期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于多层感知机技术的地铁盾构施工参数预测 被引量:11
1
作者 李文乾 吴云桓 +3 位作者 吴兢业 陈治怀 谢森林 胡安峰 《深圳大学学报(理工版)》 CSCD 北大核心 2024年第1期50-57,共8页
在地铁工程建设中,盾构法施工技术已经得到了广泛的应用,盾构掘进参数的合理预测对提高施工安全性及降低操作难度具有较大实际意义.以中国杭州机场快线地铁隧道某标段为工程背景,以隧道直径范围内土层摩擦角、黏聚力、压缩模量、重度以... 在地铁工程建设中,盾构法施工技术已经得到了广泛的应用,盾构掘进参数的合理预测对提高施工安全性及降低操作难度具有较大实际意义.以中国杭州机场快线地铁隧道某标段为工程背景,以隧道直径范围内土层摩擦角、黏聚力、压缩模量、重度以及隧道顶部埋深、盾构机预设刀盘转速、推进速度作为输入,以盾构施工时的注浆量、注浆压力、出土量、总推力和刀盘扭矩为输出,建立基于多层感知机的盾构掘进参数预测模型.通过对比不同超参数组合情况下的模型在数据集上的预测表现,挑选出适合于该工程盾构施工参数的预测模型.使用实测数据对模型预测效果进行验证,预测值与实测数据总体变化规律一致,平均误差在20%以内.建立的多层感知机模型预测结果较为合理,具有较好的预测精度,可用于复合地层条件下同类型盾构掘进参数的预测. 展开更多
关键词 岩土工程 多层感知机 盾构掘进参数 复合地层 预测模型 K折验证
在线阅读 下载PDF
基于组合近似模型的高速列车悬挂系统参数多目标优化
2
作者 杜向军 武福 +2 位作者 杨喜娟 李忠学 陈集旺 《机械设计》 CSCD 北大核心 2024年第12期46-54,共9页
高速列车悬挂系统参数与其动力学性能密切相关,对悬挂系统参数进行多目标优化可以有效改善其动力学性能。根据Pearson相关性对各悬挂系统参数与动力学性能之间的相关性,联合采用层次分析法和模糊综合评价法识别出与动力学性能相关性最大... 高速列车悬挂系统参数与其动力学性能密切相关,对悬挂系统参数进行多目标优化可以有效改善其动力学性能。根据Pearson相关性对各悬挂系统参数与动力学性能之间的相关性,联合采用层次分析法和模糊综合评价法识别出与动力学性能相关性最大的4个悬挂系统关键参数。以4个关键参数作为设计变量,构建面向脱轨系数、轮重减载率、轮轴横向力、舒适度指标及非线性临界速度的克里金(Kriging)近似模型、径向基神经网络(RBF)近似模型和2阶响应面(RSM)近似模型,根据K折交叉验证法计算3种单一近似模型的权重系数后,将3种近似模型根据权重系数拟合成高速列车动力学性能指标的组合近似模型,并对组合近似模型进行精度评价。把组合近似模型作为目标函数,脱轨系数、轮重减载率、轮轴横向力、舒适度指标及非线性临界速度作为目标响应,选取NSGA-Ⅱ优化算法对悬挂系统参数进行寻优。优化结果表明,最优解对5个动力学性能指标的优化率都达到10%以上,很好地改善了高速列车动力学性能。 展开更多
关键词 组合近似模型 关键参数识别 K折检查验证 多目标优化 悬挂参数
原文传递
基于包络线聚类的多模融合超短期光伏功率预测算法 被引量:27
3
作者 杨国清 张凯 +2 位作者 王德意 刘菁 秦美荣 《电力自动化设备》 EI CSCD 北大核心 2021年第2期39-46,共8页
针对传统功率预测方法以气象因素进行聚类划分时各气象因素权重难以分配以及单模型预测精度较差的问题,提出一种基于光伏功率包络线聚类的多模融合超短期光伏功率预测算法。对异常特征数据进行预处理,采用Pearson相关系数与XGB Feature ... 针对传统功率预测方法以气象因素进行聚类划分时各气象因素权重难以分配以及单模型预测精度较差的问题,提出一种基于光伏功率包络线聚类的多模融合超短期光伏功率预测算法。对异常特征数据进行预处理,采用Pearson相关系数与XGB Feature Importance模块分析光伏功率和各特征之间的相关关系,并构建新特征;介绍包络线理论,并根据光伏功率包络线参数进行聚类划分,将聚类后的数据作为输入,借鉴Stacking集成学习框架构造XGBoost+LightGBM+LSTM融合模型对光伏功率进行预测;将所提算法与气象因素聚类和功率区间聚类下的各预测算法进行实验对比;为了避免训练过程中模型超参数的影响,采用K折交叉验证对数据的训练集、验证集和测试集进行划分。仿真结果表明,所提算法较气象因素和功率区间聚类法能有效提高复杂天气情况下光伏功率预测精度,且多模融合效果总体优于单独算法模型。 展开更多
关键词 光伏功率预测 包络线聚类 多模融合算法 特征工程 K折交叉验证
在线阅读 下载PDF
基于球结构SVM的多标签分类 被引量:6
4
作者 蒋华 戚玉顺 《计算机工程》 CAS CSCD 2013年第1期294-297,共4页
现有多标签分类问题普遍被转换成多类分类问题,计算量较大,运行时间较长,且面对新类别加入时,拓展性较差。为此,提出一种基于球结构支持向量机的多标签分类方法。每一类别标签对应一个球域结构,提取球重叠区域的样本,依据距离差值度量... 现有多标签分类问题普遍被转换成多类分类问题,计算量较大,运行时间较长,且面对新类别加入时,拓展性较差。为此,提出一种基于球结构支持向量机的多标签分类方法。每一类别标签对应一个球域结构,提取球重叠区域的样本,依据距离差值度量样本类别相似度,确定样本所属类别。实验结果表明,该方法可以节省210 ms的训练时间,使平均查全率提高3.2%,适合大量样本分类。 展开更多
关键词 支持向量机 距离差 多标签分类 多类分类 主动学习 K折交叉验证
在线阅读 下载PDF
Optimized feature selection assists lithofacies machine learning with sparse well log data combined with calculated attributes in a gradational fluvial sequence
5
作者 David A.Wood 《Artificial Intelligence in Geosciences》 2022年第1期132-147,共16页
Machine learning(ML)to predict lithofacies from sparse suites of well-log data is difficult in laterally and vertically heterogeneous reservoir formations in oil and gas fields.Meandering,braided fluviatile deposition... Machine learning(ML)to predict lithofacies from sparse suites of well-log data is difficult in laterally and vertically heterogeneous reservoir formations in oil and gas fields.Meandering,braided fluviatile depositional environments tend to form clastic sequences with laterally discontinuous layers due to the continuous shifting of relatively narrow sandstone channels.Three cored wellbores drilled through such a reservoir in a large oil field,with just four recorded well logs available,are used to classify four lithofacies using ML models.To augment the well-log data,six derivative