期刊文献+
共找到4,173篇文章
< 1 2 209 >
每页显示 20 50 100
A logistic-Lasso-regression-based seismic fragility analysis method for electrical equipment considering structural and seismic parameter uncertainty
1
作者 Cui Jiawei Che Ailan +1 位作者 Li Sheng Cheng Yongfeng 《Earthquake Engineering and Engineering Vibration》 2025年第1期169-186,共18页
Damage to electrical equipment in an earthquake can lead to power outage of power systems.Seismic fragility analysis is a common method to assess the seismic reliability of electrical equipment.To further guarantee th... Damage to electrical equipment in an earthquake can lead to power outage of power systems.Seismic fragility analysis is a common method to assess the seismic reliability of electrical equipment.To further guarantee the efficiency of analysis,multi-source uncertainties including the structure itself and seismic excitation need to be considered.A method for seismic fragility analysis that reflects structural and seismic parameter uncertainty was developed in this study.The proposed method used a random sampling method based on Latin hypercube sampling(LHS)to account for the structure parameter uncertainty and the group structure characteristics of electrical equipment.Then,logistic Lasso regression(LLR)was used to find the seismic fragility surface based on double ground motion intensity measures(IM).The seismic fragility based on the finite element model of an±1000 kV main transformer(UHVMT)was analyzed using the proposed method.The results show that the seismic fragility function obtained by this method can be used to construct the relationship between the uncertainty parameters and the failure probability.The seismic fragility surface did not only provide the probabilities of seismic damage states under different IMs,but also had better stability than the fragility curve.Furthermore,the sensitivity analysis of the structural parameters revealed that the elastic module of the bushing and the height of the high-voltage bushing may have a greater influence. 展开更多
关键词 seismic fragility UNCERTAINTY logistic lasso regression ±1000 kV main transformer sensitivity analysis
在线阅读 下载PDF
Logistic Regression Analysis of Influencing Factors on Serum ALT and HCV RNA Changes in Patients with Chronic Hepatitis C
2
作者 Cheng-bao Wang Jian-jie Chen +3 位作者 Hong-ming Nie Feng Gao Hua Lv Hong-ding Li 《国际感染病学(电子版)》 CAS 2012年第2期80-83,共4页
Objective This study was undertaken to investigate the influencing factors on serum ALT level and hepatitis C virus(HCV)RNA titer in chronic hepatitis C(CHC)patients.Methods All patients enrolled into this study were ... Objective This study was undertaken to investigate the influencing factors on serum ALT level and hepatitis C virus(HCV)RNA titer in chronic hepatitis C(CHC)patients.Methods All patients enrolled into this study were anti-HCV positive.Retrospective tracing method was applied to detect serum ALT level and HCV RNA titer and to collect general information of the patients such as genders,age groups,interferon medication history,infection pathways,height and weight.Then the multi-factor analysis was adopted with the application of binominal logistic regression mode.Results The abnormal rate of ALT level was positively correlated to HCV RNA and gender while negatively correlated to interferon medication history and age group,with Wald value of the 4 factors as 39.604,11.823,18.991 and 7.389,respectively.The positive rate of HCV RNA was negatively correlated to interferon medication history and gender while positively correlated to ALT level,with corresponding Wald value of the 3 factors as81.394,7.618 and 27.562,respectively.Conclusions The normal ALT level in HCV infected patients was associated with viral load,age,gender and interferon medication history,while the normal rate of HCV RNA titer was closely associated with gender,interferon medication history and ALT level. 展开更多
关键词 multi-factor logistic regression analysis Hepatitis C virus Chronic Hepatitis C Serum ALT level HCV RNA
暂未订购
Comparison of dimension reduction-based logistic regression models for case-control genome-wide association study:principal components analysis vs.partial least squares 被引量:2
3
作者 Honggang Yi Hongmei Wo +9 位作者 Yang Zhao Ruyang Zhang Junchen Dai Guangfu Jin Hongxia Ma Tangchun Wu Zhibin Hu Dongxin Lin Hongbing Shen Feng Chen 《The Journal of Biomedical Research》 CAS CSCD 2015年第4期298-307,共10页
