Worldwide,many elders are suffering from Alzheimer’s disease(AD).The elders with AD exhibit various abnormalities in their activities,such as sleep disturbances,wandering aimlessly,forgetting activities,etc.,which ar...Worldwide,many elders are suffering from Alzheimer’s disease(AD).The elders with AD exhibit various abnormalities in their activities,such as sleep disturbances,wandering aimlessly,forgetting activities,etc.,which are the strong signs and symptoms of AD progression.Recognizing these symptoms in advance could assist to a quicker diagnosis and treatment and to prevent the progression of Disease to the next stage.The proposed method aims to detect the behavioral abnormalities found in Daily activities of AD patients(ADP)using wearables.In the proposed work,a publicly available dataset collected using wearables is applied.Currently,no real-world data is available to illustrate the daily activities of ADP.Hence,the proposed method has synthesized the wearables data according to the abnormal activities of ADP.In the proposed work,multi-headed(MH)architectures such as MH Convolutional Neural Network-Long Short-Term Mem-ory Network(CNN-LSTM),MH one-dimensional Convolutional Neural Network(1D-CNN)and MH two dimensional Convolutional Neural Network(2D-CNN)as well as conventional methods,namely CNN-LSTM,1D-CNN,2D-CNN have been implemented to model activity pattern.A multi-label prediction technique is applied to detect abnormal activities.The results obtained show that the proposed MH architectures achieve improved performance than the conventional methods.Moreover,the MH models for activity recognition perform better than the abnormality detection.展开更多
Sarcasm detection is a complex and challenging task,particularly in the context of Chinese social media,where it exhibits strong contextual dependencies and cultural specificity.To address the limitations of existing ...Sarcasm detection is a complex and challenging task,particularly in the context of Chinese social media,where it exhibits strong contextual dependencies and cultural specificity.To address the limitations of existing methods in capturing the implicit semantics and contextual associations in sarcastic expressions,this paper proposes an event-aware model for Chinese sarcasm detection,leveraging a multi-head attention(MHA)mechanism and contrastive learning(CL)strategies.The proposed model employs a dual-path Bidirectional Encoder Representations from Transformers(BERT)encoder to process comment text and event context separately and integrates an MHA mechanism to facilitate deep interactions between the two,thereby capturing multidimensional semantic associations.Additionally,a CL strategy is introduced to enhance feature representation capabilities,further improving the model’s performance in handling class imbalance and complex contextual scenarios.The model achieves state-of-the-art performance on the Chinese sarcasm dataset,with significant improvements in accuracy(79.55%),F1-score(84.22%),and an area under the curve(AUC,84.35%).展开更多
Abnormal network traffic, as a frequent security risk, requires a series of techniques to categorize and detect it. Existing network traffic anomaly detection still faces challenges: the inability to fully extract loc...Abnormal network traffic, as a frequent security risk, requires a series of techniques to categorize and detect it. Existing network traffic anomaly detection still faces challenges: the inability to fully extract local and global features, as well as the lack of effective mechanisms to capture complex interactions between features;Additionally, when increasing the receptive field to obtain deeper feature representations, the reliance on increasing network depth leads to a significant increase in computational resource consumption, affecting the efficiency and performance of detection. Based on these issues, firstly, this paper proposes a network traffic anomaly detection model based on parallel dilated convolution and residual learning (Res-PDC). To better explore the interactive relationships between features, the traffic samples are converted into two-dimensional matrix. A module combining parallel dilated convolutions and residual learning (res-pdc) was designed to extract local and global features of traffic at different scales. By utilizing res-pdc modules with different dilation rates, we can effectively capture spatial features at different scales and explore feature dependencies spanning wider regions without increasing computational resources. Secondly, to focus and integrate the information in different feature subspaces, further enhance and extract the interactions among the features, multi-head attention is added to Res-PDC, resulting in the final model: multi-head attention enhanced parallel dilated convolution and residual learning (MHA-Res-PDC) for network traffic anomaly detection. Finally, comparisons with other machine learning and deep learning algorithms are conducted on the NSL-KDD and CIC-IDS-2018 datasets. The experimental results demonstrate that the proposed method in this paper can effectively improve the detection performance.展开更多
Lightweight deep learning models are increasingly required in resource-constrained environments such as mobile devices and the Internet of Medical Things(IoMT).Multi-head convolution with channel attention can facilit...Lightweight deep learning models are increasingly required in resource-constrained environments such as mobile devices and the Internet of Medical Things(IoMT).Multi-head convolution with channel attention can facilitate learning activations relevant to different kernel sizes within a multi-head convolutional layer.Therefore,this study investigates the capability of novel lightweight models incorporating residual multi-head convolution with channel attention(ResMHCNN)blocks to classify medical images.We introduced three novel lightweight deep learning models(BT-Net,LCC-Net,and BC-Net)utilizing the ResMHCNN block as their backbone.These models were crossvalidated and tested on three publicly available medical image datasets:a brain tumor dataset from Figshare consisting of T1-weighted magnetic resonance imaging slices of meningioma,glioma,and pituitary tumors;the LC25000 dataset,which includes microscopic images of lung and colon cancers;and the BreaKHis dataset,containing benign and malignant breast microscopic images.The lightweight models achieved accuracies of 96.9%for 3-class brain tumor classification using BT-Net,and 99.7%for 5-class lung and colon cancer classification using LCC-Net.For 2-class breast cancer classification,BC-Net achieved an accuracy of 96.7%.The parameter counts for the proposed lightweight models—LCC-Net,BC-Net,and BT-Net—are 0.528,0.226,and 1.154 million,respectively.The presented lightweight models,featuring ResMHCNN blocks,may be effectively employed for accurate medical image classification.In the future,these models might be tested for viability in resource-constrained systems such as mobile devices and IoMT platforms.展开更多
Coal dust explosions are severe safety accidents in coal mine production,posing significant threats to life and property.Predicting the maximum explosion pressure(Pm)of coal dust using deep learning models can effecti...Coal dust explosions are severe safety accidents in coal mine production,posing significant threats to life and property.Predicting the maximum explosion pressure(Pm)of coal dust using deep learning models can effectively assess potential risks and provide a scientific basis for preventing coal dust explosions.In this study,a 20-L explosion sphere apparatus was used to test the maximum explosion pressure of coal dust under seven different particle sizes and ten mass concentrations(Cdust),resulting in a dataset of 70 experimental groups.Through Spearman correlation analysis and random forest feature selection methods,particle size(D_(10),D_(20),D_(50))and mass concentration(Cdust)were identified as critical feature parameters from the ten initial parameters of the coal dust samples.Based on this,a hybrid Long Short-Term Memory(LSTM)network model incorporating a Multi-Head Attention Mechanism and the Sparrow Search Algorithm(SSA)was proposed to predict the maximum explosion pressure of coal dust.The results demonstrate that the SSA-LSTM-Multi-Head Attention model excels in predicting the maximum explosion pressure of coal dust.The four evaluation metrics indicate that the model achieved a coefficient of determination(R^(2)),root mean square error(RMSE),mean absolute percentage error(MAPE),and mean absolute error(MAE)of 0.9841,0.0030,0.0074,and 0.0049,respectively,in the training set.In the testing set,these values were 0.9743,0.0087,0.0108,and 0.0069,respectively.Compared to artificial neural networks(ANN),random forest(RF),support vector machines(SVM),particle swarm optimized-SVM(PSO-SVM)neural networks,and the traditional single-model LSTM,the SSA-LSTM-Multi-Head Attention model demonstrated superior generalization capability and prediction accuracy.The findings of this study not only advance the application of deep learning in coal dust explosion prediction but also provide robust technical support for the prevention and risk assessment of coal dust explosions.展开更多
