Gas-liquid two-phase flow in fractal porous media is pivotal for engineering applications,yet it remains challenging to be accurately characterized due to complex microstructure-flow interactions.This study establishe...Gas-liquid two-phase flow in fractal porous media is pivotal for engineering applications,yet it remains challenging to be accurately characterized due to complex microstructure-flow interactions.This study establishes a pore-scale numerical framework integratingMonte Carlo-generated fractal porousmedia with Volume of Fluid(VOF)simulations to unravel the coupling among pore distribution characterized by fractal dimension(Df),flow dynamics,and displacement efficiency.A pore-scale model based on the computed tomography(CT)microstructure of Berea sandstone is established,and the simulation results are compared with experimental data.Good agreement is found in phase distribution,breakthrough behavior,and flow path morphology,confirming the reliability of the numerical simulation method.Ten fractal porous media models with Df ranging from 1.25~1.7 were constructed using a Monte-Carlo approach.The gas-liquid two-phase flow dynamics was characterized using the VOF solver across gas injection rates of 0.05-5m/s,inwhich the time-resolved two-phase distribution patternswere systematically recorded.The results reveal that smaller fractal dimensions(Df=1.25~1.45)accelerate fingering breakthrough(peak velocity is 1.73 m/s at Df=1.45)due to a bimodal pore size distribution dominated by narrow channels.Increasing Df amplifies vorticity generation by about 3 times(eddy viscosity is 0.033 Pa⋅s at Df=1.7)through reduced interfacial curvature,while tortuosity-driven pressure differentials transition from sharp increases(0.4~6.3 Pa at Df=1.25~1.3)to inertial plateaus(4.8 Pa at Df=1.7).A nonlinear increase in equilibrium gas volume fraction(fav=0.692 at Df=1.7)emerges from residual gas saturation and turbulence-enhanced dispersion.This behavior is further modulated by flow velocity,with fav peaking at 0.72 under capillary-dominated conditions(0.05 m/s),but decreasing to 0.65 in the inertial regime(0.5 m/s).The work quantitatively links fractal topology to multiphase flow regimes,demonstrating the critical role of Df in governing preferential pathways,energy dissipation,and phase distribution.展开更多
As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods ge...As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods generally have problems such as insufficient 3D scene description capability and low dynamic update efficiency,which are difficult to meet the demand of real-time accurate management.For this reason,this paper proposes a vehicle twin modeling method for road tunnels.This approach starts from the actual management needs,and supports multi-level dynamic modeling from vehicle type,size to color by constructing a vehicle model library that can be flexibly invoked;at the same time,semantic constraint rules with geometric layout,behavioral attributes,and spatial relationships are designed to ensure that the virtual model matches with the real model with a high degree of similarity;ultimately,the prototype system is constructed and the case region is selected for the case study,and the dynamic vehicle status in the tunnel is realized by integrating real-time monitoring data with semantic constraints for precise virtual-real mapping.Finally,the prototype system is constructed and case experiments are conducted in selected case areas,which are combined with real-time monitoring data to realize dynamic updating and three-dimensional visualization of vehicle states in tunnels.The experiments show that the proposed method can run smoothly with an average rendering efficiency of 17.70 ms while guaranteeing the modeling accuracy(composite similarity of 0.867),which significantly improves the real-time and intuitive tunnel management.The research results provide reliable technical support for intelligent operation and emergency response of road tunnels,and offer new ideas for digital twin modeling of complex scenes.展开更多
The dynamic research of landslide is one of the key Points in landslidology. In the paper,from the view point of nonlinear dynamic theory. some features of Xintan landslide, such as the distribution regularities of sp...The dynamic research of landslide is one of the key Points in landslidology. In the paper,from the view point of nonlinear dynamic theory. some features of Xintan landslide, such as the distribution regularities of spatial and temporal fractal dimensions and their corresponding relationships to landslide occurring are researched. The accumulative principles of fractal dimension reduction is exploratively pointed out. The nonlinear dynamic equation of the landslide is built by analyzing the relationship between the correlation dimension and the phase space. Finally, the forecasted results and error analysis are listed. The research results are satisfactory.展开更多
In this paper, a low-dimensional multiple-input and multiple-output (MIMO) model predictive control (MPC) configuration is presented for partial differential equation (PDE) unknown spatially-distributed systems ...In this paper, a low-dimensional multiple-input and multiple-output (MIMO) model predictive control (MPC) configuration is presented for partial differential equation (PDE) unknown spatially-distributed systems (SDSs). First, the dimension reduction with principal component analysis (PCA) is used to transform the high-dimensional spatio-temporal data into a low-dimensional time domain. The MPC strategy is proposed based on the online correction low-dimensional models, where the state of the system at a previous time is used to correct the output of low-dimensional models. Sufficient conditions for closed-loop stability are presented and proven. Simulations demonstrate the accuracy and efficiency of the proposed methodologies.展开更多
Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ri...Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ring's position is asymmetrical.All of these cause that the ring's dimensions cannot be measured directly.Through analyzing the relationships among the dimensions of ring blanks,the positions of rolls and the ring's inner and outer diameter,the soft measurement model of ring's dimensions is established based on the radial basis function neural network(RBFNN).A mass of data samples are obtained from VHRR finite element(FE) simulations to train and test the soft measurement NN model,and the model's structure parameters are deduced and optimized by genetic algorithm(GA).Finally,the soft measurement system of ring's dimensions is established and validated by the VHRR experiments.The ring's dimensions were measured artificially and calculated by the soft measurement NN model.The results show that the calculation values of GA-RBFNN model are close to the artificial measurement data.In addition,the calculation accuracy of GA-RBFNN model is higher than that of RBFNN model.The research results suggest that the soft measurement NN model has high precision and flexibility.The research can provide practical methods and theoretical guidance for the accurate measurement of VHRR process.展开更多
The quality assessment and prediction becomes one of the most critical requirements for improving reliability, efficiency and safety of laser welding. Accurate and efficient model to perform non-destructive quality es...The quality assessment and prediction becomes one of the most critical requirements for improving reliability, efficiency and safety of laser welding. Accurate and efficient model to perform non-destructive quality estimation is an essential part of this assessment. This paper presents a structured and comprehensive approach developed to design an effective artificial neural network based model for weld bead geometry prediction and control in laser welding of galvanized steel in butt joint configurations. The proposed approach examines laser welding parameters and conditions known to have an influence on geometric characteristics of the welds and builds a weld quality prediction model step by step. The modelling procedure begins by examining, through structured experimental investigations and exhaustive 3D modelling and simulation efforts, the direct and the interaction effects of laser welding parameters such as laser power, welding speed, fibre diameter and gap, on the weld bead geometry (i.e. depth of penetration and bead width). Using these results and various statistical tools, various neural network based prediction models are developed and evaluated. The results demonstrate that the proposed approach can effectively lead to a consistent model able to accurately and reliably provide an appropriate prediction of weld bead geometry under variable welding conditions.展开更多
This paper presents an experimentally validated weld joint shape and dimensions predictive 3D modeling for low carbon galvanized steel in butt-joint configurations. The proposed modelling approach is based on metallur...This paper presents an experimentally validated weld joint shape and dimensions predictive 3D modeling for low carbon galvanized steel in butt-joint configurations. The proposed modelling approach is based on metallurgical transformations using temperature dependent material properties and the enthalpy method. Conduction and keyhole modes welding are investigated using surface and volumetric heat sources, respectively. Transition between the heat sources is carried out according to the power density and interaction time. Simulations are carried out using 3D finite element model on commercial software. The simulation results of the weld shape and dimensions are validated using a structured experimental investigation based on Taguchi method. Experimental validation conducted on a 3 kW Nd: YAG laser source reveals that the modelling approach can provide not only a consistent and accurate prediction of the weld characteristics under variable welding parameters and conditions but also a comprehensive and quantitative analysis of process parameters effects. The results show great concordance between predicted and measured values for the weld joint shape and dimensions.展开更多
Moistube irrigation is a new micro-irrigation technology.Accurately estimating its wetting pattern dimensions presents a challenge.Therefore,it is necessary to develop models for efficient assessment of the wetting tr...Moistube irrigation is a new micro-irrigation technology.Accurately estimating its wetting pattern dimensions presents a challenge.Therefore,it is necessary to develop models for efficient assessment of the wetting transport pattern in order to design a cost-effective moistube irrigation system.To achieve this goal,this study developed a multivariate nonlinear regression model and compared it with a dimensional model.HYDRUS-2D was used to perform numerical simulations of 56 irrigation scenarios with different factors.The experiments showed that the shape of the wetting soil body approximated a cylinder and was mainly affected by soil texture,pressure head,and matric potential.A multivariate nonlinear model using a power function relationship between wetting size and irrigation time was developed,with a determination coefficient greater than 0.99.The model was validated for cases with six soil texture types,with mean average absolute errors of 0.43-0.90 cm,root mean square errors of 0.51-0.95 cm,and mean deviation percentage values of 3.23%-6.27%.The multivariate nonlinear regression model outperformed the dimensional model.It can therefore provide a scientific foundation for the development of moistube irrigation systems.展开更多