With recent advances in biotechnology, genome-wide association study (GWAS) has been widely used to identify genetic variants that underlie human complex diseases and traits. In case-control GWAS, typical statistica... With recent advances in biotechnology, genome-wide association study (GWAS) has been widely used to identify genetic variants that underlie human complex diseases and traits. In case-control GWAS, typical statistical strategy is traditional logistical regression (LR) based on single-locus analysis. However, such a single-locus analysis leads to the well-known multiplicity problem, with a risk of inflating type I error and reducing power. Dimension reduction-based techniques, such as principal component-based logistic regression (PC-LR), partial least squares-based logistic regression (PLS-LR), have recently gained much attention in the analysis of high dimensional genomic data. However, the perfor- mance of these methods is still not clear, especially in GWAS. We conducted simulations and real data application to compare the type I error and power of PC-LR, PLS-LR and LR applicable to GWAS within a defined single nucleotide polymorphism (SNP) set region. We found that PC-LR and PLS can reasonably control type I error under null hypothesis. On contrast, LR, which is corrected by Bonferroni method, was more conserved in all simulation settings. In particular, we found that PC-LR and PLS-LR had comparable power and they both outperformed LR, especially when the causal SNP was in high linkage disequilibrium with genotyped ones and with a small effective size in simulation. Based on SNP set analysis, we applied all three methods to analyze non-small cell lung cancer GWAS data. 展开更多
关键词 principal components analysis partial least squares-based logistic regression genome-wide association study type I error POWER
暂未订购
Logistic Regression Analysis of Syndrome Essential Factors in Patients with Unstable Angina Pectoris 被引量:5
4
作者 姚魁武 何庆勇 +1 位作者 藤菲 王阶 《Journal of Traditional Chinese Medicine》 SCIE CAS CSCD 2011年第4期273-276,共4页
Objective: To explore the correlation between common syndrome essential factors and the symptoms and signs of unstable angina (UA). Methods: Eight hundred and fifteen patients with UA confirmed by coronary angiography... Objective: To explore the correlation between common syndrome essential factors and the symptoms and signs of unstable angina (UA). Methods: Eight hundred and fifteen patients with UA confirmed by coronary angiography were identified from several centers. Common syndrome essential factors were selected on the basis of expert experience. The correlations between common syndrome essential factors and symptoms and signs of UA were analyzed using binary logistic regression analysis. Results: The common syndrome essential factors in unstable angina were blood stasis, qi stagnation, phlegm turbidity, heat stagnancy, qi deficiency, yin deficiency, and yang deficiency. Symptoms such as chest pain, hypochondriac distention, ecchymosis, dark orbits, dark and purplish tongue, and tongue with ecchymosis and petechiae were significant diagnostic features of "blood stasis". Aversion to cold and cool limbs, weakness in the waist and knees, and clear abundant urine were significant diagnostic features of "yang deficiency". These results were in accordance with the understanding of traditional clinical Chinese medical practice. Conclusion: This clinical study analyzed the correlations between common syndrome essential factors and the symptoms and signs of unstable angina. The results provide the basis for establishing diagnostic criteria for syndrome essential factors. 展开更多
关键词 unstable angina syndrome essential factor logistic regression analysis
原文传递
Logistics Regression Analysis between TCM Constitution Types of Patients with Hypertension,Insomnia and ABPM,PSQI 被引量:2
5
作者 Xiaogang YU Qingsheng WANG +2 位作者 Erdan XIN Yujun LU Yingdong LI 《Medicinal Plant》 CAS 2022年第2期44-49,54,共7页