Safety maintenance of power equipment is of great importance in power grids,in which image-processing-based defect recognition is supposed to classify abnormal conditions during daily inspection.However,owing to the b...Safety maintenance of power equipment is of great importance in power grids,in which image-processing-based defect recognition is supposed to classify abnormal conditions during daily inspection.However,owing to the blurred features of defect images,the current defect recognition algorithm has poor fine-grained recognition ability.Visual attention can achieve fine-grained recognition with its abil-ity to model long-range dependencies while introducing extra computational complexity,especially for multi-head attention in vision transformer structures.Under these circumstances,this paper proposes a self-reduction multi-head attention module that can reduce computational complexity and be easily combined with a Convolutional Neural Network(CNN).In this manner,local and global fea-tures can be calculated simultaneously in our proposed structure,aiming to improve the defect recognition performance.Specifically,the proposed self-reduction multi-head attention can reduce redundant parameters,thereby solving the problem of limited computational resources.Experimental results were obtained based on the defect dataset collected from the substation.The results demonstrated the efficiency and superiority of the proposed method over other advanced algorithms.展开更多
The self-attention mechanism of Transformers,which captures long-range contextual information,has demonstrated significant potential in image segmentation.However,their ability to learn local,contextual relationships ...The self-attention mechanism of Transformers,which captures long-range contextual information,has demonstrated significant potential in image segmentation.However,their ability to learn local,contextual relationships between pixels requires further improvement.Previous methods face challenges in efficiently managing multi-scale fea-tures of different granularities from the encoder backbone,leaving room for improvement in their global representation and feature extraction capabilities.To address these challenges,we propose a novel Decoder with Multi-Head Feature Receptors(DMHFR),which receives multi-scale features from the encoder backbone and organizes them into three feature groups with different granularities:coarse,fine-grained,and full set.These groups are subsequently processed by Multi-Head Feature Receptors(MHFRs)after feature capture and modeling operations.MHFRs include two Three-Head Feature Receptors(THFRs)and one Four-Head Feature Receptor(FHFR).Each group of features is passed through these MHFRs and then fed into axial transformers,which help the model capture long-range dependencies within the features.The three MHFRs produce three distinct feature outputs.The output from the FHFR serves as auxiliary auxiliary features in the prediction head,and the prediction output and their losses will eventually be aggregated.Experimental results show that the Transformer using DMHFR outperforms 15 state of the arts(SOTA)methods on five public datasets.Specifically,it achieved significant improvements in mean DICE scores over the classic Parallel Reverse Attention Network(PraNet)method,with gains of 4.1%,2.2%,1.4%,8.9%,and 16.3%on the CVC-ClinicDB,Kvasir-SEG,CVC-T,CVC-ColonDB,and ETIS-LaribPolypDB datasets,respectively.展开更多
Traffic flow prediction is a crucial element of intelligent transportation systems.However,accu-rate traffic flow prediction is quite challenging because of its highly nonlinear,complex,and dynam-ic characteristics.To...Traffic flow prediction is a crucial element of intelligent transportation systems.However,accu-rate traffic flow prediction is quite challenging because of its highly nonlinear,complex,and dynam-ic characteristics.To address the difficulties in simultaneously capturing local and global dynamic spatiotemporal correlations in traffic flow,as well as the high time complexity of existing models,a multi-head flow attention-based local-global dynamic hypergraph convolution(MFA-LGDHC)pre-diction model is proposed.which consists of multi-head flow attention(MHFA)mechanism,graph convolution network(GCN),and local-global dynamic hypergraph convolution(LGHC).MHFA is utilized to extract the time dependency of traffic flow and reduce the time complexity of the model.GCN is employed to catch the spatial dependency of traffic flow.LGHC utilizes down-sampling con-volution and isometric convolution to capture the local and global spatial dependencies of traffic flow.And dynamic hypergraph convolution is used to model the dynamic higher-order relationships of the traffic road network.Experimental results indicate that the MFA-LGDHC model outperforms current popular baseline models and exhibits good prediction performance.展开更多
As the group-buying model shows significant progress in attracting new users,enhancing user engagement,and increasing platform profitability,providing personalized recommendations for group-buying users has emerged as...As the group-buying model shows significant progress in attracting new users,enhancing user engagement,and increasing platform profitability,providing personalized recommendations for group-buying users has emerged as a new challenge in the field of recommendation systems.This paper introduces a group-buying recommendation model based on multi-head attention mechanisms and multi-task learning,termed the Multi-head Attention Mechanisms and Multi-task Learning Group-Buying Recommendation(MAMGBR)model,specifically designed to optimize group-buying recommendations on e-commerce platforms.The core dataset of this study comes from the Chinese maternal and infant e-commerce platform“Beibei,”encompassing approximately 430,000 successful groupbuying actions and over 120,000 users.Themodel focuses on twomain tasks:recommending items for group organizers(Task Ⅰ)and recommending participants for a given group-buying event(Task Ⅱ).In model evaluation,MAMGBR achieves an MRR@10 of 0.7696 for Task I,marking a 20.23%improvement over baseline models.Furthermore,in Task II,where complex interaction patterns prevail,MAMGBR utilizes auxiliary loss functions to effectively model the multifaceted roles of users,items,and participants,leading to a 24.08%increase in MRR@100 under a 1:99 sample ratio.Experimental results show that compared to benchmark models,such as NGCF and EATNN,MAMGBR’s integration ofmulti-head attentionmechanisms,expert networks,and gating mechanisms enables more accurate modeling of user preferences and social associations within group-buying scenarios,significantly enhancing recommendation accuracy and platform group-buying success rates.展开更多
Due to the time-varying topology and possible disturbances in a conflict environment,it is still challenging to maintain the mission performance of flying Ad hoc networks(FANET),which limits the application of Unmanne...Due to the time-varying topology and possible disturbances in a conflict environment,it is still challenging to maintain the mission performance of flying Ad hoc networks(FANET),which limits the application of Unmanned Aerial Vehicle(UAV)swarms in harsh environments.This paper proposes an intelligent framework to quickly recover the cooperative coveragemission by aggregating the historical spatio-temporal network with the attention mechanism.The mission resilience metric is introduced in conjunction with connectivity and coverage status information to simplify the optimization model.A spatio-temporal node pooling method is proposed to ensure all node location features can be updated after destruction by capturing the temporal network structure.Combined with the corresponding Laplacian matrix as the hyperparameter,a recovery algorithm based on the multi-head attention graph network is designed to achieve rapid recovery.Simulation results showed that the proposed framework can facilitate rapid recovery of the connectivity and coverage more effectively compared to the existing studies.The results demonstrate that the average connectivity and coverage results is improved by 17.92%and 16.96%,respectively compared with the state-of-the-art model.Furthermore,by the ablation study,the contributions of each different improvement are compared.The proposed model can be used to support resilient network design for real-time mission execution.展开更多
