A decision map contains complete and clear information about the image to be fused, which is crucial to various image fusion issues, especially multi-focus image fusion. However, in order to get a satisfactory image f...A decision map contains complete and clear information about the image to be fused, which is crucial to various image fusion issues, especially multi-focus image fusion. However, in order to get a satisfactory image fusion effect, getting a decision map is very necessary and usually difficult to finish. In this letter, we address this problem with convolutional neural network(CNN), aiming to get a state-of-the-art decision map. The main idea is that the max-pooling of CNN is replaced by a convolution layer, the residuals are propagated backwards by gradient descent, and the training parameters of the individual layers of the CNN are updated layer by layer. Based on this, we propose a new all CNN(ACNN)-based multi-focus image fusion method in spatial domain. We demonstrate that the decision map obtained from the ACNN is reliable and can lead to high-quality fusion results. Experimental results clearly validate that the proposed algorithm can obtain state-of-the-art fusion performance in terms of both qualitative and quantitative evaluations.展开更多
In the fusion of image,how to measure the local character and clarity is called activity measurement. According to the problem,the traditional measurement is decided only by the high-frequency detail coefficients, whi...In the fusion of image,how to measure the local character and clarity is called activity measurement. According to the problem,the traditional measurement is decided only by the high-frequency detail coefficients, which will make the energy expression insufficient to reflect the local clarity. Therefore,in this paper,a novel construction method for activity measurement is proposed. Firstly,it uses the wavelet decomposition for the fusion resource image, and then utilizes the high and low frequency wavelet coefficients synthetically. Meantime,it takes the normalized variance as the weight of high-frequency energy. Secondly,it calculates the measurement by the weighted energy,which can be used to measure the local character. Finally,the fusion coefficients can be got. In order to illustrate the superiority of this new method,three kinds of assessing indicators are provided. The experiment results show that,comparing with the traditional methods,this new method weakens the fuzzy and promotes the indicator value. Therefore,it has much more advantages for practical application.展开更多
Considering the continuous advancement in the field of imaging sensor, a host of other new issues have emerged. A major problem is how to find focus areas more accurately for multi-focus image fusion. The multi-focus ...Considering the continuous advancement in the field of imaging sensor, a host of other new issues have emerged. A major problem is how to find focus areas more accurately for multi-focus image fusion. The multi-focus image fusion extracts the focused information from the source images to construct a global in-focus image which includes more information than any of the source images. In this paper, a novel multi-focus image fusion based on Laplacian operator and region optimization is proposed. The evaluation of image saliency based on Laplacian operator can easily distinguish the focus region and out of focus region. And the decision map obtained by Laplacian operator processing has less the residual information than other methods. For getting precise decision map, focus area and edge optimization based on regional connectivity and edge detection have been taken. Finally, the original images are fused through the decision map. Experimental results indicate that the proposed algorithm outperforms the other series of algorithms in terms of both subjective and objective evaluations.展开更多
Fusion methods based on multi-scale transforms have become the mainstream of the pixel-level image fusion. However,most of these methods cannot fully exploit spatial domain information of source images, which lead to ...Fusion methods based on multi-scale transforms have become the mainstream of the pixel-level image fusion. However,most of these methods cannot fully exploit spatial domain information of source images, which lead to the degradation of image.This paper presents a fusion framework based on block-matching and 3D(BM3D) multi-scale transform. The algorithm first divides the image into different blocks and groups these 2D image blocks into 3D arrays by their similarity. Then it uses a 3D transform which consists of a 2D multi-scale and a 1D transform to transfer the arrays into transform coefficients, and then the obtained low-and high-coefficients are fused by different fusion rules. The final fused image is obtained from a series of fused 3D image block groups after the inverse transform by using an aggregation process. In the experimental part, we comparatively analyze some existing algorithms and the using of different transforms, e.g. non-subsampled Contourlet transform(NSCT), non-subsampled Shearlet transform(NSST), in the 3D transform step. Experimental results show that the proposed fusion framework can not only improve subjective visual effect, but also obtain better objective evaluation criteria than state-of-the-art methods.展开更多
Two key points of pixel-level multi-focus image fusion are the clarity measure and the pixel coeffi- cients fusion rule. Along with different improvements on these two points, various fusion schemes have been proposed...Two key points of pixel-level multi-focus image fusion are the clarity measure and the pixel coeffi- cients fusion rule. Along with different improvements on these two points, various fusion schemes have been proposed in literatures. However, the traditional clarity measures are not designed for compressive imaging measurements which are maps of source sense with random or likely ran- dom measurements matrix. This paper presents a novel efficient multi-focus image fusion frame- work for compressive imaging sensor network. Here the clarity measure of the raw compressive measurements is not obtained from the random sampling data itself but from the selected Hada- mard coefficients which can also be acquired from compressive imaging system efficiently. Then, the compressive measurements with different images are fused by selecting fusion rule. Finally, the block-based CS which coupled with iterative projection-based reconstruction is used to re- cover the fused image. Experimental results on common used testing data demonstrate the effectiveness of the proposed method.展开更多