[Objectives]The research aimed to explore the distribution characteristics of TCM constitution types of patients with hypertension and insomnia,and study the clinical characteristics of patients with different constit... [Objectives]The research aimed to explore the distribution characteristics of TCM constitution types of patients with hypertension and insomnia,and study the clinical characteristics of patients with different constitutions,in order to provide new ideas for the treatment of patients with hypertension and insomnia.[Methods]Cross sectional observation method was used,and 420 patients with hypertension and insomnia were selected.Required information was collected,and the constitution type of traditional Chinese medicine was determined,and relevant data were recorded.SPSS and Logistic regression analysis method were used to explore the correlation between the distribution of TCM constitution types and gender,age,24 h-SBP,24 h-DBP,24 h-BPV,PSQI score,etc.[Results]Among 420 patients,the proportion of gentleness constitution was the most,and others in turn were Qi deficiency constitution>Yang deficiency constitution>phlegm dampness constitution>Qi stagnation constitution>Yin deficiency constitution>blood stasis constitution>damp heat constitution>special constitution.Among male patients,the proportion of gentleness constitution was the most.Among female patients,the proportion of Qi deficiency constitution was the most.In each constitution,the proportion of men and women was different,and the difference in gentleness constitution,Qi deficiency constitution and Yin deficiency constitution had statistical significance(P<0.05).The proportion of gentleness constitution for young and middle-aged patients was the most,while elderly patients with Qi deficiency constitution was the most.There was difference in the distribution of TCM constitution in different age groups,and the difference had statistical significance(P<0.05).Compared with the patients with gentleness constitution,the patients with Qi deficiency constitution,Yang deficiency constitution,Yin deficiency constitution,damp heat constitution,blood stasis constitution and Qi stagnation constitution had different differences in terms of age,24 h-SBP,24 h-DBP,24 h-BPV and PSQI score,and there was statistical significance(P<0.05).Except damp heat constitution,blood stasis constitution and special constitution,other constitutions had certain correlation with age,24 h-SBP,24 h-DBP,24 h-BPV and PSQI score.[Conclusions]TCM constitution types of patients with hypertension and insomnia were dominant by gentleness constitution,Qi deficiency constitution and Yang deficiency constitution.The distribution of TCM constitution in different gender and age groups was different,and different TCM constitution was related to ABPM and PSQI. 展开更多
关键词 Hypertension with insomnia Constitution of traditional Chinese medicine ABPM PSQI logistics regression analysis
暂未订购
Landslide Susceptibility Assessment Using Conditional Analysis and Rare Events Logistics Regression: A Case-Study in the Antrodoco Area (Rieti, Italy) 被引量:1
6
作者 Vittorio Chiessi Simona Toti Valerio Vitale 《Journal of Geoscience and Environment Protection》 2016年第12期1-21,共22页
This paper discusses some methodological aspects for the production of susceptibility maps of slope instability developed within the CARG Project (Geological Cartography of Italy at 1:50,000 scale). It describes an ex... This paper discusses some methodological aspects for the production of susceptibility maps of slope instability developed within the CARG Project (Geological Cartography of Italy at 1:50,000 scale). It describes an example of a susceptibility map in the presence of low susceptibility, using database having zero or negligible cost, with the aim to test some methodologies that can be easily reproducible to get a first estimate of the landslide susceptibility on a wide area. Two statistical approaches have been applied: the non-parametric conditional analysis and the logistic analysis for rare events. The predictive ability obtained from the two methodologies, was evaluated by the success-prediction curves for the conditional analysis, and by the Receiver Operating Characteristic curve (ROC), for the logistic model. The landslide susceptibility maps have been classified into four classes using both the Natural Breaks algorithm and the method proposed by Chung and Fabbri (2003). The paper considers the influence of these two classification methods on the quality of final results. 展开更多
关键词 Landslide Susceptibility Antrodoco Conditional analysis Rare Events logistic regression Classification Methods
在线阅读 下载PDF
Application of Principle Component Analysis and Logistic Regression in Analyzing miRNA Markers of Brain Arteriovenous Malformation
7
作者 蒋路 黄俊 +2 位作者 张志君 杨国源 王永亭 《Journal of Shanghai Jiaotong university(Science)》 EI 2014年第6期641-645,共5页
