A form of iterative learning control (ILC) is used to update the set-point for the local controller. It is referred to as set-point-related (SPR) indirect ILC. SPR indirect ILC has shown excellent performance: as a su...A form of iterative learning control (ILC) is used to update the set-point for the local controller. It is referred to as set-point-related (SPR) indirect ILC. SPR indirect ILC has shown excellent performance: as a supervision module for the local controller, ILC can improve the tracking performance of the closed-loop system along the batch direction. In this study, an ILC-based P-type controller is proposed for multi-input multi-output (MIMO) linear batch processes, where a P-type controller is used to design the control signal directly and an ILC module is used to update the set-point for the P-type controller. Under the proposed ILC-based P-type controller, the closed-loop system can be transformed to a 2-dimensional (2D) Roesser s system. Based on the 2D system framework, a sufficient condition for asymptotic stability of the closed-loop system is derived in this paper. In terms of the average tracking error (ATE), the closed-loop control performance under the proposed algorithm can be improved from batch to batch, even though there are repetitive disturbances. A numerical example is used to validate the proposed results.展开更多
Integral reinforcement learning(IRL)is an effective tool for solving optimal control problems of nonlinear systems,and it has been widely utilized in optimal controller design for solving discrete-time nonlinearity.Ho...Integral reinforcement learning(IRL)is an effective tool for solving optimal control problems of nonlinear systems,and it has been widely utilized in optimal controller design for solving discrete-time nonlinearity.However,solving the Hamilton-Jacobi-Bellman(HJB)equations for nonlinear systems requires precise and complicated dynamics.Moreover,the research and application of IRL in continuous-time(CT)systems must be further improved.To develop the IRL of a CT nonlinear system,a data-based adaptive neural dynamic programming(ANDP)method is proposed to investigate the optimal control problem of uncertain CT multi-input systems such that the knowledge of the dynamics in the HJB equation is unnecessary.First,the multi-input model is approximated using a neural network(NN),which can be utilized to design an integral reinforcement signal.Subsequently,two criterion networks and one action network are constructed based on the integral reinforcement signal.A nonzero-sum Nash equilibrium can be reached by learning the optimal strategies of the multi-input model.In this scheme,the NN weights are constantly updated using an adaptive algorithm.The weight convergence and the system stability are analyzed in detail.The optimal control problem of a multi-input nonlinear CT system is effectively solved using the ANDP scheme,and the results are verified by a simulation study.展开更多
To cater the need for real-time crack monitoring of infrastructural facilities,a CNN-regression model is proposed to directly estimate the crack properties from patches.RGB crack images and their corresponding masks o...To cater the need for real-time crack monitoring of infrastructural facilities,a CNN-regression model is proposed to directly estimate the crack properties from patches.RGB crack images and their corresponding masks obtained from a public dataset are cropped into patches of 256 square pixels that are classified with a pre-trained deep convolution neural network,the true positives are segmented,and crack properties are extracted using two different methods.The first method is primarily based on active contour models and level-set segmentation and the second method consists of the domain adaptation of a mathematical morphology-based method known as FIL-FINDER.A statistical test has been performed for the comparison of the stated methods and a database prepared with the more suitable method.An advanced convolution neural network-based multi-output regression model has been proposed which was trained with the prepared database and validated with the held-out dataset for the prediction of crack-length,crack-width,and width-uncertainty directly from input image patches.The pro-posed model has been tested on crack patches collected from different locations.Huber loss has been used to ensure the robustness of the proposed model selected from a set of 288 different variations of it.Additionally,an ablation study has been conducted on the top 3 models that demonstrated the influence of each network component on the pre-diction results.Finally,the best performing model HHc-X among the top 3 has been proposed that predicted crack properties which are in close agreement to the ground truths in the test data.展开更多