The three-dimensional(3D)model is of great significance to analyze the performance of nonwovens.However,the existing modelling methods could not reconstruct the 3D structure of nonwovens at low cost.A new method based...The three-dimensional(3D)model is of great significance to analyze the performance of nonwovens.However,the existing modelling methods could not reconstruct the 3D structure of nonwovens at low cost.A new method based on deep learning was proposed to reconstruct 3D models of nonwovens from multi-focus images.A convolutional neural network was trained to extract clear fibers from sequence images.Image processing algorithms were used to obtain the radius,the central axis,and depth information of fibers from the extraction results.Based on this information,3D models were built in 3D space.Furthermore,self-developed algorithms optimized the central axis and depth of fibers,which made fibers more realistic and continuous.The method with lower cost could reconstruct 3D models of nonwovens conveniently.展开更多
The aim of the paper is to solve the problem of over-segmentation problem generated by Watershed segmentation algorithm or unstable clarity judgment by small areas in image fusion. A multi-focus image fusion algorithm...The aim of the paper is to solve the problem of over-segmentation problem generated by Watershed segmentation algorithm or unstable clarity judgment by small areas in image fusion. A multi-focus image fusion algorithm is proposed based on CNN segmentation and algebraic multi-grid method (CNN-AMG). Firstly, the CNN segmentation result was utilized to instruct the merging process of the regions generated by the Watershed segmentation method. Then the clear regions were selected into the temporary fusion image and the final fusion process was performed according to the clarity evaluation index, which was computed with the algebraic multi-grid method (AMG). The experimental results show that the fused image quality obtained by the CNNAMG algorithm outperforms the traditional fusion methods such as DSIFT fusion method, CNN fusion method, ASR fusion method, GFF fusion method and so on with some evaluation indexes.展开更多
We propose a multi-focus image fusion method,in which a fully convolutional network for focus detection(FD-FCN)is constructed.To obtain more precise focus detection maps,we propose to add skip layers in the network to...We propose a multi-focus image fusion method,in which a fully convolutional network for focus detection(FD-FCN)is constructed.To obtain more precise focus detection maps,we propose to add skip layers in the network to make both detailed and abstract visual information available when using FD-FCN to generate maps.A new training dataset for the proposed network is constructed based on dataset CIFAR-10.The image fusion algorithm using FD-FCN contains three steps:focus maps are obtained using FD-FCN,decision map generation occurs by applying a morphological process on the focus maps,and image fusion occurs using a decision map.We carry out several sets of experiments,and both subjective and objective assessments demonstrate the superiority of the proposed fusion method to state-of-the-art algorithms.展开更多
Multi-focus image fusion is an increasingly important component in image fusion,and it plays a key role in imaging.In this paper,we put forward a novel multi-focus image fusion method which employs fractional-order de...Multi-focus image fusion is an increasingly important component in image fusion,and it plays a key role in imaging.In this paper,we put forward a novel multi-focus image fusion method which employs fractional-order derivative and intuitionistic fuzzy sets.The original image is decomposed into a base layer and a detail layer.Furthermore,a new fractional-order spatial frequency is built to reflect the clarity of the image.The fractional-order spatial frequency is used as a rule for detail layers fusion,and intuitionistic fuzzy sets are introduced to fuse base layers.Experimental results demonstrate that the proposed fusion method outperforms the state-of-the-art methods for multi-focus image fusion.展开更多
Digital watermarking technology plays an important role in detecting malicious tampering and protecting image copyright.However,in practical applications,this technology faces various problems such as severe image dis...Digital watermarking technology plays an important role in detecting malicious tampering and protecting image copyright.However,in practical applications,this technology faces various problems such as severe image distortion,inaccurate localization of the tampered regions,and difficulty in recovering content.Given these shortcomings,a fragile image watermarking algorithm for tampering blind-detection and content self-recovery is proposed.The multi-feature watermarking authentication code(AC)is constructed using texture feature of local binary patterns(LBP),direct coefficient of discrete cosine transform(DCT)and contrast feature of gray level co-occurrence matrix(GLCM)for detecting the tampered region,and the recovery code(RC)is designed according to the average grayscale value of pixels in image blocks for recovering the tampered content.Optimal pixel adjustment process(OPAP)and least significant bit(LSB)algorithms are used to embed the recovery code and authentication code into the image in a staggered manner.When detecting the integrity of the image,the authentication code comparison method and threshold judgment method are used to perform two rounds of tampering detection on the image and blindly recover the tampered content.Experimental results show that this algorithm has good transparency,strong and blind detection,and self-recovery performance against four types of malicious attacks and some conventional signal processing operations.When resisting copy-paste,text addition,cropping and vector quantization under the tampering rate(TR)10%,the average tampering detection rate is up to 94.09%,and the peak signal-to-noise ratio(PSNR)of the watermarked image and the recovered image are both greater than 41.47 and 40.31 dB,which demonstrates its excellent advantages compared with other related algorithms in recent years.展开更多
Images taken in dim environments frequently exhibit issues like insufficient brightness,noise,color shifts,and loss of detail.These problems pose significant challenges to dark image enhancement tasks.Current approach...Images taken in dim environments frequently exhibit issues like insufficient brightness,noise,color shifts,and loss of detail.These problems pose significant challenges to dark image enhancement tasks.Current approaches,while effective in global illumination modeling,often struggle to simultaneously suppress noise and preserve structural details,especially under heterogeneous lighting.Furthermore,misalignment between luminance and color channels introduces additional challenges to accurate enhancement.In response to the aforementioned difficulties,we introduce a single-stage framework,M2ATNet,using the multi-scale multi-attention and Transformer architecture.First,to address the problems of texture blurring and residual noise,we design a multi-scale multi-attention denoising module(MMAD),which is applied separately to the luminance and color channels to enhance the structural and texture modeling capabilities.Secondly,to solve the non-alignment problem of the luminance and color channels,we introduce the multi-channel feature fusion Transformer(CFFT)module,which effectively recovers the dark details and corrects the color shifts through cross-channel alignment and deep feature interaction.To guide the model to learn more stably and efficiently,we also fuse multiple types of loss functions to form a hybrid loss term.We extensively evaluate the proposed method on various standard datasets,including LOL-v1,LOL-v2,DICM,LIME,and NPE.Evaluation in terms of numerical metrics and visual quality demonstrate that M2ATNet consistently outperforms existing advanced approaches.Ablation studies further confirm the critical roles played by the MMAD and CFFT modules to detail preservation and visual fidelity under challenging illumination-deficient environments.展开更多