Brain arteriovenous malformation(BAVM) is frequently described as vascular malformation. Although computer tomography(CT), magnetic resonance imaging(MRI) and angiography can clearly detect lesions, there are no diagn... Brain arteriovenous malformation(BAVM) is frequently described as vascular malformation. Although computer tomography(CT), magnetic resonance imaging(MRI) and angiography can clearly detect lesions, there are no diagnostic biological markers of BAVM available. Current study demonstrated that micro RNA(mi RNA)showed a feasible marker for vascular disease. To find key correlations between these mi RNAs and the onset of BAVM, we carried out chip analysis of serum mi RNAs by identifying 18 potential markers of BAVM. We then constructed a principle component analysis and logistic regression(PCA-LR) model to analyze the 18 mi RNAs collected from 77 patients. Another 9 independent samples were used to test the resulting model. The results showed that mi RNAs hsa-mir-126-3p and hsa-mir-140 are important protective factors, while hsa-mir-338 is a dominating risk factor, all of which have stronger correlation with BAVM than others. We also compared the testing results using PCA-LR model with those using LR model. The comparison revealed that PCA-LR model is better in predicting the disease. 展开更多
关键词 brain arteriovenous malformation(BAVM) microRNAs(miRNAs) principle component analysis(PCA) logistic regression(LR)
原文传递
Usage as Complementary Correspondence Analysis and Logistic Regression in a Scientific Survey on Self Healing Methods
8
作者 Zerrin Asan Greenacre Levent Terlemez Sevil Sentürk 《Open Journal of Statistics》 2014年第11期912-920,共9页
The aim of this study is to show complementary usage of logistic and correspondence analysis in a research subject to self-healing methodologies. Firstly, the number of the variables is reduced by logistic regression ... The aim of this study is to show complementary usage of logistic and correspondence analysis in a research subject to self-healing methodologies. Firstly, the number of the variables is reduced by logistic regression according to relationship between dependent and independent variables and then research carries on searching variables. The relationship among the behaviours of individuals and their demographic characteristics is modelled by logistic regression and shown graphically by correspondence analysis. In application, first of all, the effect of age, sex, marital status, education level, occupation and income level and present health condition, on appreciating self-health, is explained by a model. As a result of that model, it can be said that the effect of age, occupation and present health condition is reasonable. After analysing that model, the relationship between categorical variables (age, sex, occupation, preferred precautions, and worth of personal health) is shown graphically by multiple correspondence analysis. 展开更多
关键词 logistic regression CORRESPONDENCE analysis SELF HEALING
暂未订购
Composition Analysis and Identification of Ancient Glass Products Based on L1 Regularization Logistic Regression
9
作者 Yuqiao Zhou Xinyang Xu Wenjing Ma 《Applied Mathematics》 2024年第1期51-64,共14页
In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluste... In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluster analysis, hyper-parameter test and other models, and SPSS, Python and other tools were used to obtain the classification rules of glass products under different fluxes, sub classification under different chemical compositions, hyper-parameter K value test and rationality analysis. Research can provide theoretical support for the protection and restoration of ancient glass relics. 展开更多
关键词 Glass Composition L1 Regularization logistic regression Model K-Means Clustering analysis Elbow Rule Parameter Verification
在线阅读 下载PDF
Logistic Regression Analysis the Risk Factors of Peripherally Inserted Central Catheter Related Blood Stream Infection of Tumor Patients
10
作者 Jian Song Yan Yan +2 位作者 Huang Yan Chunlin Wang Jun-e Hu 《Yangtze Medicine》 2017年第3期169-177,共9页