Biological data in fishery ecology have complex structures and are highly heterogeneous.Catch per unit effort(CPUE)estimated from fishery-dependent data are often used to characterize abundance indices(AI)of fish spec...Biological data in fishery ecology have complex structures and are highly heterogeneous.Catch per unit effort(CPUE)estimated from fishery-dependent data are often used to characterize abundance indices(AI)of fish species,which is critical in fish stock assessment.However,additional considerations need to be undertaken to ensure robust estimation because of the latently complicated structures in fishery-dependent data.Here,we elaborated the process of constructing multi-output artificial neural network models to standardize CPUE for heterogeneous fishing operations and applied it to the skipjack tuna(Katsuwonus pelamis)in the western and central Pacific Ocean(WCPO).Seasonal,spatial,and environmental factors were input variables,and the CPUE of four types of skipjack tuna fisheries were set as output variables.The optimal structure for multi-output neural network was evaluated by systematic comparison in 100 runs hold-out cross-validation.The results showed that the final multi-output neural network model with high accuracy can predict the spatial and temporal trends of skipjack tuna abundance.展开更多
Both auto-power spectrum and cross-power spectrum need to be controlled in multi-input multi-output (MIMO) random vibration test. During the control process with the difference control algorithm (DCA), a lower tri...Both auto-power spectrum and cross-power spectrum need to be controlled in multi-input multi-output (MIMO) random vibration test. During the control process with the difference control algorithm (DCA), a lower triangular matrix is derived from Cholesky decomposition of a reference spectrum matrix. The diagonal elements of the lower triangular matrix (DELTM) may become negative. These negative values have no meaning in physical significance and can cause divergence of auto-power spectrum control. A proportional root mean square control algorithm (PRMSCA) provides another method to avoid the divergence caused by negative values of DELTM, but PRMSCA cannot control the cross-power spectrum. A new control algorithm named matrix power control algorithm (MPCA) is proposed in the paper. MPCA can guarantee that DELTM is always positive in the auto-power spectrum control. MPCA can also control the cross-power spectrum. After these three control algorithms are analyzed, three-input three-output random vibration control tests are implemented on a three-axis vibration shaker. The results show the validity of the proposed MPCA.展开更多
A control method for Multi-Input Multi-Output(MIMO) non-Gaussian random vibration test with cross spectra consideration is proposed in the paper. The aim of the proposed control method is to replicate the specified ...A control method for Multi-Input Multi-Output(MIMO) non-Gaussian random vibration test with cross spectra consideration is proposed in the paper. The aim of the proposed control method is to replicate the specified references composed of auto spectral densities, cross spectral densities and kurtoses on the test article in the laboratory. It is found that the cross spectral densities will bring intractable coupling problems and induce difficulty for the control of the multioutput kurtoses. Hence, a sequential phase modification method is put forward to solve the coupling problems in multi-input multi-output non-Gaussian random vibration test. To achieve the specified responses, an improved zero memory nonlinear transformation is utilized first to modify the Fourier phases of the signals with sequential phase modification method to obtain one frame reference response signals which satisfy the reference spectra and reference kurtoses. Then, an inverse system method is used in frequency domain to obtain the continuous stationary drive signals. At the same time, the matrix power control algorithm is utilized to control the spectra and kurtoses of the response signals further. At the end of the paper, a simulation example with a cantilever beam and a vibration shaker test are implemented and the results support the proposed method very well.展开更多
Noises always disturb the control effect of an environment test especially in multi-input multi-output(MIMO) systems. If the frequency response function matrices are ill-conditioned, the noises in the driving forces w...Noises always disturb the control effect of an environment test especially in multi-input multi-output(MIMO) systems. If the frequency response function matrices are ill-conditioned, the noises in the driving forces will be amplified and the response spectral lines may awfully exceed their tolerances. Most of the major biases between the response spectra and the reference spectra are produced by the amplified noises. However, ordinary control algorithms can hardly reduce the level of noises. The influences of the noises on both the auto- and cross-power spectra are analyzed in this paper. As a conventional frequency domain method on the inverse problem, the Tikhonov filter is adopted in the environment test to suppress the exceeding spectral lines. By altering regularization parameters gradually, the auto-power spectra can be improved in a closed control loop. Instead of using the traditional way of selecting regularization parameters, we observe the coherence change to estimate noise eliminations. Incidentally, the requirement of coherence control can be realized. The errors of the phase are then studied and a phase control algorithm is introduced at the end as a supplement of cross-power spectra control. The Tikhonov filter and the proposed phase control algorithm are tested numerically and experimentally. The results show that the noises in the vicinity of lightly damped resonant peaks are more stubborn. The response spectra are able to be greatly improved by the combination of these two methods.展开更多