High-resolution remote sensing images(HRSIs)are now an essential data source for gathering surface information due to advancements in remote sensing data capture technologies.However,their significant scale changes an...High-resolution remote sensing images(HRSIs)are now an essential data source for gathering surface information due to advancements in remote sensing data capture technologies.However,their significant scale changes and wealth of spatial details pose challenges for semantic segmentation.While convolutional neural networks(CNNs)excel at capturing local features,they are limited in modeling long-range dependencies.Conversely,transformers utilize multihead self-attention to integrate global context effectively,but this approach often incurs a high computational cost.This paper proposes a global-local multiscale context network(GLMCNet)to extract both global and local multiscale contextual information from HRSIs.A detail-enhanced filtering module(DEFM)is proposed at the end of the encoder to refine the encoder outputs further,thereby enhancing the key details extracted by the encoder and effectively suppressing redundant information.In addition,a global-local multiscale transformer block(GLMTB)is proposed in the decoding stage to enable the modeling of rich multiscale global and local information.We also design a stair fusion mechanism to transmit deep semantic information from deep to shallow layers progressively.Finally,we propose the semantic awareness enhancement module(SAEM),which further enhances the representation of multiscale semantic features through spatial attention and covariance channel attention.Extensive ablation analyses and comparative experiments were conducted to evaluate the performance of the proposed method.Specifically,our method achieved a mean Intersection over Union(mIoU)of 86.89%on the ISPRS Potsdam dataset and 84.34%on the ISPRS Vaihingen dataset,outperforming existing models such as ABCNet and BANet.展开更多
Driven by advancements in mobile internet technology,images have become a crucial data medium.Ensuring the security of image information during transmission has thus emerged as an urgent challenge.This study proposes ...Driven by advancements in mobile internet technology,images have become a crucial data medium.Ensuring the security of image information during transmission has thus emerged as an urgent challenge.This study proposes a novel image encryption algorithm specifically designed for grayscale image security.This research introduces a new Cantor diagonal matrix permutation method.The proposed permutation method uses row and column index sequences to control the Cantor diagonal matrix,where the row and column index sequences are generated by a spatiotemporal chaotic system named coupled map lattice(CML).The high initial value sensitivity of the CML system makes the permutation method highly sensitive and secure.Additionally,leveraging fractal theory,this study introduces a chaotic fractal matrix and applies this matrix in the diffusion process.This chaotic fractal matrix exhibits selfsimilarity and irregularity.Using the Cantor diagonal matrix and chaotic fractal matrix,this paper introduces a fast image encryption algorithm involving two diffusion steps and one permutation step.Moreover,the algorithm achieves robust security with only a single encryption round,ensuring high operational efficiency.Experimental results show that the proposed algorithm features an expansive key space,robust security,high sensitivity,high efficiency,and superior statistical properties for the ciphered images.Thus,the proposed algorithm not only provides a practical solution for secure image transmission but also bridges fractal theory with image encryption techniques,thereby opening new research avenues in chaotic cryptography and advancing the development of information security technology.展开更多
Reversible data hiding(RDH)enables secret data embedding while preserving complete cover image recovery,making it crucial for applications requiring image integrity.The pixel value ordering(PVO)technique used in multi...Reversible data hiding(RDH)enables secret data embedding while preserving complete cover image recovery,making it crucial for applications requiring image integrity.The pixel value ordering(PVO)technique used in multi-stego images provides good image quality but often results in low embedding capability.To address these challenges,this paper proposes a high-capacity RDH scheme based on PVO that generates three stego images from a single cover image.The cover image is partitioned into non-overlapping blocks with pixels sorted in ascending order.Four secret bits are embedded into each block’s maximum pixel value,while three additional bits are embedded into the second-largest value when the pixel difference exceeds a predefined threshold.A similar embedding strategy is also applied to the minimum side of the block,including the second-smallest pixel value.This design enables each block to embed up to 14 bits of secret data.Experimental results demonstrate that the proposed method achieves significantly higher embedding capacity and improved visual quality compared to existing triple-stego RDH approaches,advancing the field of reversible steganography.展开更多
Remote sensing image super-resolution technology is pivotal for enhancing image quality in critical applications including environmental monitoring,urban planning,and disaster assessment.However,traditional methods ex...Remote sensing image super-resolution technology is pivotal for enhancing image quality in critical applications including environmental monitoring,urban planning,and disaster assessment.However,traditional methods exhibit deficiencies in detail recovery and noise suppression,particularly when processing complex landscapes(e.g.,forests,farmlands),leading to artifacts and spectral distortions that limit practical utility.To address this,we propose an enhanced Super-Resolution Generative Adversarial Network(SRGAN)framework featuring three key innovations:(1)Replacement of L1/L2 loss with a robust Charbonnier loss to suppress noise while preserving edge details via adaptive gradient balancing;(2)A multi-loss joint optimization strategy dynamically weighting Charbonnier loss(β=0.5),Visual Geometry Group(VGG)perceptual loss(α=1),and adversarial loss(γ=0.1)to synergize pixel-level accuracy and perceptual quality;(3)A multi-scale residual network(MSRN)capturing cross-scale texture features(e.g.,forest canopies,mountain contours).Validated on Sentinel-2(10 m)and SPOT-6/7(2.5 m)datasets covering 904 km2 in Motuo County,Xizang,our method outperforms the SRGAN baseline(SR4RS)with Peak Signal-to-Noise Ratio(PSNR)gains of 0.29 dB and Structural Similarity Index(SSIM)improvements of 3.08%on forest imagery.Visual comparisons confirm enhanced texture continuity despite marginal Learned Perceptual Image Patch Similarity(LPIPS)increases.The method significantly improves noise robustness and edge retention in complex geomorphology,demonstrating 18%faster response in forest fire early warning and providing high-resolution support for agricultural/urban monitoring.Future work will integrate spectral constraints and lightweight architectures.展开更多