Objective: Our object is to study risk factors of tumor patients’ PICC catheter-related blood stream infection. Method: a retrospective analysis of data of 586 PICC catheterized patients was implemented, a univariate... Objective: Our object is to study risk factors of tumor patients’ PICC catheter-related blood stream infection. Method: a retrospective analysis of data of 586 PICC catheterized patients was implemented, a univariate analysis of general data and catheterizing data of tumor patients was then carried out, and data of single factors with statistical significance were incorporated into multi-factor Logistic regression model for analysis. Results: PICC catheter-related blood stream infection occurred to 16 patients, and occurrence rate was 2.73%. Multi-factor Logistic regression analysis results showed that number of puncturing times, positioning method and maintenance frequency were risk factors for tumor patients’ peripherally inserted central catheter catheter-related blood stream infection, and odds risk values were respectively 8.762, 9.253 and 10.324. Conclusion: for tumor patients implanted with peripherally inserted central catheters, using ECG positioning during strict sterile operation and catheterizing process to avoid repeated puncturing and increasing maintenance frequency could effectively reduce occurrence of PICC catheter-related blood stream infection. 展开更多
关键词 PICC RELATED BLOOD STREAM INFECTION logistic regression analysis Risk Factor
暂未订购
Logistic Regression Analysis of Catheter Fixation Defects and Their Influencing Factors
11
作者 Xiaoli LI 《Medicinal Plant》 2024年第6期63-65,共3页
[Objectives] To analyze the influencing factors of fixed defects in patients with catheter fixation in clinical nursing work, in order to provide the best catheter fixation nursing plan for patients.[Methods] 176 inpa... [Objectives] To analyze the influencing factors of fixed defects in patients with catheter fixation in clinical nursing work, in order to provide the best catheter fixation nursing plan for patients.[Methods] 176 inpatients with indwelling catheter from surgical system of Taihe Hospital in Shiyan City from August 2022 to March 2023 were selected. Using a retrospective analysis method, the influencing factors of catheter fixation defects in the study subjects were divided into two categories based on objective characteristics: type I non modifiable influencing factors and type II modifiable influencing factors. Using the standard for catheter fixation defects, whether the patient had catheter fixation defects was determined. After classified and statistically analyzed item by item, binary Logistic multiple regression analysis was used to identify the influencing factors.[Results] The occurrence of catheter fixation defects in patients with catheter fixation was related to factors such as whether the patient was evaluated before fixation, whether the fixation method was standardized and systematic, whether there was sufficient communication between nurses and patients, and the patient s knowledge of catheter fixation. It was also influenced by factors such as the patient s age, catheterization site, catheterization number, catheterization duration, where there was a consciousness disorder, educational level, and external environmental temperature.[Conclusions] Early attention to the key factors affecting patients with catheter fixation defects can effectively prevent adverse factors and provide patients with the best catheter fixation nursing plan to improve nursing quality. 展开更多
关键词 CATHETER Fixed defect Influence factor logistic regression analysis
暂未订购
ST-GWLR:combining geographically weighted logistic regression and spatiotemporal hotspot trend analysis to explore the effect of built environment on traffic crash
12
作者 Xinyu Qu Xiongwu Xiao +6 位作者 Xinyan Zhu Zhenfeng Shao Mi Wang Huayi Wu Hongkai Zhao Jianya Gong Deren Li 《Geo-Spatial Information Science》 CSCD 2024年第4期1017-1034,共18页
Road traffic crashes are becoming thorny issues being faced worldwide.Traffic crashes are spatiotemporal events and the research on the spatiotemporal patterns and variation trends of traffic crashes has been carried ... Road traffic crashes are becoming thorny issues being faced worldwide.Traffic crashes are spatiotemporal events and the research on the spatiotemporal patterns and variation trends of traffic crashes has been carried out.However,the impact of built environment on traffic crash spatiotemporal trends has not received much attention.Moreover,the spatial non-stationarity between the variation trends of traffic crashes and their influencing factors is usually neglected.To make up for the lack of analysis of built environment factors influencing spatiotemporal hotspot trends in traffic crashes,this paper proposed a