This paper presents the design of decentralized repetitive control (RC) for multi-input multi-output (MIMO) systems. An optimization method is used to obtain a RC compensator that ensures system stability and good...This paper presents the design of decentralized repetitive control (RC) for multi-input multi-output (MIMO) systems. An optimization method is used to obtain a RC compensator that ensures system stability and good tracking performance. The designed compensator is in the form of a stable, low order, and causal filter, in which the compensator can be implemented separately without being merged with the RC internal model. This will reduce complexity in the implementation. Simulation results and comparison study are given to demonstrate the effectiveness of the proposed design. The novelty of design is also verified in experiments on a 2 degrees of freedom (DOF) robot.展开更多
The FRF estimator based on the errors-in-variables (EV) model of multi-input multi-output (MIMO) system is presented to reduce the bias error of FRF HI estimator. The FRF HI estimator is influenced by the noises i...The FRF estimator based on the errors-in-variables (EV) model of multi-input multi-output (MIMO) system is presented to reduce the bias error of FRF HI estimator. The FRF HI estimator is influenced by the noises in the inputs of the system and generates an under-estimation of the true FRF. The FRF estimator based on the EV model takes into account the errors in both the inputs and outputs of the system and would lead to more accurate FRF estimation. The FRF estimator based on the EV model is applied to the waveform replication on the 6-DOF (degree-of-freedom) hydraulic vibration table. The result shows that it is favorable to improve the control precision of the MIMO vibration control system.展开更多
In this paper,the problem of designing a multi-input multi-output(MIMO)systemfor studying the non-minimum phase(NMP)behaviour is considered.For this purpose,a NMP MIMO circuit is proposed and studied under different c...In this paper,the problem of designing a multi-input multi-output(MIMO)systemfor studying the non-minimum phase(NMP)behaviour is considered.For this purpose,a NMP MIMO circuit is proposed and studied under different conditions.The main reason for designing this circuit is the lack of a simple and flexible benchmark for examining different control methods.Due to the simple structure and capability of showing different NMP characteristics,our proposed system is a suitable choice to study the behaviour of these systems.Also,our proposed system can be extended by series and parallel connections to generate more complicated benchmarks.The other advantages of this system are the large number of tunable parameters,adjustable interaction,variable number of poles and zeros,and inexpensive cost.Moreover,this benchmark can be used as a tool for hardware simulation.Finally,an optimal H∞decoupling control is applied to this benchmark to verify its effectiveness.展开更多
Lookup table is widely used in automotive industry for the design of engine control units(ECU).Together with a proportional-integral controller,a feed-forward and feedback control scheme is often adopted for automotiv...Lookup table is widely used in automotive industry for the design of engine control units(ECU).Together with a proportional-integral controller,a feed-forward and feedback control scheme is often adopted for automotive engine management system(EMS).Usually,an ECU has a structure of multi-input and single-output(MISO).Therefore,if there are multiple objectives proposed in EMS,there would be corresponding numbers of ECUs that need to be designed.In this situation,huge efforts and time were spent on calibration.In this work,a multi-input and multi-out(MIMO) approach based on model predictive control(MPC) was presented for the automatic cruise system of automotive engine.The results show that the tracking of engine speed command and the regulation of air/fuel ratio(AFR) can be achieved simultaneously under the new scheme.The mean absolute error(MAE) for engine speed control is 0.037,and the MAE for air fuel ratio is 0.069.展开更多