The present study examines the impact of short-term public opinion sentiment on the secondary market,with a focus on the potential for such sentiment to cause dramatic stock price fluctuations and increase investment ...The present study examines the impact of short-term public opinion sentiment on the secondary market,with a focus on the potential for such sentiment to cause dramatic stock price fluctuations and increase investment risk.The quantification of investment sentiment indicators and the persistent analysis of their impact has been a complex and significant area of research.In this paper,a structured multi-head attention stock index prediction method based adaptive public opinion sentiment vector is proposed.The proposedmethod utilizes an innovative approach to transform numerous investor comments on social platforms over time into public opinion sentiment vectors expressing complex sentiments.It then analyzes the continuous impact of these vectors on the market through the use of aggregating techniques and public opinion data via a structured multi-head attention mechanism.The experimental results demonstrate that the public opinion sentiment vector can provide more comprehensive feedback on market sentiment than traditional sentiment polarity analysis.Furthermore,the multi-head attention mechanism is shown to improve prediction accuracy through attention convergence on each type of input information separately.Themean absolute percentage error(MAPE)of the proposedmethod is 0.463%,a reduction of 0.294% compared to the benchmark attention algorithm.Additionally,the market backtesting results indicate that the return was 24.560%,an improvement of 8.202% compared to the benchmark algorithm.These results suggest that themarket trading strategy based on thismethod has the potential to improve trading profits.展开更多
Cardiovascular disease is the leading cause of death globally.This disease causes loss of heart muscles and is also responsible for the death of heart cells,sometimes damaging their functionality.A person’s life may ...Cardiovascular disease is the leading cause of death globally.This disease causes loss of heart muscles and is also responsible for the death of heart cells,sometimes damaging their functionality.A person’s life may depend on receiving timely assistance as soon as possible.Thus,minimizing the death ratio can be achieved by early detection of heart attack(HA)symptoms.In the United States alone,an estimated 610,000 people die fromheart attacks each year,accounting for one in every four fatalities.However,by identifying and reporting heart attack symptoms early on,it is possible to reduce damage and save many lives significantly.Our objective is to devise an algorithm aimed at helping individuals,particularly elderly individuals living independently,to safeguard their lives.To address these challenges,we employ deep learning techniques.We have utilized a vision transformer(ViT)to address this problem.However,it has a significant overhead cost due to its memory consumption and computational complexity because of scaling dot-product attention.Also,since transformer performance typically relies on large-scale or adequate data,adapting ViT for smaller datasets is more challenging.In response,we propose a three-in-one steam model,theMulti-Head Attention Vision Hybrid(MHAVH).Thismodel integrates a real-time posture recognition framework to identify chest pain postures indicative of heart attacks using transfer learning techniques,such as ResNet-50 and VGG-16,renowned for their robust feature extraction capabilities.By incorporatingmultiple heads into the vision transformer to generate additional metrics and enhance heart-detection capabilities,we leverage a 2019 posture-based dataset comprising RGB images,a novel creation by the author that marks the first dataset tailored for posture-based heart attack detection.Given the limited online data availability,we segmented this dataset into gender categories(male and female)and conducted testing on both segmented and original datasets.The training accuracy of our model reached an impressive 99.77%.Upon testing,the accuracy for male and female datasets was recorded at 92.87%and 75.47%,respectively.The combined dataset accuracy is 93.96%,showcasing a commendable performance overall.Our proposed approach demonstrates versatility in accommodating small and large datasets,offering promising prospects for real-world applications.展开更多
Accurate traffic prediction is crucial for an intelligent traffic system (ITS). However, the excessive non-linearity and complexity of the spatial-temporal correlation in traffic flow severely limit the prediction acc...Accurate traffic prediction is crucial for an intelligent traffic system (ITS). However, the excessive non-linearity and complexity of the spatial-temporal correlation in traffic flow severely limit the prediction accuracy of most existing models, which simply stack temporal and spatial modules and fail to capture spatial-temporal features effectively. To improve the prediction accuracy, a multi-head attention spatial-temporal graph neural network (MSTNet) is proposed in this paper. First, the traffic data is decomposed into unique time spans that conform to positive rules, and valuable traffic node attributes are mined through an adaptive graph structure. Second, time and spatial features are captured using a multi-head attention spatial-temporal module. Finally, a multi-step prediction module is used to achieve future traffic condition prediction. Numerical experiments were conducted on an open-source dataset, and the results demonstrate that MSTNet performs well in spatial-temporal feature extraction and achieves more positive forecasting results than the baseline methods.展开更多
Due to the lack of accurate data and complex parameterization,the prediction of groundwater depth is a chal-lenge for numerical models.Machine learning can effectively solve this issue and has been proven useful in th...Due to the lack of accurate data and complex parameterization,the prediction of groundwater depth is a chal-lenge for numerical models.Machine learning can effectively solve this issue and has been proven useful in the prediction of groundwater depth in many areas.In this study,two new models are applied to the prediction of groundwater depth in the Ningxia area,China.The two models combine the improved dung beetle optimizer(DBO)algorithm with two deep learning models:The Multi-head Attention-Convolution Neural Network-Long Short Term Memory networks(MH-CNN-LSTM)and the Multi-head Attention-Convolution Neural Network-Gated Recurrent Unit(MH-CNN-GRU).The models with DBO show better prediction performance,with larger R(correlation coefficient),RPD(residual prediction deviation),and lower RMSE(root-mean-square error).Com-pared with the models with the original DBO,the R and RPD of models with the improved DBO increase by over 1.5%,and the RMSE decreases by over 1.8%,indicating better prediction results.In addition,compared with the multiple linear regression model,a traditional statistical model,deep learning models have better prediction performance.展开更多
Improving consumer satisfaction with the appearance and surface quality of wood-based products requires inspection methods that are both accurate and efficient.The adoption of artificial intelligence(AI)for surface ev...Improving consumer satisfaction with the appearance and surface quality of wood-based products requires inspection methods that are both accurate and efficient.The adoption of artificial intelligence(AI)for surface evaluation has emerged as a promising solution.Since the visual appeal of wooden products directly impacts their market value and overall business success,effective quality control is crucial.However,conventional inspection techniques often fail to meet performance requirements due to limited accuracy and slow processing times.To address these shortcomings,the authors propose a real-time deep learning-based system for evaluating surface appearance quality.The method integrates object detection and classification within an area attention framework and leverages R-ELAN for advanced fine-tuning.This architecture supports precise identification and classification of multiple objects,even under ambiguous or visually complex conditions.Furthermore,the model is computationally efficient and well-suited to moderate or domain-specific datasets commonly found in industrial inspection tasks.Experimental validation on the Zenodo dataset shows that the model achieves an average precision(AP)of 60.6%,outperforming the current state-of-the-art YOLOv12 model(55.3%),with a fast inference time of approximately 70 milliseconds.These results underscore the potential of AI-powered methods to enhance surface quality inspection in the wood manufacturing sector.展开更多