Three- dimension (3-D) wind-driven currents in the Bohai Sea in both winter and summer are calculated by using a 3- D barotropic steady model, and the results are consistent with observed flow char -acteristics. Based...Three- dimension (3-D) wind-driven currents in the Bohai Sea in both winter and summer are calculated by using a 3- D barotropic steady model, and the results are consistent with observed flow char -acteristics. Based on the results, 3- D characteristics of flow, currents at different depths, compensated flow in the lower layer , long and narrow alongshore current, the area of upwelling and downwelling, main circulation in vertical profile, and the current in Bohai Strait are discussed.展开更多
The turbulence mechanism plays an important part in the mixing process and momentum transfer of turbulence. A three-dimensional Prandtl mixing length tidal model has been developed to simulate tidal flows and water qu...The turbulence mechanism plays an important part in the mixing process and momentum transfer of turbulence. A three-dimensional Prandtl mixing length tidal model has been developed to simulate tidal flows and water quality. The eddy viscosities and diffusivities are computed from the Prandtl mixing length model. In order to model the water quality of an estuary or coastal area many interdependent processes need to be simulated. These may be conveniently separated into three main groups: transport and mixing processes, biochemical interaction of water quality variables and the utilization and re-cycling of nutrients by living matter. The model simulates full oxygen and nutrient balance, primary productivity and the transport, reaction mechanism and fate of pollutants over tidal time-scales. The model is applied to numerical simulation of tidal flows and water quality in Dalian Bay. The model has been calibrated against a limited data set of historical water quality observations and in general demonstrates excellent agreement with all available data.展开更多
The method of automatically generating generalized curvilinear meshes has many advantages and is beginning to be used in ocean simulations. This three dimensional (3 D) coastal barotropic model in generalized curvilin...The method of automatically generating generalized curvilinear meshes has many advantages and is beginning to be used in ocean simulations. This three dimensional (3 D) coastal barotropic model in generalized curvilinear grids was developed to simulate the M 2, S 2, K 1 and O 1 tidal waves in the Bohai Sea, China. The numerical results agreeing with observations showed that the method is an effective tool for improving accuracy of simulations in shallow shelf seas, especially in the near coast region, if the pseudo effect there usually caused by rectangular grids can be removed.展开更多
To study the rock deformation with three- dimensional model under rolling forces of disc cutter, by car- rying out the circular-grooving test with disc cutter rolling around on the rock, the rock mechanical behavior u...To study the rock deformation with three- dimensional model under rolling forces of disc cutter, by car- rying out the circular-grooving test with disc cutter rolling around on the rock, the rock mechanical behavior under rolling disc cutter is studied, the mechanical model of disc cutter rolling around the groove is established, and the the- ory of single-point and double-angle variables is proposed. Based on this theory, the physics equations and geometric equations of rock mechanical behavior under disc cutters of tunnel boring machine (TBM) are studied, and then the bal- ance equations of interactive forces between disc cutter and rock are established. Accordingly, formulas about normal force, rolling force and side force of a disc cutter are de- rived, and their validity is studied by tests. Therefore, a new method and theory is proposed to study rock- breaking mech- anism of disc cutters.展开更多
We study the order parameter probability distribution at the critical point for the three-dimensional spin-1/2 and spin-1 Ising models on the simple cubic lattice under periodic boundary conditions. The finite size sc...We study the order parameter probability distribution at the critical point for the three-dimensional spin-1/2 and spin-1 Ising models on the simple cubic lattice under periodic boundary conditions. The finite size scaling relation for the order parameter probability distribution is tested and verified numerically by microcanonical Creutz cellular automata simulations. The state critical exponent δ, which characterizes the far tail regime of the scaling order parameter probability distribution, is estimated for three-dimensional Ising models using the cellular automaton simulations at the critical temperature. The results are in good agreement with the Monte Carlo calculations.展开更多
In order to know about the essence of service employees' innovation behavior, the service employees' innovation behavior scale based on their unique characteristics is designed. Data were collected from high-s...In order to know about the essence of service employees' innovation behavior, the service employees' innovation behavior scale based on their unique characteristics is designed. Data were collected from high-star hospitalities. Through the issuance and the collection of questionnaires, the scale is verified to have good reliability and validity by SPSS software analysis. Meanwhile,the structural equation model( SEM) is suited for testing structural dimensions of service employees' innovation behavior. The results showed that service employees' innovation behavior could be decomposed into a four-dimensional structure,namely innovation orientation, ideas generation, innovation implementation and innovation practice. In addition,there are significant differences in service employees' innovation behavior about subjects' gender,position,education background and years of working.展开更多