Alzheimer’s Disease(AD)is a progressive neurodegenerative disorder that significantly affects cognitive function,making early and accurate diagnosis essential.Traditional Deep Learning(DL)-based approaches often stru...Alzheimer’s Disease(AD)is a progressive neurodegenerative disorder that significantly affects cognitive function,making early and accurate diagnosis essential.Traditional Deep Learning(DL)-based approaches often struggle with low-contrast MRI images,class imbalance,and suboptimal feature extraction.This paper develops a Hybrid DL system that unites MobileNetV2 with adaptive classification methods to boost Alzheimer’s diagnosis by processing MRI scans.Image enhancement is done using Contrast-Limited Adaptive Histogram Equalization(CLAHE)and Enhanced Super-Resolution Generative Adversarial Networks(ESRGAN).A classification robustness enhancement system integrates class weighting techniques and a Matthews Correlation Coefficient(MCC)-based evaluation method into the design.The trained and validated model gives a 98.88%accuracy rate and 0.9614 MCC score.We also performed a 10-fold cross-validation experiment with an average accuracy of 96.52%(±1.51),a loss of 0.1671,and an MCC score of 0.9429 across folds.The proposed framework outperforms the state-of-the-art models with a 98%weighted F1-score while decreasing misdiagnosis results for every AD stage.The model demonstrates apparent separation abilities between AD progression stages according to the results of the confusion matrix analysis.These results validate the effectiveness of hybrid DL models with adaptive preprocessing for early and reliable Alzheimer’s diagnosis,contributing to improved computer-aided diagnosis(CAD)systems in clinical practice.展开更多
Image fusion technology is the basis of computer vision task,but information is easily affected by noise during transmission.In this paper,an Improved Pigeon-Inspired Optimization(IPIO)is proposed,and used for multi-f...Image fusion technology is the basis of computer vision task,but information is easily affected by noise during transmission.In this paper,an Improved Pigeon-Inspired Optimization(IPIO)is proposed,and used for multi-focus noisy image fusion by combining with the boundary handling of the convolutional sparse representation.By two-scale image decomposition,the input image is decomposed into base layer and detail layer.For the base layer,IPIO algorithm is used to obtain the optimized weights for fusion,whose value range is gained by fusing the edge information.Besides,the global information entropy is used as the fitness index of the IPIO,which has high efficiency especially for discrete optimization problems.For the detail layer,the fusion of its coefficients is completed by performing boundary processing when solving the convolution sparse representation in the frequency domain.The sum of the above base and detail layers is as the final fused image.Experimental results show that the proposed algorithm has a better fusion effect compared with the recent algorithms.展开更多
The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and hist...The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and historical context,DL offers a powerful complement by enhancing the speed,objectivity,and precision of the classification process.This research explores the significance of image data augmentation techniques in optimizing the performance of convolutional neural networks(CNNs)for geological image analysis,particularly in the classification of igneous,metamorphic,and sedimentary rock types from rock thin section(RTS)images.This study primarily focuses on classic image augmentation techniques and evaluates their impact on model accuracy and precision.Results demonstrate that augmentation techniques like Equalize significantly enhance the model's classification capabilities,achieving an F1-Score of 0.9869 for igneous rocks,0.9884 for metamorphic rocks,and 0.9929 for sedimentary rocks,representing improvements compared to the baseline original results.Moreover,the weighted average F1-Score across all classes and techniques is 0.9886,indicating an enhancement.Conversely,methods like Distort lead to decreased accuracy and F1-Score,with an F1-Score of 0.949 for igneous rocks,0.954 for metamorphic rocks,and 0.9416 for sedimentary rocks,exacerbating the performance compared to the baseline.The study underscores the practicality of image data augmentation in geological image classification and advocates for the adoption of DL methods in this domain for automation and improved results.The findings of this study can benefit various fields,including remote sensing,mineral exploration,and environmental monitoring,by enhancing the accuracy of geological image analysis both for scientific research and industrial applications.展开更多
Potential high-temperature risks exist in heat-prone components of electric moped charging devices,such as sockets,interfaces,and controllers.Traditional detection methods have limitations in terms of real-time perfor...Potential high-temperature risks exist in heat-prone components of electric moped charging devices,such as sockets,interfaces,and controllers.Traditional detection methods have limitations in terms of real-time performance and monitoring scope.To address this,a temperature detection method based on infrared image processing has been proposed:utilizing the median filtering algorithm to denoise the original infrared image,then applying an image segmentation algorithm to divide the image.展开更多
基金supported by the National Natural Science Foundation of China(No.61174193)
文摘A decision map contains complete and clear information about the image to be fused, which is crucial to various image fusion issues, especially multi-focus image fusion. However, in order to get a satisfactory image fusion effect, getting a decision map is very necessary and usually difficult to finish. In this letter, we address this problem with convolutional neural network(CNN), aiming to get a state-of-the-art decision map. The main idea is that the max-pooling of CNN is replaced by a convolution layer, the residuals are propagated backwards by gradient descent, and the training parameters of the individual layers of the CNN are updated layer by layer. Based on this, we propose a new all CNN(ACNN)-based multi-focus image fusion method in spatial domain. We demonstrate that the decision map obtained from the ACNN is reliable and can lead to high-quality fusion results. Experimental results clearly validate that the proposed algorithm can obtain state-of-the-art fusion performance in terms of both qualitative and quantitative evaluations.
