期刊文献+
共找到210篇文章
< 1 2 11 >
每页显示 20 50 100
A Dynamical System-Based Framework for Dimension Reduction
1
作者 Ryeongkyung Yoon Braxton Osting 《Communications on Applied Mathematics and Computation》 EI 2024年第2期757-789,共33页
We propose a novel framework for learning a low-dimensional representation of data based on nonlinear dynamical systems,which we call the dynamical dimension reduction(DDR).In the DDR model,each point is evolved via a... We propose a novel framework for learning a low-dimensional representation of data based on nonlinear dynamical systems,which we call the dynamical dimension reduction(DDR).In the DDR model,each point is evolved via a nonlinear flow towards a lower-dimensional subspace;the projection onto the subspace gives the low-dimensional embedding.Training the model involves identifying the nonlinear flow and the subspace.Following the equation discovery method,we represent the vector field that defines the flow using a linear combination of dictionary elements,where each element is a pre-specified linear/nonlinear candidate function.A regularization term for the average total kinetic energy is also introduced and motivated by the optimal transport theory.We prove that the resulting optimization problem is well-posed and establish several properties of the DDR method.We also show how the DDR method can be trained using a gradient-based optimization method,where the gradients are computed using the adjoint method from the optimal control theory.The DDR method is implemented and compared on synthetic and example data sets to other dimension reduction methods,including the PCA,t-SNE,and Umap. 展开更多
关键词 dimension reduction Equation discovery Dynamical systems Adjoint method Optimal transportation
在线阅读 下载PDF
An Actual Survey of Dimensionality Reduction 被引量:4
2
作者 Alireza Sarveniazi 《American Journal of Computational Mathematics》 2014年第2期55-72,共18页
Dimension reduction is defined as the processes of projecting high-dimensional data to a much lower-dimensional space. Dimension reduction methods variously applied in regression, classification, feature analysis and ... Dimension reduction is defined as the processes of projecting high-dimensional data to a much lower-dimensional space. Dimension reduction methods variously applied in regression, classification, feature analysis and visualization. In this paper, we review in details the last and most new version of methods that extensively developed in the past decade. 展开更多
关键词 dimensionality reduction methodS
在线阅读 下载PDF
Dimensionality reduction method based on energy order distribution for multi-nonlinearity-coupled rotor-bearing system
3
作者 Runchao ZHAO Yinghou JIAO +5 位作者 Zhiqian ZHAO Zengtao CHEN Hongwei GUO Zongquan DENG Zhitong LI Rongqiang LIU 《Chinese Journal of Aeronautics》 2025年第11期158-179,共22页