Fire detection has held stringent importance in computer vision for over half a century.The development of early fire detection strategies is pivotal to the realization of safe and smart cities,inhabitable in the futu...Fire detection has held stringent importance in computer vision for over half a century.The development of early fire detection strategies is pivotal to the realization of safe and smart cities,inhabitable in the future.However,the development of optimal fire and smoke detection models is hindered by limitations like publicly available datasets,lack of diversity,and class imbalance.In this work,we explore the possible ways forward to overcome these challenges posed by available datasets.We study the impact of a class-balanced dataset to improve the fire detection capability of state-of-the-art(SOTA)vision-based models and propose the use of generative models for data augmentation,as a future work direction.First,a comparative analysis of two prominent object detection architectures,You Only Look Once version 7(YOLOv7)and YOLOv8 has been carried out using a balanced dataset,where both models have been evaluated across various evaluation metrics including precision,recall,and mean Average Precision(mAP).The results are compared to other recent fire detection models,highlighting the superior performance and efficiency of the proposed YOLOv8 architecture as trained on our balanced dataset.Next,a fractal dimension analysis gives a deeper insight into the repetition of patterns in fire,and the effectiveness of the results has been demonstrated by a windowing-based inference approach.The proposed Slicing-Aided Hyper Inference(SAHI)improves the fire and smoke detection capability of YOLOv8 for real-life applications with a significantly improved mAP performance over a strict confidence threshold.YOLOv8 with SAHI inference gives a mAP:50-95 improvement of more than 25%compared to the base YOLOv8 model.The study also provides insights into future work direction by exploring the potential of generative models like deep convolutional generative adversarial network(DCGAN)and diffusion models like stable diffusion,for data augmentation.展开更多
Hydraulic fracturing is designed to form a high-conductivity fracture. The proppant will embed into the formation rock, especially in soft rock, owing to the interaction between proppant and fracture surface after fra...Hydraulic fracturing is designed to form a high-conductivity fracture. The proppant will embed into the formation rock, especially in soft rock, owing to the interaction between proppant and fracture surface after fracture closure. Proppant embedment would reduce the fracture width and then lower the fracture conductivity. According to dimensional analysis, the rock is assumed to be an elastic material. Using the theory of elasticity to describe the stage of elastic deformation and analysis of the corresponding simplified embedding process, the study establish the static computation model of the two-dimensional infinite half plane and three-dimensional infinite half space model of the proppant embedment. According to laboratory results, the calculation model was modified, got an effective correction factor and analyzed the causes of errors, then discussed the factors which have impact on proppant embedment. The result calculated by the model in this paper can be reference of prop- pant optimization in on-site fracturing for a certainty degree.展开更多
Considering only the wave aspect, we determine the energy of a bond between 2 nucleons;this quantified energy is associated with a standing wave. Then, starting from the mass loss corresponding to this energy, we dete...Considering only the wave aspect, we determine the energy of a bond between 2 nucleons;this quantified energy is associated with a standing wave. Then, starting from the mass loss corresponding to this energy, we determine the number of bonds in this nucleus. The mass defect value for a link is used to determine a specific length at that link. Fixing a precise distance between nucleons makes it possible to determine a geometry of the nucleus and its dimensions. It makes it possible to understand when this bond is stronger than the electrostatic force and allows deducing a shell model built in a precise order. The calculation on the mass defect will also make it possible to determine that one or more nucleons concerned by the radioactivity will be bound by a single bond to the rest of the nucleus or, on the contrary, bound by several bonds which induce short 1/2 lives or, on the contrary, very long. The analysis of the bonds on H, He and C make it possible to write formulae which are then applied to the nuclei to find the radioactive 1/2 lives. To find by equations the radioactive 1/2 lives does not call into question the standard model since it concerns only the defect of mass of the nuclei with energies that are not used to find the main particles of the standard model. This model, which favours a geometric approach to the detriment of a mathematical approach based on differential equations, can lead to theoretical questions about the possibility of interpreting the structure of the nucleus in a more undulatory way. It is possible to explain radioactivity in a more deterministic way.展开更多
We develop a cosmological model in a physical background scenario of four time and four space dimensions ((4+4)-dimensions or (4+4)-universe). We show that in this framework the (1+3)-universe is deeply connected with...We develop a cosmological model in a physical background scenario of four time and four space dimensions ((4+4)-dimensions or (4+4)-universe). We show that in this framework the (1+3)-universe is deeply connected with the (3+1)-universe. We argue that this means that in the (4+4)-universe there exists a duality relation between the (1+3)-universe and the (3+1)-universe.展开更多
基金funded by the National Key R&D Program of China,China(Grant No.2023YFB4005500)National Natural Science Foundation of China,China(Grant Nos.52379113 and 52379114).