基金Sponsored by the Nation Nature Science Foundation of China(Grant No.61275010,61201237)the Fundamental Research Funds for the Central Universities(Grant No.HEUCFZ1129,No.HEUCF120805)
文摘In the fusion of image,how to measure the local character and clarity is called activity measurement. According to the problem,the traditional measurement is decided only by the high-frequency detail coefficients, which will make the energy expression insufficient to reflect the local clarity. Therefore,in this paper,a novel construction method for activity measurement is proposed. Firstly,it uses the wavelet decomposition for the fusion resource image, and then utilizes the high and low frequency wavelet coefficients synthetically. Meantime,it takes the normalized variance as the weight of high-frequency energy. Secondly,it calculates the measurement by the weighted energy,which can be used to measure the local character. Finally,the fusion coefficients can be got. In order to illustrate the superiority of this new method,three kinds of assessing indicators are provided. The experiment results show that,comparing with the traditional methods,this new method weakens the fuzzy and promotes the indicator value. Therefore,it has much more advantages for practical application.
文摘Considering the continuous advancement in the field of imaging sensor, a host of other new issues have emerged. A major problem is how to find focus areas more accurately for multi-focus image fusion. The multi-focus image fusion extracts the focused information from the source images to construct a global in-focus image which includes more information than any of the source images. In this paper, a novel multi-focus image fusion based on Laplacian operator and region optimization is proposed. The evaluation of image saliency based on Laplacian operator can easily distinguish the focus region and out of focus region. And the decision map obtained by Laplacian operator processing has less the residual information than other methods. For getting precise decision map, focus area and edge optimization based on regional connectivity and edge detection have been taken. Finally, the original images are fused through the decision map. Experimental results indicate that the proposed algorithm outperforms the other series of algorithms in terms of both subjective and objective evaluations.
基金supported by the National Natural Science Foundation of China(6157206361401308)+6 种基金the Fundamental Research Funds for the Central Universities(2016YJS039)the Natural Science Foundation of Hebei Province(F2016201142F2016201187)the Natural Social Foundation of Hebei Province(HB15TQ015)the Science Research Project of Hebei Province(QN2016085ZC2016040)the Natural Science Foundation of Hebei University(2014-303)
文摘Fusion methods based on multi-scale transforms have become the mainstream of the pixel-level image fusion. However,most of these methods cannot fully exploit spatial domain information of source images, which lead to the degradation of image.This paper presents a fusion framework based on block-matching and 3D(BM3D) multi-scale transform. The algorithm first divides the image into different blocks and groups these 2D image blocks into 3D arrays by their similarity. Then it uses a 3D transform which consists of a 2D multi-scale and a 1D transform to transfer the arrays into transform coefficients, and then the obtained low-and high-coefficients are fused by different fusion rules. The final fused image is obtained from a series of fused 3D image block groups after the inverse transform by using an aggregation process. In the experimental part, we comparatively analyze some existing algorithms and the using of different transforms, e.g. non-subsampled Contourlet transform(NSCT), non-subsampled Shearlet transform(NSST), in the 3D transform step. Experimental results show that the proposed fusion framework can not only improve subjective visual effect, but also obtain better objective evaluation criteria than state-of-the-art methods.
文摘Two key points of pixel-level multi-focus image fusion are the clarity measure and the pixel coeffi- cients fusion rule. Along with different improvements on these two points, various fusion schemes have been proposed in literatures. However, the traditional clarity measures are not designed for compressive imaging measurements which are maps of source sense with random or likely ran- dom measurements matrix. This paper presents a novel efficient multi-focus image fusion frame- work for compressive imaging sensor network. Here the clarity measure of the raw compressive measurements is not obtained from the random sampling data itself but from the selected Hada- mard coefficients which can also be acquired from compressive imaging system efficiently. Then, the compressive measurements with different images are fused by selecting fusion rule. Finally, the block-based CS which coupled with iterative projection-based reconstruction is used to re- cover the fused image. Experimental results on common used testing data demonstrate the effectiveness of the proposed method.