Spectrum prediction is considered as a key technology to assist spectrum decision.Despite the great efforts that have been put on the construction of spectrum prediction,achieving accurate spectrum prediction emphasiz...Spectrum prediction is considered as a key technology to assist spectrum decision.Despite the great efforts that have been put on the construction of spectrum prediction,achieving accurate spectrum prediction emphasizes the need for more advanced solutions.In this paper,we propose a new multichannel multi-step spectrum prediction method using Transformer and stacked bidirectional LSTM(Bi-LSTM),named TSB.Specifically,we use multi-head attention and stacked Bi-LSTM to build a new Transformer based on encoder-decoder architecture.The self-attention mechanism composed of multiple layers of multi-head attention can continuously attend to all positions of the multichannel spectrum sequences.The stacked Bi-LSTM can learn these focused coding features by multi-head attention layer by layer.The advantage of this fusion mode is that it can deeply capture the long-term dependence of multichannel spectrum data.We have conducted extensive experiments on a dataset generated by a real simulation platform.The results show that the proposed algorithm performs better than the baselines.展开更多
Rail surface damage is a critical component of high-speed railway infrastructure,directly affecting train operational stability and safety.Existing methods face limitations in accuracy and speed for small-sample,multi...Rail surface damage is a critical component of high-speed railway infrastructure,directly affecting train operational stability and safety.Existing methods face limitations in accuracy and speed for small-sample,multi-category,and multi-scale target segmentation tasks.To address these challenges,this paper proposes Pyramid-MixNet,an intelligent segmentation model for high-speed rail surface damage,leveraging dataset construction and expansion alongside a feature pyramid-based encoder-decoder network with multi-attention mechanisms.The encoding net-work integrates Spatial Reduction Masked Multi-Head Attention(SRMMHA)to enhance global feature extraction while reducing trainable parameters.The decoding network incorporates Mix-Attention(MA),enabling multi-scale structural understanding and cross-scale token group correlation learning.Experimental results demonstrate that the proposed method achieves 62.17%average segmentation accuracy,80.28%Damage Dice Coefficient,and 56.83 FPS,meeting real-time detection requirements.The model’s high accuracy and scene adaptability significantly improve the detection of small-scale and complex multi-scale rail damage,offering practical value for real-time monitoring in high-speed railway maintenance systems.展开更多
Medical image analysis based on deep learning has become an important technical requirement in the field of smart healthcare.In view of the difficulties in collaborative modeling of local details and global features i...Medical image analysis based on deep learning has become an important technical requirement in the field of smart healthcare.In view of the difficulties in collaborative modeling of local details and global features in multimodal image analysis of ophthalmology,as well as the existence of information redundancy in cross-modal data fusion,this paper proposes amultimodal fusion framework based on cross-modal collaboration and weighted attention mechanism.In terms of feature extraction,the framework collaboratively extracts local fine-grained features and global structural dependencies through a parallel dual-branch architecture,overcoming the limitations of traditional single-modality models in capturing either local or global information;in terms of fusion strategy,the framework innovatively designs a cross-modal dynamic fusion strategy,combining overlappingmulti-head self-attention modules with a bidirectional feature alignment mechanism,addressing the bottlenecks of low feature interaction efficiency and excessive attention fusion computations in traditional parallel fusion,and further introduces cross-domain local integration technology,which enhances the representation ability of the lesion area through pixel-level feature recalibration and optimizes the diagnostic robustness of complex cases.Experiments show that the framework exhibits excellent feature expression and generalization performance in cross-domain scenarios of ophthalmic medical images and natural images,providing a high-precision,low-redundancy fusion paradigm for multimodal medical image analysis,and promoting the upgrade of intelligent diagnosis and treatment fromsingle-modal static analysis to dynamic decision-making.展开更多
Aspect-oriented sentiment analysis is a meticulous sentiment analysis task that aims to analyse the sentiment polarity of specific aspects. Most of the current research builds graph convolutional networks based on dep...Aspect-oriented sentiment analysis is a meticulous sentiment analysis task that aims to analyse the sentiment polarity of specific aspects. Most of the current research builds graph convolutional networks based on dependent syntactic trees, which improves the classification performance of the models to some extent. However, the technical limitations of dependent syntactic trees can introduce considerable noise into the model. Meanwhile, it is difficult for a single graph convolutional network to aggregate both semantic and syntactic structural information of nodes, which affects the final sentence classification. To cope with the above problems, this paper proposes a bi-channel graph convolutional network model. The model introduces a phrase structure tree and transforms it into a hierarchical phrase matrix. The adjacency matrix of the dependent syntactic tree and the hierarchical phrase matrix are combined as the initial matrix of the graph convolutional network to enhance the syntactic information. The semantic information feature representations of the sentences are obtained by the graph convolutional network with a multi-head attention mechanism and fused to achieve complementary learning of dual-channel features. Experimental results show that the model performs well and improves the accuracy of sentiment classification on three public benchmark datasets, namely Rest14, Lap14 and Twitter.展开更多
文摘Worldwide,many elders are suffering from Alzheimer’s disease(AD).The elders with AD exhibit various abnormalities in their activities,such as sleep disturbances,wandering aimlessly,forgetting activities,etc.,which are the strong signs and symptoms of AD progression.Recognizing these symptoms in advance could assist to a quicker diagnosis and treatment and to prevent the progression of Disease to the next stage.The proposed method aims to detect the behavioral abnormalities found in Daily activities of AD patients(ADP)using wearables.In the proposed work,a publicly available dataset collected using wearables is applied.Currently,no real-world data is available to illustrate the daily activities of ADP.Hence,the proposed method has synthesized the wearables data according to the abnormal activities of ADP.In the proposed work,multi-headed(MH)architectures such as MH Convolutional Neural Network-Long Short-Term Mem-ory Network(CNN-LSTM),MH one-dimensional Convolutional Neural Network(1D-CNN)and MH two dimensional Convolutional Neural Network(2D-CNN)as well as conventional methods,namely CNN-LSTM,1D-CNN,2D-CNN have been implemented to model activity pattern.A multi-label prediction technique is applied to detect abnormal activities.The results obtained show that the proposed MH architectures achieve improved performance than the conventional methods.Moreover,the MH models for activity recognition perform better than the abnormality detection.