method of“ST-GWLR”for analyzing the influence of built environment factors on spatiotemporal hotspot trends of traffic crashes by combining the spatiotemporal hotspot trend analysis and Geographically Weighted Logistic Regression(GWLR)modeling methods.Firstly,the traffic crash spatiotemporal hotspot trends were explored using the space-time cube model,hotspot analysis,and Mann-Kendall trend test.Then,the GWLR was introduced to capture the spatial non-stationarity neglected by the classic Global Logistic Regression(GLR)model,to improve the accuracy of the model estimation.GWLR model is used for the first time to analyze the significant local correlation between the traffic crash spatiotemporal hotspot trends and the built environment factors,to accurately and effectively identify the built environment factors that have significant influences on the hotspot trends of traffic crashes.The performance of the GWLR models and GLR models was examined and compared sufficiently.The results showed that the proposed ST-GWLR,which captured spatial non-stationarity,performed better than the classic GLR combined with spatiotemporal analysis,and improved the prediction accuracy of the models by 14.9%,13.9%,and 15.1%,respectively.There were significant local correlations between intensifying hotspots and persistent hotspots of traffic crashes and the built environment factors.The findings of this paper have positive implications for traffic safety management and urban built environment planning. 展开更多
关键词 Spatiotemporal hotspot trend analysis Global logistic regression(GLR) Geographically Weighted logistic regression(GWLR) traffic crash urban built environment
原文传递
A Comparative Study of Locality Preserving Projection and Principle Component Analysis on Classification Performance Using Logistic Regression
13
作者 Azza Kamal Ahmed Abdelmajed 《Journal of Data Analysis and Information Processing》 2016年第2期55-63,共9页
There are a variety of classification techniques such as neural network, decision tree, support vector machine and logistic regression. The problem of dimensionality is pertinent to many learning algorithms, and it de... There are a variety of classification techniques such as neural network, decision tree, support vector machine and logistic regression. The problem of dimensionality is pertinent to many learning algorithms, and it denotes the drastic raise of computational complexity, however, we need to use dimensionality reduction methods. These methods include principal component analysis (PCA) and locality preserving projection (LPP). In many real-world classification problems, the local structure is more important than the global structure and dimensionality reduction techniques ignore the local structure and preserve the global structure. The objectives is to compare PCA and LPP in terms of accuracy, to develop appropriate representations of complex data by reducing the dimensions of the data and to explain the importance of using LPP with logistic regression. The results of this paper find that the proposed LPP approach provides a better representation and high accuracy than the PCA approach. 展开更多
关键词 logistic regression (LR) Principal Component analysis (PCA) Locality Preserving Projection (LPP)
在线阅读 下载PDF
Model’s parameter sensitivity assessment and their impact on Urban Densification using regression analysis
14
作者 Anasua Chakraborty Mitali Yeshwant Joshi +2 位作者 Ahmed Mustafa Mario Cools Jacques Teller 《Geography and Sustainability》 2025年第2期143-156,共14页
The impact of different global and local variables in urban development processes requires a systematic study to fully comprehend the underlying complexities in them.The interplay between such variables is crucial for... The impact of different global and local variables in urban development processes requires a systematic study to fully comprehend the underlying complexities in them.The interplay between such variables is crucial for modelling urban growth to closely reflects reality.Despite extensive research,ambiguity remains about how variations in these input variables influence urban densification.In this study,we conduct a global sensitivity analysis(SA)using a multinomial logistic regression(MNL)model to assess the model’s explanatory and predictive power.We examine the influence of global variables,including spatial resolution,neighborhood size,and density classes,under different input combinations at a