基金National Natural Science Foundation of China(No.61771123)。
文摘The three-dimensional(3D)model is of great significance to analyze the performance of nonwovens.However,the existing modelling methods could not reconstruct the 3D structure of nonwovens at low cost.A new method based on deep learning was proposed to reconstruct 3D models of nonwovens from multi-focus images.A convolutional neural network was trained to extract clear fibers from sequence images.Image processing algorithms were used to obtain the radius,the central axis,and depth information of fibers from the extraction results.Based on this information,3D models were built in 3D space.Furthermore,self-developed algorithms optimized the central axis and depth of fibers,which made fibers more realistic and continuous.The method with lower cost could reconstruct 3D models of nonwovens conveniently.
文摘The aim of the paper is to solve the problem of over-segmentation problem generated by Watershed segmentation algorithm or unstable clarity judgment by small areas in image fusion. A multi-focus image fusion algorithm is proposed based on CNN segmentation and algebraic multi-grid method (CNN-AMG). Firstly, the CNN segmentation result was utilized to instruct the merging process of the regions generated by the Watershed segmentation method. Then the clear regions were selected into the temporary fusion image and the final fusion process was performed according to the clarity evaluation index, which was computed with the algebraic multi-grid method (AMG). The experimental results show that the fused image quality obtained by the CNNAMG algorithm outperforms the traditional fusion methods such as DSIFT fusion method, CNN fusion method, ASR fusion method, GFF fusion method and so on with some evaluation indexes.
基金Project supported by the National Natural Science Foundation of China(No.61801190)the Natural Science Foundation of Jilin Province,China(No.20180101055JC)the Outstanding Young Talent Foundation of Jilin Province,China(No.20180520029JH)。
文摘We propose a multi-focus image fusion method,in which a fully convolutional network for focus detection(FD-FCN)is constructed.To obtain more precise focus detection maps,we propose to add skip layers in the network to make both detailed and abstract visual information available when using FD-FCN to generate maps.A new training dataset for the proposed network is constructed based on dataset CIFAR-10.The image fusion algorithm using FD-FCN contains three steps:focus maps are obtained using FD-FCN,decision map generation occurs by applying a morphological process on the focus maps,and image fusion occurs using a decision map.We carry out several sets of experiments,and both subjective and objective assessments demonstrate the superiority of the proposed fusion method to state-of-the-art algorithms.
文摘Multi-focus image fusion is an increasingly important component in image fusion,and it plays a key role in imaging.In this paper,we put forward a novel multi-focus image fusion method which employs fractional-order derivative and intuitionistic fuzzy sets.The original image is decomposed into a base layer and a detail layer.Furthermore,a new fractional-order spatial frequency is built to reflect the clarity of the image.The fractional-order spatial frequency is used as a rule for detail layers fusion,and intuitionistic fuzzy sets are introduced to fuse base layers.Experimental results demonstrate that the proposed fusion method outperforms the state-of-the-art methods for multi-focus image fusion.
基金supported by Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant No.SJCX24_1332)Jiangsu Province Education Science Planning Project in 2024(Grant No.B-b/2024/01/122)High-Level Talent Scientific Research Foundation of Jinling Institute of Technology,China(Grant No.jit-b-201918).
文摘Digital watermarking technology plays an important role in detecting malicious tampering and protecting image copyright.However,in practical applications,this technology faces various problems such as severe image distortion,inaccurate localization of the tampered regions,and difficulty in recovering content.Given these shortcomings,a fragile image watermarking algorithm for tampering blind-detection and content self-recovery is proposed.The multi-feature watermarking authentication code(AC)is constructed using texture feature of local binary patterns(LBP),direct coefficient of discrete cosine transform(DCT)and contrast feature of gray level co-occurrence matrix(GLCM)for detecting the tampered region,and the recovery code(RC)is designed according to the average grayscale value of pixels in image blocks for recovering the tampered content.Optimal pixel adjustment process(OPAP)and least significant bit(LSB)algorithms are used to embed the recovery code and authentication code into the image in a staggered manner.When detecting the integrity of the image,the authentication code comparison method and threshold judgment method are used to perform two rounds of tampering detection on the image and blindly recover the tampered content.Experimental results show that this algorithm has good transparency,strong and blind detection,and self-recovery performance against four types of malicious attacks and some conventional signal processing operations.When resisting copy-paste,text addition,cropping and vector quantization under the tampering rate(TR)10%,the average tampering detection rate is up to 94.09%,and the peak signal-to-noise ratio(PSNR)of the watermarked image and the recovered image are both greater than 41.47 and 40.31 dB,which demonstrates its excellent advantages compared with other related algorithms in recent years.
基金funded by the National Natural Science Foundation of China,grant numbers 52374156 and 62476005。
文摘Images taken in dim environments frequently exhibit issues like insufficient brightness,noise,color shifts,and loss of detail.These problems pose significant challenges to dark image enhancement tasks.Current approaches,while effective in global illumination modeling,often struggle to simultaneously suppress noise and preserve structural details,especially under heterogeneous lighting.Furthermore,misalignment between luminance and color channels introduces additional challenges to accurate enhancement.In response to the aforementioned difficulties,we introduce a single-stage framework,M2ATNet,using the multi-scale multi-attention and Transformer architecture.First,to address the problems of texture blurring and residual noise,we design a multi-scale multi-attention denoising module(MMAD),which is applied separately to the luminance and color channels to enhance the structural and texture modeling capabilities.Secondly,to solve the non-alignment problem of the luminance and color channels,we introduce the multi-channel feature fusion Transformer(CFFT)module,which effectively recovers the dark details and corrects the color shifts through cross-channel alignment and deep feature interaction.To guide the model to learn more stably and efficiently,we also fuse multiple types of loss functions to form a hybrid loss term.We extensively evaluate the proposed method on various standard datasets,including LOL-v1,LOL-v2,DICM,LIME,and NPE.Evaluation in terms of numerical metrics and visual quality demonstrate that M2ATNet consistently outperforms existing advanced approaches.Ablation studies further confirm the critical roles played by the MMAD and CFFT modules to detail preservation and visual fidelity under challenging illumination-deficient environments.