Gas turbine rotors are complex dynamic systems with high-dimensional,discrete,and multi-source nonlinear coupling characteristics.Significant amounts of resources and time are spent during the process of solving dynam... Gas turbine rotors are complex dynamic systems with high-dimensional,discrete,and multi-source nonlinear coupling characteristics.Significant amounts of resources and time are spent during the process of solving dynamic characteristics.Therefore,it is necessary to design a lowdimensional model that can well reflect the dynamic characteristics of high-dimensional system.To build such a low-dimensional model,this study developed a dimensionality reduction method considering global order energy distribution by modifying the proper orthogonal decomposition theory.First,sensitivity analysis of key dimensionality reduction parameters to the energy distribution was conducted.Then a high-dimensional rotor-bearing system considering the nonlinear stiffness and oil film force was reduced,and the accuracy and the reusability of the low-dimensional model under different operating conditions were examined.Finally,the response results of a multi-disk rotor-bearing test bench were reduced using the proposed method,and spectrum results were then compared experimentally.Numerical and experimental results demonstrate that,during the dimensionality reduction process,the solution period of dynamic response results has the most significant influence on the accuracy of energy preservation.The transient signal in the transformation matrix mainly affects the high-order energy distribution of the rotor system.The larger the proportion of steady-state signals is,the closer the energy tends to accumulate towards lower orders.The low-dimensional rotor model accurately reflects the frequency response characteristics of the original high-dimensional system with an accuracy of up to 98%.The proposed dimensionality reduction method exhibits significant application potential in the dynamic analysis of highdimensional systems coupled with strong nonlinearities under variable operating conditions. 展开更多
关键词 dimensionality reduction method Energy distribution High-dimensional rotor system Response prediction Rotor dynamics
原文传递
A New Algorithm for Reducing Dimensionality of L1-CSVM Use Augmented Lagrange Method
4
作者 Mingzhu Cui Liya Fan 《Journal of Applied Mathematics and Physics》 2022年第1期21-30,共10页
Principal component analysis and generalized low rank approximation of matrices are two different dimensionality reduction methods. Two different dimensionality reduction algorithms are applied to the L1-CSVM model ba... Principal component analysis and generalized low rank approximation of matrices are two different dimensionality reduction methods. Two different dimensionality reduction algorithms are applied to the L1-CSVM model based on augmented Lagrange method to explore the variation of running time and accuracy of the model in dimensionality reduction space. The results show that the improved algorithm can greatly reduce the running time and improve the accuracy of the algorithm. 展开更多