Orthomorphic permutations have good characteristics in cryptosystems. In this paper, by using of knowledge about relation between orthomorphic permutations and multi-output functions, and conceptions of the generalize...Orthomorphic permutations have good characteristics in cryptosystems. In this paper, by using of knowledge about relation between orthomorphic permutations and multi-output functions, and conceptions of the generalized Walsh spectrum of multi-output functions and the auto-correlation function of multi-output functions to investigate the Walsh spectral characteristics and the auto-correlation function characteristics of orthormophic permutations, several results are obtained.展开更多
In this paper, the definition of multl-output partially Bent functions is presented and some properties are discussed. Then the relationship between multi-output partially Bent functions and multi-output Bent function...In this paper, the definition of multl-output partially Bent functions is presented and some properties are discussed. Then the relationship between multi-output partially Bent functions and multi-output Bent functions is given in Theorem 4, which includes Walsh spectrum expression and function expression. This shows that multi-output partially Bent functions and multi-output Bent functions can define each other in principle. So we obtain the general method to construct multi-output partially Bent functions from multi-output Bent functions.展开更多
Considering the modeling errors of on-board self-tuning model in the fault diagnosis of aero-engine, a new mechanism for compensating the model outputs is proposed. A discrete series predictor based on multi-outputs l...Considering the modeling errors of on-board self-tuning model in the fault diagnosis of aero-engine, a new mechanism for compensating the model outputs is proposed. A discrete series predictor based on multi-outputs least square support vector regression (LSSVR) is applied to the compensation of on-board self-tuning model of aero-engine, and particle swarm optimization (PSO) is used to the kernels selection of multi-outputs LSSVR. The method need not reconstruct the model of aero-engine because of the differences in the individuals of the same type engines and engine degradation after use. The concrete steps for the application of the method are given, and the simulation results show the effectiveness of the algorithm.展开更多
:Multicast-based quantum teleportation(QT) is extensively used in quantum information transmission where a sender sends different information to multiple receivers at the large distance through the quantum entangled c...:Multicast-based quantum teleportation(QT) is extensively used in quantum information transmission where a sender sends different information to multiple receivers at the large distance through the quantum entangled channel. In this paper, we introduce the multi-output QT scheme, which deals with the situation that the synchronous transfer of the arbitrary m-and(m+1)-qubit GHZ-class states from one sender to two receivers. Notably, the requirement about synchronous diverse information transmission is satisfied in our scheme with high efficiency. Moreover, we demonstrate the implementation of the special case of above quantum multi-output teleportation scheme on a sixteenqubit quantum computer and a 32-qubit simulator provided by IBM quantum platform, then discuss it in four types of noisy environments, and calculate the fidelities of the output states.展开更多
Removal of cloud cover on the satellite remote sensing image can effectively improve the availability of remote sensing images. For thin cloud cover, support vector value contourlet transform is used to achieve multi-...Removal of cloud cover on the satellite remote sensing image can effectively improve the availability of remote sensing images. For thin cloud cover, support vector value contourlet transform is used to achieve multi-scale decomposition of the area of thin cloud cover on remote sensing images. Through enhancing coefficients of high frequency and suppressing coefficients of low frequency, the thin cloud is removed. For thick cloud cover, if the areas of thick cloud cover on multi-source or multi-temporal remote sensing images do not overlap, the multi-output support vector regression learning method is used to remove this kind of thick clouds. If the thick cloud cover areas overlap, by using the multi-output learning of the surrounding areas to predict the surface features of the overlapped thick cloud cover areas, this kind of thick cloud is removed. Experimental results show that the proposed cloud removal method can effectively solve the problems of the cloud overlapping and radiation difference among multi-source images. The cloud removal image is clear and smooth.展开更多