基金provided by the Science Research Project of Hebei Education Department under grant No.BJK2024115.
文摘High-resolution remote sensing images(HRSIs)are now an essential data source for gathering surface information due to advancements in remote sensing data capture technologies.However,their significant scale changes and wealth of spatial details pose challenges for semantic segmentation.While convolutional neural networks(CNNs)excel at capturing local features,they are limited in modeling long-range dependencies.Conversely,transformers utilize multihead self-attention to integrate global context effectively,but this approach often incurs a high computational cost.This paper proposes a global-local multiscale context network(GLMCNet)to extract both global and local multiscale contextual information from HRSIs.A detail-enhanced filtering module(DEFM)is proposed at the end of the encoder to refine the encoder outputs further,thereby enhancing the key details extracted by the encoder and effectively suppressing redundant information.In addition,a global-local multiscale transformer block(GLMTB)is proposed in the decoding stage to enable the modeling of rich multiscale global and local information.We also design a stair fusion mechanism to transmit deep semantic information from deep to shallow layers progressively.Finally,we propose the semantic awareness enhancement module(SAEM),which further enhances the representation of multiscale semantic features through spatial attention and covariance channel attention.Extensive ablation analyses and comparative experiments were conducted to evaluate the performance of the proposed method.Specifically,our method achieved a mean Intersection over Union(mIoU)of 86.89%on the ISPRS Potsdam dataset and 84.34%on the ISPRS Vaihingen dataset,outperforming existing models such as ABCNet and BANet.
基金supported by the National Natural Science Foundation of China(62376106)The Science and Technology Development Plan of Jilin Province(20250102212JC).
文摘Driven by advancements in mobile internet technology,images have become a crucial data medium.Ensuring the security of image information during transmission has thus emerged as an urgent challenge.This study proposes a novel image encryption algorithm specifically designed for grayscale image security.This research introduces a new Cantor diagonal matrix permutation method.The proposed permutation method uses row and column index sequences to control the Cantor diagonal matrix,where the row and column index sequences are generated by a spatiotemporal chaotic system named coupled map lattice(CML).The high initial value sensitivity of the CML system makes the permutation method highly sensitive and secure.Additionally,leveraging fractal theory,this study introduces a chaotic fractal matrix and applies this matrix in the diffusion process.This chaotic fractal matrix exhibits selfsimilarity and irregularity.Using the Cantor diagonal matrix and chaotic fractal matrix,this paper introduces a fast image encryption algorithm involving two diffusion steps and one permutation step.Moreover,the algorithm achieves robust security with only a single encryption round,ensuring high operational efficiency.Experimental results show that the proposed algorithm features an expansive key space,robust security,high sensitivity,high efficiency,and superior statistical properties for the ciphered images.Thus,the proposed algorithm not only provides a practical solution for secure image transmission but also bridges fractal theory with image encryption techniques,thereby opening new research avenues in chaotic cryptography and advancing the development of information security technology.
基金funded by University of Transport and Communications(UTC)under grant number T2025-CN-004.
文摘Reversible data hiding(RDH)enables secret data embedding while preserving complete cover image recovery,making it crucial for applications requiring image integrity.The pixel value ordering(PVO)technique used in multi-stego images provides good image quality but often results in low embedding capability.To address these challenges,this paper proposes a high-capacity RDH scheme based on PVO that generates three stego images from a single cover image.The cover image is partitioned into non-overlapping blocks with pixels sorted in ascending order.Four secret bits are embedded into each block’s maximum pixel value,while three additional bits are embedded into the second-largest value when the pixel difference exceeds a predefined threshold.A similar embedding strategy is also applied to the minimum side of the block,including the second-smallest pixel value.This design enables each block to embed up to 14 bits of secret data.Experimental results demonstrate that the proposed method achieves significantly higher embedding capacity and improved visual quality compared to existing triple-stego RDH approaches,advancing the field of reversible steganography.
基金This study was supported by:Inner Mongolia Academy of Forestry Sciences Open Research Project(Grant No.KF2024MS03)The Project to Improve the Scientific Research Capacity of the Inner Mongolia Academy of Forestry Sciences(Grant No.2024NLTS04)The Innovation and Entrepreneurship Training Program for Undergraduates of Beijing Forestry University(Grant No.X202410022268).
