHI)of the Japan Society for the Promotion of Science(Nos.18H01584,JP20J20811)This support is greatly appreciated.
文摘A new method of robust damper design is presented for elastic-plastic multi-degree-of-freedom(MDOF)building structures under multi-level ground motions(GMs).This method realizes a design that is effective for various levels of GMs.The robustness of a design is measured by an incremental dynamic analysis(IDA)curve and an ideal drift response curve(IDRC).The IDRC is a plot of the optimized maximum deformation under a constraint on the total damper quantity vs.the design level of the GMs.The total damper quantity corresponds to the total cost of the added dampers.First,a problem of generation of IDRCs is stated.Then,its solution algorithm,which consists of the sensitivity-based algorithm(SBA)and a local search method,is proposed.In the application of the SBA,the passive added dampers are removed sequentially under the specified-level GMs.On the other hand,the proposed local search method can search the optimal solutions for a constant total damper quantity under GMs’increased levels.In this way,combining these two algorithms enables the comprehensive search of the optimal solutions for various conditions of the status of the GMs and the total damper quantity.The influence of selecting the type of added dampers(oil,hysteretic,and so on)and the selection of the input GMs on the IDRCs are investigated.Finally,a robust optimal design problem is formulated,and a simple local search-based algorithm is proposed.A simple index using the IDRC and the IDA curve of the model is used as the objective function.It is demonstrated that the proposed algorithm works well in spite of its simplicity.
文摘In this paper, two different methods are used to study the cyclic structure solution and the optimal approximation of the quaternion Stein equation AXB - X = F . Firstly, the matrix equation equivalent to the target structure matrix is constructed by using the complex decomposition of the quaternion matrix, to obtain the necessary and sufficient conditions for the existence of the cyclic solution of the equation and the expression of the general solution. Secondly, the Stein equation is converted into the Sylvester equation by adding the necessary parameters, and the condition for the existence of a cyclic solution and the expression of the equation’s solution are then obtained by using the real decomposition of the quaternion matrix and the Kronecker product of the matrix. At the same time, under the condition that the solution set is non-empty, the optimal approximation solution to the given quaternion circulant matrix is obtained by using the property of Frobenius norm property. Numerical examples are given to verify the correctness of the theoretical results and the feasibility of the proposed method. .
文摘QoS Optimization is an important part of LTE SON, but not yet defined in the specification. We discuss modeling the problem of QoS optimization, improve the fitness function, then provide an algorithm based on MPSO to search the optimal QoS parameter value set for LTE networks. Simulation results show that the algorithm converges more quickly and more accurately than the GA which can be applied in LTE SON.
基金supported by the grants from the National Natural Science Foundation of China(Nos.81973251 and 81302725)Hebei Province Funding Project for Introduced Overseas Personnel(Nos.C20230351 and C20220345)+3 种基金Key Research and Development Program of Hebei Province(No.22372701D)Hebei Province Natural Science Fund(No.H2020206610)Hebei Provincial Health Commission Government-Funded Clinical Medicine Talent Program(No.ZF2024048)Hebei Medical University Undergraduate Innovative Experiment Program(No.USIP2023008)。
文摘The combination of nucleic acid and small-molecule drugs in tumor treatment holds significant promise;however,the precise delivery and controlled release of drugs within the cytoplasm encounter substantial obstacles,impeding the advancement of formulations.To surmount the challenges associated with precise drug delivery and controlled release,we have developed a multi-level p H-responsive co-loaded drug lipid nanoplatform.This platform first employs cyclic cell-penetrating peptides to exert a multi-level pH response,thereby enhancing the uptake efficiency of tumor cells and endow the nanosystem with effective endosomal/lysosomal escape.Subsequently,small interferring RNA(siRNA)complexes are formed by compacting siRNA with stearic acid octahistidine,which is capable of responding to the lysosome-tocytoplasm pH gradient and facilitate siRNA release.The siRNA complexes and docetaxel are simultaneously encapsulated into liposomes,thereby creating a lipid nanoplatform capable of co-delivering nucleic acid and small-molecule drugs.The efficacy of this platform has been validated through both in vitro and in vivo experiments,affirming its significant potential for practical applications in the co-delivery of nucleic acids and small-molecule drugs.
基金financially supported by Guangdong Province Basic and Applied Basic Research Fund Project(Grant No.2022B1515250009)Liaoning Provincial Natural Science Foundation-Doctoral Research Start-up Fund Project(Grant No.2024-BSBA-05)+1 种基金Major Science and Technology Innovation Project in Shandong Province(Grant No.2024CXGC010803)the National Natural Science Foundation of China(Grant Nos.52271269 and 12302147).