基金granted by Qin Xin Talents Cultivation Program(No.QXTCP C202115),Beijing Information Science&Technology Universitythe Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing Fund(No.GJJ-23),National Social Science Foundation,China(No.21BTQ079).
文摘Sarcasm detection is a complex and challenging task,particularly in the context of Chinese social media,where it exhibits strong contextual dependencies and cultural specificity.To address the limitations of existing methods in capturing the implicit semantics and contextual associations in sarcastic expressions,this paper proposes an event-aware model for Chinese sarcasm detection,leveraging a multi-head attention(MHA)mechanism and contrastive learning(CL)strategies.The proposed model employs a dual-path Bidirectional Encoder Representations from Transformers(BERT)encoder to process comment text and event context separately and integrates an MHA mechanism to facilitate deep interactions between the two,thereby capturing multidimensional semantic associations.Additionally,a CL strategy is introduced to enhance feature representation capabilities,further improving the model’s performance in handling class imbalance and complex contextual scenarios.The model achieves state-of-the-art performance on the Chinese sarcasm dataset,with significant improvements in accuracy(79.55%),F1-score(84.22%),and an area under the curve(AUC,84.35%).
基金supported by the Xiamen Science and Technology Subsidy Project(No.2023CXY0318).
文摘Abnormal network traffic, as a frequent security risk, requires a series of techniques to categorize and detect it. Existing network traffic anomaly detection still faces challenges: the inability to fully extract local and global features, as well as the lack of effective mechanisms to capture complex interactions between features;Additionally, when increasing the receptive field to obtain deeper feature representations, the reliance on increasing network depth leads to a significant increase in computational resource consumption, affecting the efficiency and performance of detection. Based on these issues, firstly, this paper proposes a network traffic anomaly detection model based on parallel dilated convolution and residual learning (Res-PDC). To better explore the interactive relationships between features, the traffic samples are converted into two-dimensional matrix. A module combining parallel dilated convolutions and residual learning (res-pdc) was designed to extract local and global features of traffic at different scales. By utilizing res-pdc modules with different dilation rates, we can effectively capture spatial features at different scales and explore feature dependencies spanning wider regions without increasing computational resources. Secondly, to focus and integrate the information in different feature subspaces, further enhance and extract the interactions among the features, multi-head attention is added to Res-PDC, resulting in the final model: multi-head attention enhanced parallel dilated convolution and residual learning (MHA-Res-PDC) for network traffic anomaly detection. Finally, comparisons with other machine learning and deep learning algorithms are conducted on the NSL-KDD and CIC-IDS-2018 datasets. The experimental results demonstrate that the proposed method in this paper can effectively improve the detection performance.
基金supported by the Institute of Information&Communications Technology Planning&Evaluation(IITP)-Innovative Human Resource Development for Local Intellectualization program grant funded by the Korea government(MSIT)(IITP-2025-RS-2023-00259678)by INHA UNIVERSITY Research Grant.
文摘Lightweight deep learning models are increasingly required in resource-constrained environments such as mobile devices and the Internet of Medical Things(IoMT).Multi-head convolution with channel attention can facilitate learning activations relevant to different kernel sizes within a multi-head convolutional layer.Therefore,this study investigates the capability of novel lightweight models incorporating residual multi-head convolution with channel attention(ResMHCNN)blocks to classify medical images.We introduced three novel lightweight deep learning models(BT-Net,LCC-Net,and BC-Net)utilizing the ResMHCNN block as their backbone.These models were crossvalidated and tested on three publicly available medical image datasets:a brain tumor dataset from Figshare consisting of T1-weighted magnetic resonance imaging slices of meningioma,glioma,and pituitary tumors;the LC25000 dataset,which includes microscopic images of lung and colon cancers;and the BreaKHis dataset,containing benign and malignant breast microscopic images.The lightweight models achieved accuracies of 96.9%for 3-class brain tumor classification using BT-Net,and 99.7%for 5-class lung and colon cancer classification using LCC-Net.For 2-class breast cancer classification,BC-Net achieved an accuracy of 96.7%.The parameter counts for the proposed lightweight models—LCC-Net,BC-Net,and BT-Net—are 0.528,0.226,and 1.154 million,respectively.The presented lightweight models,featuring ResMHCNN blocks,may be effectively employed for accurate medical image classification.In the future,these models might be tested for viability in resource-constrained systems such as mobile devices and IoMT platforms.
基金funded by the Research on Intelligent Mining Geological Model and Ventilation Model for Extremely Thin Coal Seam in Heilongjiang Province,China(2021ZXJ02A03)the Demonstration of Intelligent Mining for Comprehensive Mining Face in Extremely Thin Coal Seam in Heilongjiang Province,China(2021ZXJ02A04)the Natural Science Foundation of Heilongjiang Province,China(LH2024E112).