Local learning based soft sensing methods succeed in coping with time-varying characteristics of processes as well as nonlinearities in industrial plants. In this paper, a local partial least squares based soft sensin...Local learning based soft sensing methods succeed in coping with time-varying characteristics of processes as well as nonlinearities in industrial plants. In this paper, a local partial least squares based soft sensing method for multi-output processes is proposed to accomplish process states division and local model adaptation,which are two key steps in development of local learning based soft sensors. An adaptive way of partitioning process states without redundancy is proposed based on F-test, where unique local time regions are extracted.Subsequently, a novel anti-over-fitting criterion is proposed for online local model adaptation which simultaneously considers the relationship between process variables and the information in labeled and unlabeled samples. Case study is carried out on two chemical processes and simulation results illustrate the superiorities of the proposed method from several aspects.展开更多
基金supported by National Natural Science Foundation of China (No. 60874116)Natural Science Foundation of Hebei Province (No. F2009000857)
文摘A form of iterative learning control (ILC) is used to update the set-point for the local controller. It is referred to as set-point-related (SPR) indirect ILC. SPR indirect ILC has shown excellent performance: as a supervision module for the local controller, ILC can improve the tracking performance of the closed-loop system along the batch direction. In this study, an ILC-based P-type controller is proposed for multi-input multi-output (MIMO) linear batch processes, where a P-type controller is used to design the control signal directly and an ILC module is used to update the set-point for the P-type controller. Under the proposed ILC-based P-type controller, the closed-loop system can be transformed to a 2-dimensional (2D) Roesser s system. Based on the 2D system framework, a sufficient condition for asymptotic stability of the closed-loop system is derived in this paper. In terms of the average tracking error (ATE), the closed-loop control performance under the proposed algorithm can be improved from batch to batch, even though there are repetitive disturbances. A numerical example is used to validate the proposed results.
文摘Integral reinforcement learning(IRL)is an effective tool for solving optimal control problems of nonlinear systems,and it has been widely utilized in optimal controller design for solving discrete-time nonlinearity.However,solving the Hamilton-Jacobi-Bellman(HJB)equations for nonlinear systems requires precise and complicated dynamics.Moreover,the research and application of IRL in continuous-time(CT)systems must be further improved.To develop the IRL of a CT nonlinear system,a data-based adaptive neural dynamic programming(ANDP)method is proposed to investigate the optimal control problem of uncertain CT multi-input systems such that the knowledge of the dynamics in the HJB equation is unnecessary.First,the multi-input model is approximated using a neural network(NN),which can be utilized to design an integral reinforcement signal.Subsequently,two criterion networks and one action network are constructed based on the integral reinforcement signal.A nonzero-sum Nash equilibrium can be reached by learning the optimal strategies of the multi-input model.In this scheme,the NN weights are constantly updated using an adaptive algorithm.The weight convergence and the system stability are analyzed in detail.The optimal control problem of a multi-input nonlinear CT system is effectively solved using the ANDP scheme,and the results are verified by a simulation study.
文摘To cater the need for real-time crack monitoring of infrastructural facilities,a CNN-regression model is proposed to directly estimate the crack properties from patches.RGB crack images and their corresponding masks obtained from a public dataset are cropped into patches of 256 square pixels that are classified with a pre-trained deep convolution neural network,the true positives are segmented,and crack properties are extracted using two different methods.The first method is primarily based on active contour models and level-set segmentation and the second method consists of the domain adaptation of a mathematical morphology-based method known as FIL-FINDER.A statistical test has been performed for the comparison of the stated methods and a database prepared with the more suitable method.An advanced convolution neural network-based multi-output regression model has been proposed which was trained with the prepared database and validated with the held-out dataset for the prediction of crack-length,crack-width,and width-uncertainty directly from input image patches.The pro-posed model has been tested on crack patches collected from different locations.Huber loss has been used to ensure the robustness of the proposed model selected from a set of 288 different variations of it.Additionally,an ablation study has been conducted on the top 3 models that demonstrated the influence of each network component on the pre-diction results.Finally,the best performing model HHc-X among the top 3 has been proposed that predicted crack properties which are in close agreement to the ground truths in the test data.