文摘The umbilical,a key component in offshore energy extraction,plays a vital role in ensuring the stable operation of the entire production system.The extensive variety of cross-sectional components creates highly complex layout combinations.Furthermore,due to constraints in component quantity and geometry within the cross-sectional layout,filler bodies must be incorporated to maintain cross-section performance.Conventional design approaches based on manual experience suffer from inefficiency,high variability,and difficulties in quantification.This paper presents a multi-level automatic filling optimization design method for umbilical cross-sectional layouts to address these limitations.Initially,the research establishes a multi-objective optimization model that considers compactness,balance,and wear resistance of the cross-section,employing an enhanced genetic algorithm to achieve a near-optimal layout.Subsequently,the study implements an image processing-based vacancy detection technique to accurately identify cross-sectional gaps.To manage the variability and diversity of these vacant regions,the research introduces a multi-level filling method that strategically selects and places filler bodies of varying dimensions,overcoming the constraints of uniform-size fillers.Additionally,the method incorporates a hierarchical strategy that subdivides the complex cross-section into multiple layers,enabling layer-by-layer optimization and filling.This approach reduces manufac-turing equipment requirements while ensuring practical production process feasibility.The methodology is validated through a specific umbilical case study.The results demonstrate improvements in compactness,balance,and wear resistance compared with the initial cross-section,offering novel insights and valuable references for filler design in umbilical cross-sections.
基金supported by Gansu Provincial Science and Technology Major Special Project—Enterprise Innovation Consortium Project(No.22ZD6GA010)Industry Support Plan Project from Department of Education of Gansu Province(No.2024CYZC-28)+2 种基金the Soft Science Special Project of Gansu Basic Research Plan(No.25JRZA197)Lanzhou University of Finance and Economics Research Program(No.Lzufe2023C-002)National Natural Science Foundation of China(No.52062027)。
文摘To realize low-cost freight transport in the logistics network and improve the network operation efficiency,a multi-objective optimization model and the corresponding algorithm for a hub-and-spoke logistics network are proposed based on the multi-level location of hub points and channels layout.By considering the structure of the multi-level hub-andspoke logistics network and the features of the connectivity between the hub and spoke points,the multi-objective optimization model is constructed with two objectives of minimizing the total network operation costs and the total network service time.By considering the characteristics of decision variables and models,a variable neighborhood search(VNS)-niched Pareto genetic algorithm(NPGA)approach with a three-stage encoding structure chromosome is proposed,where the VNS algorithm nested in NPGA is used for individual variable neighborhood search to optimize individual channel level genes,and NPGA is adopted to solve the multi-objective optimization model.To evaluate the performance of the proposed VNS-NPGA approach,a real-life case study based on a smallscale Australia Post data set was conducted,and 25 nodes of the Australia Post and 14nodes of the Gansu Province 3-level hub-and-spoke logistics networks were established,respectively.The analysis results indicated that the network structure of multi-level hub points could avoid the detour problem existing in the traditional hub-and-spoke network,and showed better applicability in the narrow geographical structure.Compared to the traditional multi-objective evolutionary algorithms,VNS-NPGA can obtain better solutions through the distributed optimization of channel levels,avoiding the problem that a single algorithm cannot effectively deal with coupling relationships in genes.
基金co-supported by the Equipment Advance Research Project of China(No.50911040803)the National Defense Pre-research Foundation of China(No.2021-JCJQJJ-0805)the Aeronautical Science Foundation of China(No.2024Z006053001)。
文摘The Distributed Propulsion Wing(DPW)presents prominent advantages in terms of energy conservation during flight,but the intense integration of propulsive internal flow with aerodynamic external flow brings significant design challenges.To tackle this issue,this paper undertakes a comprehensive investigation of the aero-propulsive coupling performance of the DPW under both hovering and cruising conditions,and subsequently proposes a multi-level collaboration optimization design method based on the decomposition principle.Specifically,the complex 3D surfaces of DPW are systematically dissociated into simple 2D curves with inherent relationships for design.The decomposition is achieved based on the analysis results of the aero-propulsive coupling characteristics.And a DPW design case is conducted and subsequently analyzed in order to further validate the effectiveness and feasibility of the proposed design method.It is shown that a 115.75%drag reduction of DPW can be achieved at cruise under a specified thrust level.Furthermore,the DPW exhibits inherent characteristics of consistent lift-to-drag ratio with the thrust-drag balance constraint,regardless of variations in incoming flow velocity or total thrust.