文摘Gas-liquid two-phase flow in fractal porous media is pivotal for engineering applications,yet it remains challenging to be accurately characterized due to complex microstructure-flow interactions.This study establishes a pore-scale numerical framework integratingMonte Carlo-generated fractal porousmedia with Volume of Fluid(VOF)simulations to unravel the coupling among pore distribution characterized by fractal dimension(Df),flow dynamics,and displacement efficiency.A pore-scale model based on the computed tomography(CT)microstructure of Berea sandstone is established,and the simulation results are compared with experimental data.Good agreement is found in phase distribution,breakthrough behavior,and flow path morphology,confirming the reliability of the numerical simulation method.Ten fractal porous media models with Df ranging from 1.25~1.7 were constructed using a Monte-Carlo approach.The gas-liquid two-phase flow dynamics was characterized using the VOF solver across gas injection rates of 0.05-5m/s,inwhich the time-resolved two-phase distribution patternswere systematically recorded.The results reveal that smaller fractal dimensions(Df=1.25~1.45)accelerate fingering breakthrough(peak velocity is 1.73 m/s at Df=1.45)due to a bimodal pore size distribution dominated by narrow channels.Increasing Df amplifies vorticity generation by about 3 times(eddy viscosity is 0.033 Pa⋅s at Df=1.7)through reduced interfacial curvature,while tortuosity-driven pressure differentials transition from sharp increases(0.4~6.3 Pa at Df=1.25~1.3)to inertial plateaus(4.8 Pa at Df=1.7).A nonlinear increase in equilibrium gas volume fraction(fav=0.692 at Df=1.7)emerges from residual gas saturation and turbulence-enhanced dispersion.This behavior is further modulated by flow velocity,with fav peaking at 0.72 under capillary-dominated conditions(0.05 m/s),but decreasing to 0.65 in the inertial regime(0.5 m/s).The work quantitatively links fractal topology to multiphase flow regimes,demonstrating the critical role of Df in governing preferential pathways,energy dissipation,and phase distribution.
基金National Natural Science Foundation of China(Nos.42301473,42271424,42171397)Chinese Postdoctoral Innovation Talents Support Program(No.BX20230299)+2 种基金China Postdoctoral Science Foundation(No.2023M742884)Natural Science Foundation of Sichuan Province(Nos.24NSFSC2264,2025ZNSFSC0322)Key Research and Development Project of Sichuan Province(No.24ZDYF0633).
文摘As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods generally have problems such as insufficient 3D scene description capability and low dynamic update efficiency,which are difficult to meet the demand of real-time accurate management.For this reason,this paper proposes a vehicle twin modeling method for road tunnels.This approach starts from the actual management needs,and supports multi-level dynamic modeling from vehicle type,size to color by constructing a vehicle model library that can be flexibly invoked;at the same time,semantic constraint rules with geometric layout,behavioral attributes,and spatial relationships are designed to ensure that the virtual model matches with the real model with a high degree of similarity;ultimately,the prototype system is constructed and the case region is selected for the case study,and the dynamic vehicle status in the tunnel is realized by integrating real-time monitoring data with semantic constraints for precise virtual-real mapping.Finally,the prototype system is constructed and case experiments are conducted in selected case areas,which are combined with real-time monitoring data to realize dynamic updating and three-dimensional visualization of vehicle states in tunnels.The experiments show that the proposed method can run smoothly with an average rendering efficiency of 17.70 ms while guaranteeing the modeling accuracy(composite similarity of 0.867),which significantly improves the real-time and intuitive tunnel management.The research results provide reliable technical support for intelligent operation and emergency response of road tunnels,and offer new ideas for digital twin modeling of complex scenes.
文摘The dynamic research of landslide is one of the key Points in landslidology. In the paper,from the view point of nonlinear dynamic theory. some features of Xintan landslide, such as the distribution regularities of spatial and temporal fractal dimensions and their corresponding relationships to landslide occurring are researched. The accumulative principles of fractal dimension reduction is exploratively pointed out. The nonlinear dynamic equation of the landslide is built by analyzing the relationship between the correlation dimension and the phase space. Finally, the forecasted results and error analysis are listed. The research results are satisfactory.