基金supported by the National Key R&D Program of China(No.2023YFD2401303).
文摘Biological data in fishery ecology have complex structures and are highly heterogeneous.Catch per unit effort(CPUE)estimated from fishery-dependent data are often used to characterize abundance indices(AI)of fish species,which is critical in fish stock assessment.However,additional considerations need to be undertaken to ensure robust estimation because of the latently complicated structures in fishery-dependent data.Here,we elaborated the process of constructing multi-output artificial neural network models to standardize CPUE for heterogeneous fishing operations and applied it to the skipjack tuna(Katsuwonus pelamis)in the western and central Pacific Ocean(WCPO).Seasonal,spatial,and environmental factors were input variables,and the CPUE of four types of skipjack tuna fisheries were set as output variables.The optimal structure for multi-output neural network was evaluated by systematic comparison in 100 runs hold-out cross-validation.The results showed that the final multi-output neural network model with high accuracy can predict the spatial and temporal trends of skipjack tuna abundance.
基金National Natural Science Foundation of China (10972104) The Fundamental Research Funds for NUAA(NS2010007)
文摘Both auto-power spectrum and cross-power spectrum need to be controlled in multi-input multi-output (MIMO) random vibration test. During the control process with the difference control algorithm (DCA), a lower triangular matrix is derived from Cholesky decomposition of a reference spectrum matrix. The diagonal elements of the lower triangular matrix (DELTM) may become negative. These negative values have no meaning in physical significance and can cause divergence of auto-power spectrum control. A proportional root mean square control algorithm (PRMSCA) provides another method to avoid the divergence caused by negative values of DELTM, but PRMSCA cannot control the cross-power spectrum. A new control algorithm named matrix power control algorithm (MPCA) is proposed in the paper. MPCA can guarantee that DELTM is always positive in the auto-power spectrum control. MPCA can also control the cross-power spectrum. After these three control algorithms are analyzed, three-input three-output random vibration control tests are implemented on a three-axis vibration shaker. The results show the validity of the proposed MPCA.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX17_0234)
文摘A control method for Multi-Input Multi-Output(MIMO) non-Gaussian random vibration test with cross spectra consideration is proposed in the paper. The aim of the proposed control method is to replicate the specified references composed of auto spectral densities, cross spectral densities and kurtoses on the test article in the laboratory. It is found that the cross spectral densities will bring intractable coupling problems and induce difficulty for the control of the multioutput kurtoses. Hence, a sequential phase modification method is put forward to solve the coupling problems in multi-input multi-output non-Gaussian random vibration test. To achieve the specified responses, an improved zero memory nonlinear transformation is utilized first to modify the Fourier phases of the signals with sequential phase modification method to obtain one frame reference response signals which satisfy the reference spectra and reference kurtoses. Then, an inverse system method is used in frequency domain to obtain the continuous stationary drive signals. At the same time, the matrix power control algorithm is utilized to control the spectra and kurtoses of the response signals further. At the end of the paper, a simulation example with a cantilever beam and a vibration shaker test are implemented and the results support the proposed method very well.
基金supported by the Fundamental Research Funds for the Central Universities (No. NS2015008)the corresponding work was performed in the State Key Laboratory of Mechanics and Control of Mechanical Structures
文摘Noises always disturb the control effect of an environment test especially in multi-input multi-output(MIMO) systems. If the frequency response function matrices are ill-conditioned, the noises in the driving forces will be amplified and the response spectral lines may awfully exceed their tolerances. Most of the major biases between the response spectra and the reference spectra are produced by the amplified noises. However, ordinary control algorithms can hardly reduce the level of noises. The influences of the noises on both the auto- and cross-power spectra are analyzed in this paper. As a conventional frequency domain method on the inverse problem, the Tikhonov filter is adopted in the environment test to suppress the exceeding spectral lines. By altering regularization parameters gradually, the auto-power spectra can be improved in a closed control loop. Instead of using the traditional way of selecting regularization parameters, we observe the coherence change to estimate noise eliminations. Incidentally, the requirement of coherence control can be realized. The errors of the phase are then studied and a phase control algorithm is introduced at the end as a supplement of cross-power spectra control. The Tikhonov filter and the proposed phase control algorithm are tested numerically and experimentally. The results show that the noises in the vicinity of lightly damped resonant peaks are more stubborn. The response spectra are able to be greatly improved by the combination of these two methods.