文摘Coal dust explosions are severe safety accidents in coal mine production,posing significant threats to life and property.Predicting the maximum explosion pressure(Pm)of coal dust using deep learning models can effectively assess potential risks and provide a scientific basis for preventing coal dust explosions.In this study,a 20-L explosion sphere apparatus was used to test the maximum explosion pressure of coal dust under seven different particle sizes and ten mass concentrations(Cdust),resulting in a dataset of 70 experimental groups.Through Spearman correlation analysis and random forest feature selection methods,particle size(D_(10),D_(20),D_(50))and mass concentration(Cdust)were identified as critical feature parameters from the ten initial parameters of the coal dust samples.Based on this,a hybrid Long Short-Term Memory(LSTM)network model incorporating a Multi-Head Attention Mechanism and the Sparrow Search Algorithm(SSA)was proposed to predict the maximum explosion pressure of coal dust.The results demonstrate that the SSA-LSTM-Multi-Head Attention model excels in predicting the maximum explosion pressure of coal dust.The four evaluation metrics indicate that the model achieved a coefficient of determination(R^(2)),root mean square error(RMSE),mean absolute percentage error(MAPE),and mean absolute error(MAE)of 0.9841,0.0030,0.0074,and 0.0049,respectively,in the training set.In the testing set,these values were 0.9743,0.0087,0.0108,and 0.0069,respectively.Compared to artificial neural networks(ANN),random forest(RF),support vector machines(SVM),particle swarm optimized-SVM(PSO-SVM)neural networks,and the traditional single-model LSTM,the SSA-LSTM-Multi-Head Attention model demonstrated superior generalization capability and prediction accuracy.The findings of this study not only advance the application of deep learning in coal dust explosion prediction but also provide robust technical support for the prevention and risk assessment of coal dust explosions.
基金supported in part by Major Program of the National Natural Science Foundation of China under Grant 62127803.
文摘Safety maintenance of power equipment is of great importance in power grids,in which image-processing-based defect recognition is supposed to classify abnormal conditions during daily inspection.However,owing to the blurred features of defect images,the current defect recognition algorithm has poor fine-grained recognition ability.Visual attention can achieve fine-grained recognition with its abil-ity to model long-range dependencies while introducing extra computational complexity,especially for multi-head attention in vision transformer structures.Under these circumstances,this paper proposes a self-reduction multi-head attention module that can reduce computational complexity and be easily combined with a Convolutional Neural Network(CNN).In this manner,local and global fea-tures can be calculated simultaneously in our proposed structure,aiming to improve the defect recognition performance.Specifically,the proposed self-reduction multi-head attention can reduce redundant parameters,thereby solving the problem of limited computational resources.Experimental results were obtained based on the defect dataset collected from the substation.The results demonstrated the efficiency and superiority of the proposed method over other advanced algorithms.
基金supported by Xiamen Medical and Health Guidance Project in 2021(No.3502Z20214ZD1070)supported by a grant from Guangxi Key Laboratory of Machine Vision and Intelligent Control,China(No.2023B02).
文摘The self-attention mechanism of Transformers,which captures long-range contextual information,has demonstrated significant potential in image segmentation.However,their ability to learn local,contextual relationships between pixels requires further improvement.Previous methods face challenges in efficiently managing multi-scale fea-tures of different granularities from the encoder backbone,leaving room for improvement in their global representation and feature extraction capabilities.To address these challenges,we propose a novel Decoder with Multi-Head Feature Receptors(DMHFR),which receives multi-scale features from the encoder backbone and organizes them into three feature groups with different granularities:coarse,fine-grained,and full set.These groups are subsequently processed by Multi-Head Feature Receptors(MHFRs)after feature capture and modeling operations.MHFRs include two Three-Head Feature Receptors(THFRs)and one Four-Head Feature Receptor(FHFR).Each group of features is passed through these MHFRs and then fed into axial transformers,which help the model capture long-range dependencies within the features.The three MHFRs produce three distinct feature outputs.The output from the FHFR serves as auxiliary auxiliary features in the prediction head,and the prediction output and their losses will eventually be aggregated.Experimental results show that the Transformer using DMHFR outperforms 15 state of the arts(SOTA)methods on five public datasets.Specifically,it achieved significant improvements in mean DICE scores over the classic Parallel Reverse Attention Network(PraNet)method,with gains of 4.1%,2.2%,1.4%,8.9%,and 16.3%on the CVC-ClinicDB,Kvasir-SEG,CVC-T,CVC-ColonDB,and ETIS-LaribPolypDB datasets,respectively.
基金Supported by the Key R&D Program of Gansu Province(No.23YFGA0063)the Key Talent Project of Gansu Province(No.2024RCXM57,2024RCXM22)the Major Science and Technology Special Program of Gansu Province(No.25ZYJA037).
文摘Traffic flow prediction is a crucial element of intelligent transportation systems.However,accu-rate traffic flow prediction is quite challenging because of its highly nonlinear,complex,and dynam-ic characteristics.To address the difficulties in simultaneously capturing local and global dynamic spatiotemporal correlations in traffic flow,as well as the high time complexity of existing models,a multi-head flow attention-based local-global dynamic hypergraph convolution(MFA-LGDHC)pre-diction model is proposed.which consists of multi-head flow attention(MHFA)mechanism,graph convolution network(GCN),and local-global dynamic hypergraph convolution(LGHC).MHFA is utilized to extract the time dependency of traffic flow and reduce the time complexity of the model.GCN is employed to catch the spatial dependency of traffic flow.LGHC utilizes down-sampling con-volution and isometric convolution to capture the local and global spatial dependencies of traffic flow.And dynamic hypergraph convolution is used to model the dynamic higher-order relationships of the traffic road network.Experimental results indicate that the MFA-LGDHC model outperforms current popular baseline models and exhibits good prediction performance.
基金supported by the Key Research and Development Program of Heilongjiang Province(No.2022ZX01A35).
文摘As the group-buying model shows significant progress in attracting new users,enhancing user engagement,and increasing platform profitability,providing personalized recommendations for group-buying users has emerged as a new challenge in the field of recommendation systems.This paper introduces a group-buying recommendation model based on multi-head attention mechanisms and multi-task learning,termed the Multi-head Attention Mechanisms and Multi-task Learning Group-Buying Recommendation(MAMGBR)model,specifically designed to optimize group-buying recommendations on e-commerce platforms.The core dataset of this study comes from the Chinese maternal and infant e-commerce platform“Beibei,”encompassing approximately 430,000 successful groupbuying actions and over 120,000 users.Themodel focuses on twomain tasks:recommending items for group organizers(Task Ⅰ)and recommending participants for a given group-buying event(Task Ⅱ).In model evaluation,MAMGBR achieves an MRR@10 of 0.7696 for Task I,marking a 20.23%improvement over baseline models.Furthermore,in Task II,where complex interaction patterns prevail,MAMGBR utilizes auxiliary loss functions to effectively model the multifaceted roles of users,items,and participants,leading to a 24.08%increase in MRR@100 under a 1:99 sample ratio.Experimental results show that compared to benchmark models,such as NGCF and EATNN,MAMGBR’s integration ofmulti-head attentionmechanisms,expert networks,and gating mechanisms enables more accurate modeling of user preferences and social associations within group-buying scenarios,significantly enhancing recommendation accuracy and platform group-buying success rates.