基金supported by National High Technology Research and Development Program of China (863 Program)(No. 2009AA04Z162)National Nature Science Foundation of China(No. 60825302, No. 60934007, No. 61074061)+1 种基金Program of Shanghai Subject Chief Scientist,"Shu Guang" project supported by Shang-hai Municipal Education Commission and Shanghai Education Development FoundationKey Project of Shanghai Science and Technology Commission, China (No. 10JC1403400)
文摘In this paper, a low-dimensional multiple-input and multiple-output (MIMO) model predictive control (MPC) configuration is presented for partial differential equation (PDE) unknown spatially-distributed systems (SDSs). First, the dimension reduction with principal component analysis (PCA) is used to transform the high-dimensional spatio-temporal data into a low-dimensional time domain. The MPC strategy is proposed based on the online correction low-dimensional models, where the state of the system at a previous time is used to correct the output of low-dimensional models. Sufficient conditions for closed-loop stability are presented and proven. Simulations demonstrate the accuracy and efficiency of the proposed methodologies.
基金Project(51205299)supported by the National Natural Science Foundation of ChinaProject(2015M582643)supported by the China Postdoctoral Science Foundation+2 种基金Project(2014BAA008)supported by the Science and Technology Support Program of Hubei Province,ChinaProject(2014-IV-144)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(2012AAA07-01)supported by the Major Science and Technology Achievements Transformation&Industrialization Program of Hubei Province,China
文摘Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ring's position is asymmetrical.All of these cause that the ring's dimensions cannot be measured directly.Through analyzing the relationships among the dimensions of ring blanks,the positions of rolls and the ring's inner and outer diameter,the soft measurement model of ring's dimensions is established based on the radial basis function neural network(RBFNN).A mass of data samples are obtained from VHRR finite element(FE) simulations to train and test the soft measurement NN model,and the model's structure parameters are deduced and optimized by genetic algorithm(GA).Finally,the soft measurement system of ring's dimensions is established and validated by the VHRR experiments.The ring's dimensions were measured artificially and calculated by the soft measurement NN model.The results show that the calculation values of GA-RBFNN model are close to the artificial measurement data.In addition,the calculation accuracy of GA-RBFNN model is higher than that of RBFNN model.The research results suggest that the soft measurement NN model has high precision and flexibility.The research can provide practical methods and theoretical guidance for the accurate measurement of VHRR process.
文摘The quality assessment and prediction becomes one of the most critical requirements for improving reliability, efficiency and safety of laser welding. Accurate and efficient model to perform non-destructive quality estimation is an essential part of this assessment. This paper presents a structured and comprehensive approach developed to design an effective artificial neural network based model for weld bead geometry prediction and control in laser welding of galvanized steel in butt joint configurations. The proposed approach examines laser welding parameters and conditions known to have an influence on geometric characteristics of the welds and builds a weld quality prediction model step by step. The modelling procedure begins by examining, through structured experimental investigations and exhaustive 3D modelling and simulation efforts, the direct and the interaction effects of laser welding parameters such as laser power, welding speed, fibre diameter and gap, on the weld bead geometry (i.e. depth of penetration and bead width). Using these results and various statistical tools, various neural network based prediction models are developed and evaluated. The results demonstrate that the proposed approach can effectively lead to a consistent model able to accurately and reliably provide an appropriate prediction of weld bead geometry under variable welding conditions.
文摘This paper presents an experimentally validated weld joint shape and dimensions predictive 3D modeling for low carbon galvanized steel in butt-joint configurations. The proposed modelling approach is based on metallurgical transformations using temperature dependent material properties and the enthalpy method. Conduction and keyhole modes welding are investigated using surface and volumetric heat sources, respectively. Transition between the heat sources is carried out according to the power density and interaction time. Simulations are carried out using 3D finite element model on commercial software. The simulation results of the weld shape and dimensions are validated using a structured experimental investigation based on Taguchi method. Experimental validation conducted on a 3 kW Nd: YAG laser source reveals that the modelling approach can provide not only a consistent and accurate prediction of the weld characteristics under variable welding parameters and conditions but also a comprehensive and quantitative analysis of process parameters effects. The results show great concordance between predicted and measured values for the weld joint shape and dimensions.
基金supported by the National Natural Science Foundation of China(Grant No.51969013)the Natural Science Foundation of Gansu Province(Grant No.21JR7RA225).