文摘This paper presents the design of decentralized repetitive control (RC) for multi-input multi-output (MIMO) systems. An optimization method is used to obtain a RC compensator that ensures system stability and good tracking performance. The designed compensator is in the form of a stable, low order, and causal filter, in which the compensator can be implemented separately without being merged with the RC internal model. This will reduce complexity in the implementation. Simulation results and comparison study are given to demonstrate the effectiveness of the proposed design. The novelty of design is also verified in experiments on a 2 degrees of freedom (DOF) robot.
基金This project is supported by Program for New Century Excellent Talents in University,China(No.NCET-04-0325).
文摘The FRF estimator based on the errors-in-variables (EV) model of multi-input multi-output (MIMO) system is presented to reduce the bias error of FRF HI estimator. The FRF HI estimator is influenced by the noises in the inputs of the system and generates an under-estimation of the true FRF. The FRF estimator based on the EV model takes into account the errors in both the inputs and outputs of the system and would lead to more accurate FRF estimation. The FRF estimator based on the EV model is applied to the waveform replication on the 6-DOF (degree-of-freedom) hydraulic vibration table. The result shows that it is favorable to improve the control precision of the MIMO vibration control system.
文摘In this paper,the problem of designing a multi-input multi-output(MIMO)systemfor studying the non-minimum phase(NMP)behaviour is considered.For this purpose,a NMP MIMO circuit is proposed and studied under different conditions.The main reason for designing this circuit is the lack of a simple and flexible benchmark for examining different control methods.Due to the simple structure and capability of showing different NMP characteristics,our proposed system is a suitable choice to study the behaviour of these systems.Also,our proposed system can be extended by series and parallel connections to generate more complicated benchmarks.The other advantages of this system are the large number of tunable parameters,adjustable interaction,variable number of poles and zeros,and inexpensive cost.Moreover,this benchmark can be used as a tool for hardware simulation.Finally,an optimal H∞decoupling control is applied to this benchmark to verify its effectiveness.
基金Project supported by the Centre for Smart Grid and Information Convergence(CeSGIC)at Xi’an Jiaotong-Liverpool University,China
文摘Lookup table is widely used in automotive industry for the design of engine control units(ECU).Together with a proportional-integral controller,a feed-forward and feedback control scheme is often adopted for automotive engine management system(EMS).Usually,an ECU has a structure of multi-input and single-output(MISO).Therefore,if there are multiple objectives proposed in EMS,there would be corresponding numbers of ECUs that need to be designed.In this situation,huge efforts and time were spent on calibration.In this work,a multi-input and multi-out(MIMO) approach based on model predictive control(MPC) was presented for the automatic cruise system of automotive engine.The results show that the tracking of engine speed command and the regulation of air/fuel ratio(AFR) can be achieved simultaneously under the new scheme.The mean absolute error(MAE) for engine speed control is 0.037,and the MAE for air fuel ratio is 0.069.
基金Supported by State Key Laboratory of InformationSecurity Opening Foundation(01-02) .
文摘Orthomorphic permutations have good characteristics in cryptosystems. In this paper, by using of knowledge about relation between orthomorphic permutations and multi-output functions, and conceptions of the generalized Walsh spectrum of multi-output functions and the auto-correlation function of multi-output functions to investigate the Walsh spectral characteristics and the auto-correlation function characteristics of orthormophic permutations, several results are obtained.