基金the National Natural Science Foundation of China(NNSFC)(Grant Nos.72001213 and 72301292)the National Social Science Fund of China(Grant No.19BGL297)the Basic Research Program of Natural Science in Shaanxi Province(Grant No.2021JQ-369).
文摘Due to the time-varying topology and possible disturbances in a conflict environment,it is still challenging to maintain the mission performance of flying Ad hoc networks(FANET),which limits the application of Unmanned Aerial Vehicle(UAV)swarms in harsh environments.This paper proposes an intelligent framework to quickly recover the cooperative coveragemission by aggregating the historical spatio-temporal network with the attention mechanism.The mission resilience metric is introduced in conjunction with connectivity and coverage status information to simplify the optimization model.A spatio-temporal node pooling method is proposed to ensure all node location features can be updated after destruction by capturing the temporal network structure.Combined with the corresponding Laplacian matrix as the hyperparameter,a recovery algorithm based on the multi-head attention graph network is designed to achieve rapid recovery.Simulation results showed that the proposed framework can facilitate rapid recovery of the connectivity and coverage more effectively compared to the existing studies.The results demonstrate that the average connectivity and coverage results is improved by 17.92%and 16.96%,respectively compared with the state-of-the-art model.Furthermore,by the ablation study,the contributions of each different improvement are compared.The proposed model can be used to support resilient network design for real-time mission execution.
基金funded by the Major Humanities and Social Sciences Research Projects in Zhejiang higher education institutions,grant number 2023QN082,awarded to Cheng ZhaoThe National Natural Science Foundation of China also provided funding,grant number 61902349,awarded to Cheng Zhao.
文摘The present study examines the impact of short-term public opinion sentiment on the secondary market,with a focus on the potential for such sentiment to cause dramatic stock price fluctuations and increase investment risk.The quantification of investment sentiment indicators and the persistent analysis of their impact has been a complex and significant area of research.In this paper,a structured multi-head attention stock index prediction method based adaptive public opinion sentiment vector is proposed.The proposedmethod utilizes an innovative approach to transform numerous investor comments on social platforms over time into public opinion sentiment vectors expressing complex sentiments.It then analyzes the continuous impact of these vectors on the market through the use of aggregating techniques and public opinion data via a structured multi-head attention mechanism.The experimental results demonstrate that the public opinion sentiment vector can provide more comprehensive feedback on market sentiment than traditional sentiment polarity analysis.Furthermore,the multi-head attention mechanism is shown to improve prediction accuracy through attention convergence on each type of input information separately.Themean absolute percentage error(MAPE)of the proposedmethod is 0.463%,a reduction of 0.294% compared to the benchmark attention algorithm.Additionally,the market backtesting results indicate that the return was 24.560%,an improvement of 8.202% compared to the benchmark algorithm.These results suggest that themarket trading strategy based on thismethod has the potential to improve trading profits.
基金Researchers Supporting Project Number(RSPD2024R576),King Saud University,Riyadh,Saudi Arabia。
文摘Cardiovascular disease is the leading cause of death globally.This disease causes loss of heart muscles and is also responsible for the death of heart cells,sometimes damaging their functionality.A person’s life may depend on receiving timely assistance as soon as possible.Thus,minimizing the death ratio can be achieved by early detection of heart attack(HA)symptoms.In the United States alone,an estimated 610,000 people die fromheart attacks each year,accounting for one in every four fatalities.However,by identifying and reporting heart attack symptoms early on,it is possible to reduce damage and save many lives significantly.Our objective is to devise an algorithm aimed at helping individuals,particularly elderly individuals living independently,to safeguard their lives.To address these challenges,we employ deep learning techniques.We have utilized a vision transformer(ViT)to address this problem.However,it has a significant overhead cost due to its memory consumption and computational complexity because of scaling dot-product attention.Also,since transformer performance typically relies on large-scale or adequate data,adapting ViT for smaller datasets is more challenging.In response,we propose a three-in-one steam model,theMulti-Head Attention Vision Hybrid(MHAVH).Thismodel integrates a real-time posture recognition framework to identify chest pain postures indicative of heart attacks using transfer learning techniques,such as ResNet-50 and VGG-16,renowned for their robust feature extraction capabilities.By incorporatingmultiple heads into the vision transformer to generate additional metrics and enhance heart-detection capabilities,we leverage a 2019 posture-based dataset comprising RGB images,a novel creation by the author that marks the first dataset tailored for posture-based heart attack detection.Given the limited online data availability,we segmented this dataset into gender categories(male and female)and conducted testing on both segmented and original datasets.The training accuracy of our model reached an impressive 99.77%.Upon testing,the accuracy for male and female datasets was recorded at 92.87%and 75.47%,respectively.The combined dataset accuracy is 93.96%,showcasing a commendable performance overall.Our proposed approach demonstrates versatility in accommodating small and large datasets,offering promising prospects for real-world applications.
文摘Accurate traffic prediction is crucial for an intelligent traffic system (ITS). However, the excessive non-linearity and complexity of the spatial-temporal correlation in traffic flow severely limit the prediction accuracy of most existing models, which simply stack temporal and spatial modules and fail to capture spatial-temporal features effectively. To improve the prediction accuracy, a multi-head attention spatial-temporal graph neural network (MSTNet) is proposed in this paper. First, the traffic data is decomposed into unique time spans that conform to positive rules, and valuable traffic node attributes are mined through an adaptive graph structure. Second, time and spatial features are captured using a multi-head attention spatial-temporal module. Finally, a multi-step prediction module is used to achieve future traffic condition prediction. Numerical experiments were conducted on an open-source dataset, and the results demonstrate that MSTNet performs well in spatial-temporal feature extraction and achieves more positive forecasting results than the baseline methods.
基金supported by the National Natural Science Foundation of China [grant numbers 42088101 and 42375048]。
文摘Due to the lack of accurate data and complex parameterization,the prediction of groundwater depth is a chal-lenge for numerical models.Machine learning can effectively solve this issue and has been proven useful in the prediction of groundwater depth in many areas.In this study,two new models are applied to the prediction of groundwater depth in the Ningxia area,China.The two models combine the improved dung beetle optimizer(DBO)algorithm with two deep learning models:The Multi-head Attention-Convolution Neural Network-Long Short Term Memory networks(MH-CNN-LSTM)and the Multi-head Attention-Convolution Neural Network-Gated Recurrent Unit(MH-CNN-GRU).The models with DBO show better prediction performance,with larger R(correlation coefficient),RPD(residual prediction deviation),and lower RMSE(root-mean-square error).Com-pared with the models with the original DBO,the R and RPD of models with the improved DBO increase by over 1.5%,and the RMSE decreases by over 1.8%,indicating better prediction results.In addition,compared with the multiple linear regression model,a traditional statistical model,deep learning models have better prediction performance.