文摘Moistube irrigation is a new micro-irrigation technology.Accurately estimating its wetting pattern dimensions presents a challenge.Therefore,it is necessary to develop models for efficient assessment of the wetting transport pattern in order to design a cost-effective moistube irrigation system.To achieve this goal,this study developed a multivariate nonlinear regression model and compared it with a dimensional model.HYDRUS-2D was used to perform numerical simulations of 56 irrigation scenarios with different factors.The experiments showed that the shape of the wetting soil body approximated a cylinder and was mainly affected by soil texture,pressure head,and matric potential.A multivariate nonlinear model using a power function relationship between wetting size and irrigation time was developed,with a determination coefficient greater than 0.99.The model was validated for cases with six soil texture types,with mean average absolute errors of 0.43-0.90 cm,root mean square errors of 0.51-0.95 cm,and mean deviation percentage values of 3.23%-6.27%.The multivariate nonlinear regression model outperformed the dimensional model.It can therefore provide a scientific foundation for the development of moistube irrigation systems.
基金Project supported by the National Natural science Foundation of China
文摘Three- dimension (3-D) wind-driven currents in the Bohai Sea in both winter and summer are calculated by using a 3- D barotropic steady model, and the results are consistent with observed flow char -acteristics. Based on the results, 3- D characteristics of flow, currents at different depths, compensated flow in the lower layer , long and narrow alongshore current, the area of upwelling and downwelling, main circulation in vertical profile, and the current in Bohai Strait are discussed.
基金The project is supported by The National Natural Science Foundation of China
文摘The turbulence mechanism plays an important part in the mixing process and momentum transfer of turbulence. A three-dimensional Prandtl mixing length tidal model has been developed to simulate tidal flows and water quality. The eddy viscosities and diffusivities are computed from the Prandtl mixing length model. In order to model the water quality of an estuary or coastal area many interdependent processes need to be simulated. These may be conveniently separated into three main groups: transport and mixing processes, biochemical interaction of water quality variables and the utilization and re-cycling of nutrients by living matter. The model simulates full oxygen and nutrient balance, primary productivity and the transport, reaction mechanism and fate of pollutants over tidal time-scales. The model is applied to numerical simulation of tidal flows and water quality in Dalian Bay. The model has been calibrated against a limited data set of historical water quality observations and in general demonstrates excellent agreement with all available data.
文摘The method of automatically generating generalized curvilinear meshes has many advantages and is beginning to be used in ocean simulations. This three dimensional (3 D) coastal barotropic model in generalized curvilinear grids was developed to simulate the M 2, S 2, K 1 and O 1 tidal waves in the Bohai Sea, China. The numerical results agreeing with observations showed that the method is an effective tool for improving accuracy of simulations in shallow shelf seas, especially in the near coast region, if the pseudo effect there usually caused by rectangular grids can be removed.
基金supported by the National Natural Science Foundation of China (51075147)
文摘To study the rock deformation with three- dimensional model under rolling forces of disc cutter, by car- rying out the circular-grooving test with disc cutter rolling around on the rock, the rock mechanical behavior under rolling disc cutter is studied, the mechanical model of disc cutter rolling around the groove is established, and the the- ory of single-point and double-angle variables is proposed. Based on this theory, the physics equations and geometric equations of rock mechanical behavior under disc cutters of tunnel boring machine (TBM) are studied, and then the bal- ance equations of interactive forces between disc cutter and rock are established. Accordingly, formulas about normal force, rolling force and side force of a disc cutter are de- rived, and their validity is studied by tests. Therefore, a new method and theory is proposed to study rock- breaking mech- anism of disc cutters.
文摘We study the order parameter probability distribution at the critical point for the three-dimensional spin-1/2 and spin-1 Ising models on the simple cubic lattice under periodic boundary conditions. The finite size scaling relation for the order parameter probability distribution is tested and verified numerically by microcanonical Creutz cellular automata simulations. The state critical exponent δ, which characterizes the far tail regime of the scaling order parameter probability distribution, is estimated for three-dimensional Ising models using the cellular automaton simulations at the critical temperature. The results are in good agreement with the Monte Carlo calculations.
基金Shanghai University of Engineering Science's Research Cultivation Fund Project,China(No.A25001201194)National Natural Science Foundation,China(No.71301100)+1 种基金the Fundamental Research Funds for the Central Universities,China(No.JB-SK1204)China Postdoctoral Science Foundation(No.2014M561655)
文摘In order to know about the essence of service employees' innovation behavior, the service employees' innovation behavior scale based on their unique characteristics is designed. Data were collected from high-star hospitalities. Through the issuance and the collection of questionnaires, the scale is verified to have good reliability and validity by SPSS software analysis. Meanwhile,the structural equation model( SEM) is suited for testing structural dimensions of service employees' innovation behavior. The results showed that service employees' innovation behavior could be decomposed into a four-dimensional structure,namely innovation orientation, ideas generation, innovation implementation and innovation practice. In addition,there are significant differences in service employees' innovation behavior about subjects' gender,position,education background and years of working.