provincial scale to understand their impact on densification.Additionally,we perform a stepwise regression to identify the significant explanatory variables that are important for understanding densification in the Brussels Metropolitan Area(BMA).Our results indicate that a finer spatial resolution of 50 m and 100 m,smaller neighborhood size of 5×5 and 3×3,and specific density classes—namely 3(non-built-up,low and high built-up)and 4(non-built-up,low,medium and high built-up)—optimally explain and predict urban densification.In line with the same,the stepwise regression reveals that models with a coarser resolution of 300 m lack significant variables,reflecting a lower explanatory power for densification.This approach aids in identifying optimal and significant global variables with higher explanatory power for understanding and predicting urban densification.Furthermore,these findings are reproducible in a global urban context,offering valuable insights for planners,modelers and geographers in managing future urban growth and minimizing modelling. 展开更多
关键词 Urban densification Sensitivity analysis Multinomial logistic regression Stepwise regression
在线阅读 下载PDF
Logistic Regression在我国河流水系氮污染研究中的应用 被引量:11
15
作者 高学民 陈静生 王立新 《环境科学学报》 CAS CSCD 北大核心 2000年第6期676-681,共6页
对四川省岷江、沱江及嘉陵江流域和江西省的赣江流域及鄱阳湖地区共 1 70多个水文站的数据进行了相关分析和多元回归分析 .结果表明 ,河流水中硝态氮浓度与年降雨量、人口密度、氮肥施用量、牲畜饲养量、农作物及粮食作物种植面积等因... 对四川省岷江、沱江及嘉陵江流域和江西省的赣江流域及鄱阳湖地区共 1 70多个水文站的数据进行了相关分析和多元回归分析 .结果表明 ,河流水中硝态氮浓度与年降雨量、人口密度、氮肥施用量、牲畜饲养量、农作物及粮食作物种植面积等因素有较好的相关性 .以以上数据资料为基础 ,将河流水NO3- N的浓度划分为背景浓度 (<0 7mg/L)、受人类活动的显著影响的NO3- N浓度 (>3 0mg/L)以及中间类 (0 7— 3 0mg/L)进行LogisticRegression分析 ,两个Logistic模型的准确度分别达 82 46%和 89 1 9% .运用Logistic模型对整个长江流域河流水中NO3- N浓度进行估计 ,结果与实测值基本相符合 . 展开更多
关键词 河流水 硝态氮 多元回归分析 污染源
在线阅读 下载PDF
GIS-based logistic regression method for landslide susceptibility mapping in regional scale 被引量:9
16
作者 ZHU Lei HUANG Jing-feng 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第12期2007-2017,共11页
Landslide susceptibility map is one of the study fields portraying the spatial distribution of future slope failure sus- ceptibility. This paper deals with past methods for producing landslide susceptibility map and d... Landslide susceptibility map is one of the study fields portraying the spatial distribution of future slope failure sus- ceptibility. This paper deals with past methods for producing landslide susceptibility map and divides these methods into 3 types. The logistic linear regression approach is further elaborated on by crosstabs method, which is used to analyze the relationship between the categorical or binary response variable and one or more continuous or categorical or binary explanatory variables derived from samples. It is an objective assignment of coefficients serving as weights of various factors under considerations while expert opinions make great difference in heuristic approaches. Different from deterministic approach, it is very applicable to regional scale. In this study, double logistic regression is applied in the study area. The entire study area is first analyzed. The logistic regression equation showed that elevation, proximity to road, river and residential area are main factors triggering land- slide occurrence in this area. The prediction accuracy of the first landslide susceptibility map was showed to be 80%. Along the road and residential area, almost all areas are in high landslide susceptibility zone. Some non-landslide areas are incorrectly divided into high and medium landslide susceptibility zone. In order to improve the status, a second logistic regression was done in high landslide susceptibility zone using landslide cells and non-landslide sample cells in this area. In the second logistic regression analysis, only engineering and geological conditions are important in these areas and are entered in the new logistic regression equation indicating that only areas with unstable engineering and geological conditions are prone to landslide during large scale engineering activity. Taking these two logistic regression results into account yields a new landslide susceptibility map. Double logistic regression analysis improved the non-landslide prediction accuracy. During calculation of parameters for logistic regres- sion, landslide density is used to transform nominal variable to numeric variable and this avoids the creation of an excessively high number of dummy variables. 展开更多