and volatility attributes were calculated from the recorded gamma ray and density logs,providing sixteen log features for the ML models to select from.A novel,multiple-optimizer feature selection technique was developed to identify high-performing feature combinations with which seven ML models were used to predict lithofacies assisted by multi-k-fold cross validation.Feature combinations with just seven to nine selected log features achieved overall ML lithofacies accuracy of 0.87 for two wells used for training and validation.When the trained ML models were applied to a third well for testing,lithofacies ML prediction accuracy declined to 0.65 for the best performing extreme gradient boosting model with seven features.However,an accuracy of~0.76 was achieved by that model in predicting the presence of the pay bearing sandstone and siltstone lithofacies in the test well.A model using only the four recorded well logs was only able to predict the pay-bearing lithofacies with~0.6 accuracy.Annotated confusion matrices and feature importance analysis provide additional insight to ML model performance and identify the log attributes that are most influential in enhancing lithofacies prediction. 展开更多
关键词 Derivative/volatility log attributes Sparse well-log datasets multi-k-fold analysis Optimizer comparisons Lithofacies imbalance
在线阅读 下载PDF
Integrated statistical and machine learning analysis provides insight into key influencing symptoms for distinguishing early-onset type 2 diabetes 被引量:2
6
作者 David A.Wood 《Chronic Diseases and Translational Medicine》 CSCD 2022年第4期281-295,共15页
Background: Being able to predict with confidence the early onset of type 2 diabetes from a suite of signs and symptoms (features) displayed by potential sufferers is desirable to commence treatment promptly. Late or ... Background: Being able to predict with confidence the early onset of type 2 diabetes from a suite of signs and symptoms (features) displayed by potential sufferers is desirable to commence treatment promptly. Late or inconclusive diagnosis can result in more serious health consequences for sufferers and higher costs for health care services in the long run.Methods: A novel integrated methodology is proposed involving correlation, statistical analysis, machine learning, multi-K-fold cross-validation, and confusion matrices to provide a reliable classification of diabetes-positive and -negative individuals from a substantial suite of features. The method also identifies the relative influence of each feature on the diabetes diagnosis and highlights the most important ones. Ten statistical and machine learning methods are utilized to conduct the analysis.Results: A published data set involving 520 individuals (Sylthet Diabetes Hospital, Bangladesh) is modeled revealing that a support vector classifier generates the most accurate early-onset type 2 diabetes status predictions with just 11 misclassifications (2.1% error). Polydipsia and polyuria are among the most influential features, whereas obesity and age are assigned low weights by the prediction models.Conclusion: The proposed methodology can rapidly predict early-onset type 2 diabetes with high confidence while providing valuable insight into the key influential features involved in such predictions. 展开更多
关键词 error analysis key feature influences multi-k-fold cross-validation symptom importance type 2 diabetes screening
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部