文摘Remote sensing image super-resolution technology is pivotal for enhancing image quality in critical applications including environmental monitoring,urban planning,and disaster assessment.However,traditional methods exhibit deficiencies in detail recovery and noise suppression,particularly when processing complex landscapes(e.g.,forests,farmlands),leading to artifacts and spectral distortions that limit practical utility.To address this,we propose an enhanced Super-Resolution Generative Adversarial Network(SRGAN)framework featuring three key innovations:(1)Replacement of L1/L2 loss with a robust Charbonnier loss to suppress noise while preserving edge details via adaptive gradient balancing;(2)A multi-loss joint optimization strategy dynamically weighting Charbonnier loss(β=0.5),Visual Geometry Group(VGG)perceptual loss(α=1),and adversarial loss(γ=0.1)to synergize pixel-level accuracy and perceptual quality;(3)A multi-scale residual network(MSRN)capturing cross-scale texture features(e.g.,forest canopies,mountain contours).Validated on Sentinel-2(10 m)and SPOT-6/7(2.5 m)datasets covering 904 km2 in Motuo County,Xizang,our method outperforms the SRGAN baseline(SR4RS)with Peak Signal-to-Noise Ratio(PSNR)gains of 0.29 dB and Structural Similarity Index(SSIM)improvements of 3.08%on forest imagery.Visual comparisons confirm enhanced texture continuity despite marginal Learned Perceptual Image Patch Similarity(LPIPS)increases.The method significantly improves noise robustness and edge retention in complex geomorphology,demonstrating 18%faster response in forest fire early warning and providing high-resolution support for agricultural/urban monitoring.Future work will integrate spectral constraints and lightweight architectures.
基金funded by the Deanship of Graduate Studies and Scientific Research at Jouf University under grant No.(DGSSR-2025-02-01295).
文摘Alzheimer’s Disease(AD)is a progressive neurodegenerative disorder that significantly affects cognitive function,making early and accurate diagnosis essential.Traditional Deep Learning(DL)-based approaches often struggle with low-contrast MRI images,class imbalance,and suboptimal feature extraction.This paper develops a Hybrid DL system that unites MobileNetV2 with adaptive classification methods to boost Alzheimer’s diagnosis by processing MRI scans.Image enhancement is done using Contrast-Limited Adaptive Histogram Equalization(CLAHE)and Enhanced Super-Resolution Generative Adversarial Networks(ESRGAN).A classification robustness enhancement system integrates class weighting techniques and a Matthews Correlation Coefficient(MCC)-based evaluation method into the design.The trained and validated model gives a 98.88%accuracy rate and 0.9614 MCC score.We also performed a 10-fold cross-validation experiment with an average accuracy of 96.52%(±1.51),a loss of 0.1671,and an MCC score of 0.9429 across folds.The proposed framework outperforms the state-of-the-art models with a 98%weighted F1-score while decreasing misdiagnosis results for every AD stage.The model demonstrates apparent separation abilities between AD progression stages according to the results of the confusion matrix analysis.These results validate the effectiveness of hybrid DL models with adaptive preprocessing for early and reliable Alzheimer’s diagnosis,contributing to improved computer-aided diagnosis(CAD)systems in clinical practice.
基金supported in part by National Key Research and Development Program of China(2018YFB0804202,2018YFB0804203)Regional Joint Fund of NSFC(U19A2057)+1 种基金National Natural Science Foundation of China(61876070)Jilin Province Science and Technology Development Plan Project(20190303134SF).
文摘Image fusion technology is the basis of computer vision task,but information is easily affected by noise during transmission.In this paper,an Improved Pigeon-Inspired Optimization(IPIO)is proposed,and used for multi-focus noisy image fusion by combining with the boundary handling of the convolutional sparse representation.By two-scale image decomposition,the input image is decomposed into base layer and detail layer.For the base layer,IPIO algorithm is used to obtain the optimized weights for fusion,whose value range is gained by fusing the edge information.Besides,the global information entropy is used as the fitness index of the IPIO,which has high efficiency especially for discrete optimization problems.For the detail layer,the fusion of its coefficients is completed by performing boundary processing when solving the convolution sparse representation in the frequency domain.The sum of the above base and detail layers is as the final fused image.Experimental results show that the proposed algorithm has a better fusion effect compared with the recent algorithms.
文摘The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and historical context,DL offers a powerful complement by enhancing the speed,objectivity,and precision of the classification process.This research explores the significance of image data augmentation techniques in optimizing the performance of convolutional neural networks(CNNs)for geological image analysis,particularly in the classification of igneous,metamorphic,and sedimentary rock types from rock thin section(RTS)images.This study primarily focuses on classic image augmentation techniques and evaluates their impact on model accuracy and precision.Results demonstrate that augmentation techniques like Equalize significantly enhance the model's classification capabilities,achieving an F1-Score of 0.9869 for igneous rocks,0.9884 for metamorphic rocks,and 0.9929 for sedimentary rocks,representing improvements compared to the baseline original results.Moreover,the weighted average F1-Score across all classes and techniques is 0.9886,indicating an enhancement.Conversely,methods like Distort lead to decreased accuracy and F1-Score,with an F1-Score of 0.949 for igneous rocks,0.954 for metamorphic rocks,and 0.9416 for sedimentary rocks,exacerbating the performance compared to the baseline.The study underscores the practicality of image data augmentation in geological image classification and advocates for the adoption of DL methods in this domain for automation and improved results.The findings of this study can benefit various fields,including remote sensing,mineral exploration,and environmental monitoring,by enhancing the accuracy of geological image analysis both for scientific research and industrial applications.
基金supported by the National Key Research and Development Project of China(No.2023YFB3709605)the National Natural Science Foundation of China(No.62073193)the National College Student Innovation Training Program(No.202310422122)。
文摘Potential high-temperature risks exist in heat-prone components of electric moped charging devices,such as sockets,interfaces,and controllers.Traditional detection methods have limitations in terms of real-time performance and monitoring scope.To address this,a temperature detection method based on infrared image processing has been proposed:utilizing the median filtering algorithm to denoise the original infrared image,then applying an image segmentation algorithm to divide the image.