基金supported by a grant from R&D Program Development of Rail-Specific Digital Resource Technology Based on an AI-Enabled Rail Support Platform,grant number PK2401C1,of the Korea Railroad Research Institute.
文摘Fire detection has held stringent importance in computer vision for over half a century.The development of early fire detection strategies is pivotal to the realization of safe and smart cities,inhabitable in the future.However,the development of optimal fire and smoke detection models is hindered by limitations like publicly available datasets,lack of diversity,and class imbalance.In this work,we explore the possible ways forward to overcome these challenges posed by available datasets.We study the impact of a class-balanced dataset to improve the fire detection capability of state-of-the-art(SOTA)vision-based models and propose the use of generative models for data augmentation,as a future work direction.First,a comparative analysis of two prominent object detection architectures,You Only Look Once version 7(YOLOv7)and YOLOv8 has been carried out using a balanced dataset,where both models have been evaluated across various evaluation metrics including precision,recall,and mean Average Precision(mAP).The results are compared to other recent fire detection models,highlighting the superior performance and efficiency of the proposed YOLOv8 architecture as trained on our balanced dataset.Next,a fractal dimension analysis gives a deeper insight into the repetition of patterns in fire,and the effectiveness of the results has been demonstrated by a windowing-based inference approach.The proposed Slicing-Aided Hyper Inference(SAHI)improves the fire and smoke detection capability of YOLOv8 for real-life applications with a significantly improved mAP performance over a strict confidence threshold.YOLOv8 with SAHI inference gives a mAP:50-95 improvement of more than 25%compared to the base YOLOv8 model.The study also provides insights into future work direction by exploring the potential of generative models like deep convolutional generative adversarial network(DCGAN)and diffusion models like stable diffusion,for data augmentation.
基金Supported by the Sichuan Youth Science & Technology Foundation (2011JTD0009) the National Natural Science Foundation of China (51074138)
文摘Hydraulic fracturing is designed to form a high-conductivity fracture. The proppant will embed into the formation rock, especially in soft rock, owing to the interaction between proppant and fracture surface after fracture closure. Proppant embedment would reduce the fracture width and then lower the fracture conductivity. According to dimensional analysis, the rock is assumed to be an elastic material. Using the theory of elasticity to describe the stage of elastic deformation and analysis of the corresponding simplified embedding process, the study establish the static computation model of the two-dimensional infinite half plane and three-dimensional infinite half space model of the proppant embedment. According to laboratory results, the calculation model was modified, got an effective correction factor and analyzed the causes of errors, then discussed the factors which have impact on proppant embedment. The result calculated by the model in this paper can be reference of prop- pant optimization in on-site fracturing for a certainty degree.
文摘Considering only the wave aspect, we determine the energy of a bond between 2 nucleons;this quantified energy is associated with a standing wave. Then, starting from the mass loss corresponding to this energy, we determine the number of bonds in this nucleus. The mass defect value for a link is used to determine a specific length at that link. Fixing a precise distance between nucleons makes it possible to determine a geometry of the nucleus and its dimensions. It makes it possible to understand when this bond is stronger than the electrostatic force and allows deducing a shell model built in a precise order. The calculation on the mass defect will also make it possible to determine that one or more nucleons concerned by the radioactivity will be bound by a single bond to the rest of the nucleus or, on the contrary, bound by several bonds which induce short 1/2 lives or, on the contrary, very long. The analysis of the bonds on H, He and C make it possible to write formulae which are then applied to the nuclei to find the radioactive 1/2 lives. To find by equations the radioactive 1/2 lives does not call into question the standard model since it concerns only the defect of mass of the nuclei with energies that are not used to find the main particles of the standard model. This model, which favours a geometric approach to the detriment of a mathematical approach based on differential equations, can lead to theoretical questions about the possibility of interpreting the structure of the nucleus in a more undulatory way. It is possible to explain radioactivity in a more deterministic way.
文摘We develop a cosmological model in a physical background scenario of four time and four space dimensions ((4+4)-dimensions or (4+4)-universe). We show that in this framework the (1+3)-universe is deeply connected with the (3+1)-universe. We argue that this means that in the (4+4)-universe there exists a duality relation between the (1+3)-universe and the (3+1)-universe.