基金Supported by State Key Laboratory of InformationSecurity Opening Foundation(01-02) the Doctorate Foundation ofInstitute of Information Engineering (YP20014401)HenanInno-vation Project for University Prominent Research Talents(2003KJCX008)
文摘In this paper, the definition of multl-output partially Bent functions is presented and some properties are discussed. Then the relationship between multi-output partially Bent functions and multi-output Bent functions is given in Theorem 4, which includes Walsh spectrum expression and function expression. This shows that multi-output partially Bent functions and multi-output Bent functions can define each other in principle. So we obtain the general method to construct multi-output partially Bent functions from multi-output Bent functions.
文摘Considering the modeling errors of on-board self-tuning model in the fault diagnosis of aero-engine, a new mechanism for compensating the model outputs is proposed. A discrete series predictor based on multi-outputs least square support vector regression (LSSVR) is applied to the compensation of on-board self-tuning model of aero-engine, and particle swarm optimization (PSO) is used to the kernels selection of multi-outputs LSSVR. The method need not reconstruct the model of aero-engine because of the differences in the individuals of the same type engines and engine degradation after use. The concrete steps for the application of the method are given, and the simulation results show the effectiveness of the algorithm.
基金the Key Industry Projects in Shaanxi Province(Grant No.2019ZDLGY09-03,2020ZDLGY15-09)the National Natural Science Foundation of China(Grants No.61771296,61372076,61301171)+1 种基金the Natural Science Foundation of Shaanxi province(Grant No.2018JM60-53,2018JZ60-06)the 111 Project under Grant B08038。
文摘:Multicast-based quantum teleportation(QT) is extensively used in quantum information transmission where a sender sends different information to multiple receivers at the large distance through the quantum entangled channel. In this paper, we introduce the multi-output QT scheme, which deals with the situation that the synchronous transfer of the arbitrary m-and(m+1)-qubit GHZ-class states from one sender to two receivers. Notably, the requirement about synchronous diverse information transmission is satisfied in our scheme with high efficiency. Moreover, we demonstrate the implementation of the special case of above quantum multi-output teleportation scheme on a sixteenqubit quantum computer and a 32-qubit simulator provided by IBM quantum platform, then discuss it in four types of noisy environments, and calculate the fidelities of the output states.
基金supported by the National Natural Science Foundation of China(61172127)the Natural Science Foundation of Anhui Province(1408085MF121)
文摘Removal of cloud cover on the satellite remote sensing image can effectively improve the availability of remote sensing images. For thin cloud cover, support vector value contourlet transform is used to achieve multi-scale decomposition of the area of thin cloud cover on remote sensing images. Through enhancing coefficients of high frequency and suppressing coefficients of low frequency, the thin cloud is removed. For thick cloud cover, if the areas of thick cloud cover on multi-source or multi-temporal remote sensing images do not overlap, the multi-output support vector regression learning method is used to remove this kind of thick clouds. If the thick cloud cover areas overlap, by using the multi-output learning of the surrounding areas to predict the surface features of the overlapped thick cloud cover areas, this kind of thick cloud is removed. Experimental results show that the proposed cloud removal method can effectively solve the problems of the cloud overlapping and radiation difference among multi-source images. The cloud removal image is clear and smooth.
基金Supported by the National Natural Science Foundation of China(61273160)the Fundamental Research Funds for the Central Universities(14CX06067A,13CX05021A)
文摘Local learning based soft sensing methods succeed in coping with time-varying characteristics of processes as well as nonlinearities in industrial plants. In this paper, a local partial least squares based soft sensing method for multi-output processes is proposed to accomplish process states division and local model adaptation,which are two key steps in development of local learning based soft sensors. An adaptive way of partitioning process states without redundancy is proposed based on F-test, where unique local time regions are extracted.Subsequently, a novel anti-over-fitting criterion is proposed for online local model adaptation which simultaneously considers the relationship between process variables and the information in labeled and unlabeled samples. Case study is carried out on two chemical processes and simulation results illustrate the superiorities of the proposed method from several aspects.