文摘Improving consumer satisfaction with the appearance and surface quality of wood-based products requires inspection methods that are both accurate and efficient.The adoption of artificial intelligence(AI)for surface evaluation has emerged as a promising solution.Since the visual appeal of wooden products directly impacts their market value and overall business success,effective quality control is crucial.However,conventional inspection techniques often fail to meet performance requirements due to limited accuracy and slow processing times.To address these shortcomings,the authors propose a real-time deep learning-based system for evaluating surface appearance quality.The method integrates object detection and classification within an area attention framework and leverages R-ELAN for advanced fine-tuning.This architecture supports precise identification and classification of multiple objects,even under ambiguous or visually complex conditions.Furthermore,the model is computationally efficient and well-suited to moderate or domain-specific datasets commonly found in industrial inspection tasks.Experimental validation on the Zenodo dataset shows that the model achieves an average precision(AP)of 60.6%,outperforming the current state-of-the-art YOLOv12 model(55.3%),with a fast inference time of approximately 70 milliseconds.These results underscore the potential of AI-powered methods to enhance surface quality inspection in the wood manufacturing sector.
基金supported in part by the National Natural Science Foundation of China under Grants 62231015,62427801in part by Jiangsu Province Frontier Leading Technology Basic Research Project BK20232030.
文摘Spectrum prediction is considered as a key technology to assist spectrum decision.Despite the great efforts that have been put on the construction of spectrum prediction,achieving accurate spectrum prediction emphasizes the need for more advanced solutions.In this paper,we propose a new multichannel multi-step spectrum prediction method using Transformer and stacked bidirectional LSTM(Bi-LSTM),named TSB.Specifically,we use multi-head attention and stacked Bi-LSTM to build a new Transformer based on encoder-decoder architecture.The self-attention mechanism composed of multiple layers of multi-head attention can continuously attend to all positions of the multichannel spectrum sequences.The stacked Bi-LSTM can learn these focused coding features by multi-head attention layer by layer.The advantage of this fusion mode is that it can deeply capture the long-term dependence of multichannel spectrum data.We have conducted extensive experiments on a dataset generated by a real simulation platform.The results show that the proposed algorithm performs better than the baselines.
基金supported in part by the National Natural Science Foundation of China under Grant 6226070954Jiangxi Provincial Key R&D Programme under Grant 20244BBG73002.
文摘Rail surface damage is a critical component of high-speed railway infrastructure,directly affecting train operational stability and safety.Existing methods face limitations in accuracy and speed for small-sample,multi-category,and multi-scale target segmentation tasks.To address these challenges,this paper proposes Pyramid-MixNet,an intelligent segmentation model for high-speed rail surface damage,leveraging dataset construction and expansion alongside a feature pyramid-based encoder-decoder network with multi-attention mechanisms.The encoding net-work integrates Spatial Reduction Masked Multi-Head Attention(SRMMHA)to enhance global feature extraction while reducing trainable parameters.The decoding network incorporates Mix-Attention(MA),enabling multi-scale structural understanding and cross-scale token group correlation learning.Experimental results demonstrate that the proposed method achieves 62.17%average segmentation accuracy,80.28%Damage Dice Coefficient,and 56.83 FPS,meeting real-time detection requirements.The model’s high accuracy and scene adaptability significantly improve the detection of small-scale and complex multi-scale rail damage,offering practical value for real-time monitoring in high-speed railway maintenance systems.
基金funded by the Ongoing Research Funding Program(ORF-2025-102),King Saud University,Riyadh,Saudi Arabiaby the Science and Technology Research Programof Chongqing Municipal Education Commission(Grant No.KJQN202400813)by the Graduate Research Innovation Project(Grant Nos.yjscxx2025-269-193 and CYS25618).
文摘Medical image analysis based on deep learning has become an important technical requirement in the field of smart healthcare.In view of the difficulties in collaborative modeling of local details and global features in multimodal image analysis of ophthalmology,as well as the existence of information redundancy in cross-modal data fusion,this paper proposes amultimodal fusion framework based on cross-modal collaboration and weighted attention mechanism.In terms of feature extraction,the framework collaboratively extracts local fine-grained features and global structural dependencies through a parallel dual-branch architecture,overcoming the limitations of traditional single-modality models in capturing either local or global information;in terms of fusion strategy,the framework innovatively designs a cross-modal dynamic fusion strategy,combining overlappingmulti-head self-attention modules with a bidirectional feature alignment mechanism,addressing the bottlenecks of low feature interaction efficiency and excessive attention fusion computations in traditional parallel fusion,and further introduces cross-domain local integration technology,which enhances the representation ability of the lesion area through pixel-level feature recalibration and optimizes the diagnostic robustness of complex cases.Experiments show that the framework exhibits excellent feature expression and generalization performance in cross-domain scenarios of ophthalmic medical images and natural images,providing a high-precision,low-redundancy fusion paradigm for multimodal medical image analysis,and promoting the upgrade of intelligent diagnosis and treatment fromsingle-modal static analysis to dynamic decision-making.
文摘Aspect-oriented sentiment analysis is a meticulous sentiment analysis task that aims to analyse the sentiment polarity of specific aspects. Most of the current research builds graph convolutional networks based on dependent syntactic trees, which improves the classification performance of the models to some extent. However, the technical limitations of dependent syntactic trees can introduce considerable noise into the model. Meanwhile, it is difficult for a single graph convolutional network to aggregate both semantic and syntactic structural information of nodes, which affects the final sentence classification. To cope with the above problems, this paper proposes a bi-channel graph convolutional network model. The model introduces a phrase structure tree and transforms it into a hierarchical phrase matrix. The adjacency matrix of the dependent syntactic tree and the hierarchical phrase matrix are combined as the initial matrix of the graph convolutional network to enhance the syntactic information. The semantic information feature representations of the sentences are obtained by the graph convolutional network with a multi-head attention mechanism and fused to achieve complementary learning of dual-channel features. Experimental results show that the model performs well and improves the accuracy of sentiment classification on three public benchmark datasets, namely Rest14, Lap14 and Twitter.