关键词 LANDSLIDE SUSCEPTIBILITY logistic regression GIS Spatial analysis
在线阅读 下载PDF
A Review of the Logistic Regression Model with Emphasis on Medical Research 被引量:9
17
作者 Ernest Yeboah Boateng Daniel A. Abaye 《Journal of Data Analysis and Information Processing》 2019年第4期190-207,共18页
This study explored and reviewed the logistic regression (LR) model, a multivariable method for modeling the relationship between multiple independent variables and a categorical dependent variable, with emphasis on m... This study explored and reviewed the logistic regression (LR) model, a multivariable method for modeling the relationship between multiple independent variables and a categorical dependent variable, with emphasis on medical research. Thirty seven research articles published between 2000 and 2018 which employed logistic regression as the main statistical tool as well as six text books on logistic regression were reviewed. Logistic regression concepts such as odds, odds ratio, logit transformation, logistic curve, assumption, selecting dependent and independent variables, model fitting, reporting and interpreting were presented. Upon perusing the literature, considerable deficiencies were found in both the use and reporting of LR. For many studies, the ratio of the number of outcome events to predictor variables (events per variable) was sufficiently small to call into question the accuracy of the regression model. Also, most studies did not report on validation analysis, regression diagnostics or goodness-of-fit measures;measures which authenticate the robustness of the LR model. Here, we demonstrate a good example of the application of the LR model using data obtained on a cohort of pregnant women and the factors that influence their decision to opt for caesarean delivery or vaginal birth. It is recommended that researchers should be more rigorous and pay greater attention to guidelines concerning the use and reporting of LR models. 展开更多
关键词 logistic regression Model Validation analysis GOODNESS-OF-FIT Measures Odds RATIO LIKELIHOOD RATIO TEST Hosmer-Lemeshow TEST Wald Statistic MEDICAL RESEARCH
在线阅读 下载PDF
Regional Integrated Meteorological Forecasting and Warning Model for Geological Hazards Based on Logistic Regression 被引量:1
18
作者 XU Jing YANG Chi ZHANG Guoping 《Wuhan University Journal of Natural Sciences》 CAS 2007年第4期638-644,共7页
Information model is adopted to integrate factors of various geosciences to estimate the susceptibility of geological hazards. Further combining the dynamic rainfall observations, Logistic regression is used for model... Information model is adopted to integrate factors of various geosciences to estimate the susceptibility of geological hazards. Further combining the dynamic rainfall observations, Logistic regression is used for modeling the probabilities of geological hazard occurrences, upon which hierarchical warnings for rainfall-induced geological hazards are produced. The forecasting and warning model takes numerical precipitation forecasts on grid points as its dynamic input, forecasts the probabilities of geological hazard occurrences on the same grid, and translates the results into likelihoods in the form of a 5-level hierarchy. Validation of the model with observational data for the year 2004 shows that 80% of the geological hazards of the year have been identified as "likely enough to release warning messages". The model can satisfy the requirements of an operational warning system, thus is an effective way to improve the meteorological warnings for geological hazards. 展开更多
关键词 geological hazard information model logistic regression RAINFALL spatial analysis
在线阅读 下载PDF
The assessment of the outliers of logistic regression model and its clinical application 被引量:1
19
作者 易东 许汝福 +1 位作者 张蔚 尹全焕 《Journal of Medical Colleges of PLA(China)》 CAS 1995年第1期61-62,66,共3页
On the basis of the newly developed regression diagnostic analysis, the diagnostic method with the assessment of the outliers of the logistic regression model was set up and it was used to analyze the prognosis of the... On the basis of the newly developed regression diagnostic analysis, the diagnostic method with the assessment of the outliers of the logistic regression model was set up and it was used to analyze the prognosis of the patients with acute lymphatic leukemia. 展开更多
关键词 OUTLIER logistic MODEL leukemia LYMPHOBLASTIC prognosis regression analysis
暂未订购
上一页 1 2 209 下一页 到第
使用帮助 返回顶部