关键词 Support Vector Machine dimensionality reduction Augmented Lagrange method Classification
在线阅读 下载PDF
Comparison of dimension reduction methods for DEA under big data via Monte Carlo simulation
5
作者 Zikang Chen Song Han 《Journal of Management Science and Engineering》 2021年第4期363-376,共14页
Data with large dimensions will bring various problems to the application of data envelopment analysis(DEA).In this study,we focus on a“big data”problem related to the considerably large dimensions of the input-outp... Data with large dimensions will bring various problems to the application of data envelopment analysis(DEA).In this study,we focus on a“big data”problem related to the considerably large dimensions of the input-output data.The four most widely used approaches to guide dimension reduction in DEA are compared via Monte Carlo simulation,including principal component analysis(PCA-DEA),which is based on the idea of aggregating input and output,efficiency contribution measurement(ECM),average efficiency measure(AEC),and regression-based detection(RB),which is based on the idea of variable selection.We compare the performance of these methods under different scenarios and a brand-new comparison benchmark for the simulation test.In addition,we discuss the effect of initial variable selection in RB for the first time.Based on the results,we offer guidelines that are more reliable on how to choose an appropriate method. 展开更多
关键词 Data envelopment analysis Big data Data dimension reduction method
原文传递
基于A,Ф-A的变压器三维涡流场时域有限元POD降阶方法及其应用
6
作者 朱章宸 刘尧 +1 位作者 刘刚 刘云鹏 《华北电力大学学报(自然科学版)》 北大核心 2025年第1期82-94,共13页
为解决三维涡流场时域求解时间长和存储空间需求较多的问题,首先基于A,Ф-A的三维涡流场时域有限元法结合POD(Proper Orthogonal Decomposition,POD)降阶算法实现了三维涡流场的高效计算。其次,以国际TEAM第21基准问题的模型B为例,通过... 为解决三维涡流场时域求解时间长和存储空间需求较多的问题,首先基于A,Ф-A的三维涡流场时域有限元法结合POD(Proper Orthogonal Decomposition,POD)降阶算法实现了三维涡流场的高效计算。其次,以国际TEAM第21基准问题的模型B为例,通过对比分析实测数据与自编程序和COMSOL的计算结果,验证了A,Ф-A的三维涡流场时域有限元求解方法的有效性。然后,通过POD不同阶数的降阶算例验证了POD降阶方法的有效性。最后,利用所提的基于A,Ф-A三维涡流场时域有限元法计算了一台三相变压器进行额定运行工况下的涡流场,并将计算结果与COMSOL仿真结果进行了对比。同时,还分析了三相变压器在负荷减少过程中的相电流和磁场变化,并分析了降阶模型阶数对计算时间和精度的影响,结果表明:15阶降阶模型耗时约为全阶耗时1/10,并且在方程降阶后各时间步的加速比最大,可达到70~165倍,在计算涡流损耗时相对误差不超过4.59%,计算精度相对较高。 展开更多
关键词 三维涡流场 三相变压器 A Ф-A方法 POD降阶方法
在线阅读 下载PDF
含有多种阻尼模型的机械系统的物理子空间特征值降维求解方法
7
作者 周泽文 凌玲 李立 《振动与冲击》 北大核心 2025年第14期187-197,236,共12页
由于机械系统的阻尼矩阵存在频变特性,其特征值求解极具挑战,尤其是面向含有多种阻尼模型的大规模机械系统。以含有多种阻尼模型的机械系统为研究对象,提出了一种基于物理子空间的特征值降维求解方法,实现了模态频率及振型的高精高效的... 由于机械系统的阻尼矩阵存在频变特性,其特征值求解极具挑战,尤其是面向含有多种阻尼模型的大规模机械系统。以含有多种阻尼模型的机械系统为研究对象,提出了一种基于物理子空间的特征值降维求解方法,实现了模态频率及振型的高精高效的预测。首先,将多种阻尼模型转换成统一的有理数分数形式,构建了具有简洁统一形式的一般阻尼系统。其次,基于一般阻尼系统的统一形式,构建了维数与系统一致的物理空间,实现了物理子空间的递归生成。将状态空间与Krylov子空间相结合推导出物理子空间,提出了一种基于物理子空间的特征值降维求解方法,破解了含多种阻尼模型的系统在传统状态空间的维数激增的难题。通过理论与数值分析研究表明,相较于传统基于状态子空间的降维方法,所提的物理子空间的降维方法具有更高的效率和精度。 展开更多
关键词 机械系统 大型特征值问题 模型降维方法 物理子空间 一般阻尼模型
在线阅读 下载PDF
基于SMP准则的降雨条件下三维非饱和土边坡稳定性
8
作者 王龙 邓虎 +1 位作者 周恩全 朱方之 《江苏大学学报(自然科学版)》 北大核心 2025年第6期731-738,共8页
基于ABAQUS软件平台,采用外挂子程序的方法,实现了空间滑动面(SMP)强度准则的二次开发.采用布尔变量判断边坡饱和区域和非饱和区域,考虑了土中水分含量变化对毛细黏聚力、土内摩擦角和重度的影响,并基于强度折减原理实现了不同降雨类型... 基于ABAQUS软件平台,采用外挂子程序的方法,实现了空间滑动面(SMP)强度准则的二次开发.采用布尔变量判断边坡饱和区域和非饱和区域,考虑了土中水分含量变化对毛细黏聚力、土内摩擦角和重度的影响,并基于强度折减原理实现了不同降雨类型条件下三维非饱和土边坡稳定性的数值模拟,得到边坡孔隙水压力分布和边坡安全系数.结果表明:土体类型和降雨类型对三维非饱和边坡孔隙水压力分布和安全系数的影响较大;湿润锋消失后,降雨类型的影响程度由大至小依次为后锋型、平均型、中锋型和前锋型;三维边坡土体抗剪作用得到充分发挥,忽略中间主应力的影响会低估边坡的稳定性. 展开更多
关键词 非饱和土边坡 降雨入渗 SMP强度准则 强度折减法 三维效应
在线阅读 下载PDF
震源不确定性对近倾滑断层河谷场地地震动的影响研究
9
作者 孟思博 尹娜 +1 位作者 刘中宪 王慎 《地震工程与工程振动》 北大核心 2025年第5期100-109,共10页
含不确定性的震源破裂激发的地震波传播至近地表引起的地震动具有不确定性。该文以随机变量表征震源凹凸体强度和破裂速度的不确定性,通过设置不同破裂情景考虑凹凸体位置和初始破裂位置不确定性,研究了考虑震源不确定性的近倾滑断层河... 含不确定性的震源破裂激发的地震波传播至近地表引起的地震动具有不确定性。该文以随机变量表征震源凹凸体强度和破裂速度的不确定性,通过设置不同破裂情景考虑凹凸体位置和初始破裂位置不确定性,研究了考虑震源不确定性的近倾滑断层河谷场地地震动参数的空间分布,分析了断层距和断层倾角对河谷场地地震动参数不确定性的影响规律。采用乘子降维法提高不确定性量化过程的计算效率,基于边界元法模拟从断层破裂到场地响应的物理过程。研究结果表明,震源不确定性导致地震动参数不确定性,且河谷场地对地震波的散射效应导致地震动参数的不确定性出现非均匀放大;河谷中心点竖向地震动峰值加速度变异系数可达0.27,山体竖向地震动峰值速度变异系数空间分布表现出剧烈波动现象;河谷场地地震动变异性随断层距增大而降低,断层距大于4 km后此趋于稳定,随断层倾角增加而降低,最大可达凹凸体强度变异性的4倍。 展开更多
关键词 近断层效应 不确定性 乘子降维法 场地效应 边界元法
在线阅读 下载PDF
基于主成分降维的海面散射系数快速预测方法
10
作者 刘悦 董春雷 +1 位作者 孟肖 郭立新 《电波科学学报》 北大核心 2025年第1期21-28,共8页
海面电磁散射特性与海浪参数、雷达参数等多种影响因素存在复杂的依赖关系,传统大场景海面电磁散射预测模型在面临多参数高维度映射时容易出现过拟合问题,选择合适的降维方法和模型参数是提高模型性能的有效手段。本文提出了一种基于主... 海面电磁散射特性与海浪参数、雷达参数等多种影响因素存在复杂的依赖关系,传统大场景海面电磁散射预测模型在面临多参数高维度映射时容易出现过拟合问题,选择合适的降维方法和模型参数是提高模型性能的有效手段。本文提出了一种基于主成分分析(principal components analysis,PCA)降维的海面电磁散射快速预测方法。首先,利用文氏海谱和海面电磁散射模型构建后向散射系数仿真数据集;然后,引入PCA法降低仿真参数维度,提取主要特征;最后,基于最小二乘支持向量回归机(least squares support vector regression,LSSVR)建立非线性回归模型,输入降维数据进行预测,并评估预测结果的精度。通过对比不同降维比例的预测结果,分析了主成分降维对模型性能的影响。结果表明,对仿真参数进行适当降维能够显著增加模型精度,提升模型的解释能力。当降维比例为25%左右时模型精度达到最优,当降维比例大于40%时模型精度显著下降,不利于海面电磁散射预测。 展开更多
关键词 主成分分析(PCA) 海面电磁散射预测 最小二乘支持向量回归机(LSSVR) 半确定性面元法 参数降维
在线阅读 下载PDF
基于珠海一号高光谱影像的南矶湿地分类
11
作者 龙婷 况润元 冯钱云 《湿地科学》 北大核心 2025年第5期867-877,共11页
高光谱遥感技术在湿地遥感分类中备受关注,选择合适的特征波段进行湿地分类至关重要。本研究以江西鄱阳湖南矶湿地国家级自然保护区为研究对象,采用珠海一号高光谱数据,分别对水体类、植被类和其他地物类进行光谱特征变换与分析,采用误... 高光谱遥感技术在湿地遥感分类中备受关注,选择合适的特征波段进行湿地分类至关重要。本研究以江西鄱阳湖南矶湿地国家级自然保护区为研究对象,采用珠海一号高光谱数据,分别对水体类、植被类和其他地物类进行光谱特征变换与分析,采用误差范围阈值法对三大类地物进行特征波段筛选,运用马氏距离评估所选特征波段的适用性,并依据不同特征波段的组合对南矶湿地进行随机森林分类。研究结果表明,通过特征优选水体类保留了500 nm和596 nm关键波长,植被类特征向可见光区域偏移,有效捕捉到了“绿峰”与“红边”特性,其他地物类经光谱变换后,波段聚焦于531 nm、560 nm、596 nm等;同类地物经3种特征变换后的特征波段马氏距离值较小;特征组合强化了地物光谱差异,减少了错分漏分现象,原始数据+包络线去除+一阶导数变换特征波段组合的总体分类精度为92.0%,Kappa系数为0.9046,比原始数据特征波段的总体分类精度和Kappa系数分别提高了42.41%和52.83%。研究结果不仅能够为湿地遥感分类中特征波段的选择提供理论基础,还可为内陆湖泊湿地的识别和监测提供技术参考。 展开更多
关键词 南矶湿地 高光谱遥感 阈值法降维 特征波段 随机森林分类
原文传递
针对减振降噪的齿轮传动系统研究 被引量:1
12
作者 洪振 王巍 《机械管理开发》 2025年第3期24-26,共3页
为解决齿轮传动系统的振动和噪声问题,研究采用三维拓扑修形方法对面齿轮进行齿廓和齿向修形,并结合集中参数理论和牛顿第二定律构建动力学模型。通过修形,齿轮传动系统在各频段上的噪声水平显著降低,总噪声水平下降了12.0 dB。同时,所... 为解决齿轮传动系统的振动和噪声问题,研究采用三维拓扑修形方法对面齿轮进行齿廓和齿向修形,并结合集中参数理论和牛顿第二定律构建动力学模型。通过修形,齿轮传动系统在各频段上的噪声水平显著降低,总噪声水平下降了12.0 dB。同时,所构建的动力学模型其振动峰值和振动加速度显著低于降振前。研究结果表明,三维拓扑修形方法和动力学模型在降低齿轮传动系统振动和噪声方面效果显著,为齿轮传动系统的优化设计提供了新的思路,具有重要的工程应用价值。 展开更多
关键词 面齿轮 三维拓扑修形法 传动系统 减振 降噪
在线阅读 下载PDF
Advancing Railway Infrastructure Monitoring:A Case Study on Railway Pole Detection
13
作者 Yuxin Yan Huirui Wang +2 位作者 Jingyi Wen Zerong Lan Liang Wang 《Computers, Materials & Continua》 2025年第5期3059-3073,共15页
The development of artificial intelligence(AI)technologies creates a great chance for the iteration of railway monitoring.This paper proposes a comprehensive method for railway utility pole detection.The framework of ... The development of artificial intelligence(AI)technologies creates a great chance for the iteration of railway monitoring.This paper proposes a comprehensive method for railway utility pole detection.The framework of this paper on railway systems consists of two parts:point cloud preprocessing and railway utility pole detection.Thismethod overcomes the challenges of dynamic environment adaptability,reliance on lighting conditions,sensitivity to weather and environmental conditions,and visual occlusion issues present in 2D images and videos,which utilize mobile LiDAR(Laser Radar)acquisition devices to obtain point cloud data.Due to factors such as acquisition equipment and environmental conditions,there is a significant amount of noise interference in the point cloud data,affecting subsequent detection tasks.We designed a Dual-Region Adaptive Point Cloud Preprocessing method,which divides the railway point cloud data into track and non-track regions.The track region undergoes projection dimensionality reduction,with the projected results being unique and subsequently subjected to 2D density clustering,greatly reducing data computation volume.The non-track region undergoes PCA-based dimensionality reduction and clustering operations to achieve preprocessing of large-scale point cloud scenes.Finally,the preprocessed results are used for training,achieving higher accuracy in utility pole detection and data communication.Experimental results show that our proposed preprocessing method not only improves efficiency but also enhances detection accuracy. 展开更多
关键词 Railway pole detection point cloud data mobile LiDAR dual-region adaptive method PCA-based dimensionality reduction
在线阅读 下载PDF
考虑多峰随机变量的结构不确定性传播分析方法
14
作者 周思杭 郑垚 彭翔 《机械设计》 北大核心 2025年第S1期101-107,共7页
在实际工程结构中,随机变量的概率密度函数可能有多个峰值、遵循多峰分布,若仍然以传统的单峰不确定性传播方法处理多峰随机变量问题,会导致不确定下分析结果存在较大的计算误差。针对这些问题,提出了一种针对多峰随机变量的结构不确定... 在实际工程结构中,随机变量的概率密度函数可能有多个峰值、遵循多峰分布,若仍然以传统的单峰不确定性传播方法处理多峰随机变量问题,会导致不确定下分析结果存在较大的计算误差。针对这些问题,提出了一种针对多峰随机变量的结构不确定性传播分析方法,通过高斯混合模型对多峰随机变量进行不确定性建模;提出一种多峰分解策略方法,将多峰随机变量分解为多个单峰变量,按照规则构造单峰元素格,避免了计算高阶统计矩;在构建的元素格中利用单变元降维法进行统计矩值的分析计算;结合最大熵法求得性能值的不确定性概率密度函数,并在72杆桁架结构的不确定性分析中验证了所提方法的有效性。 展开更多
关键词 多峰随机变量 不确定性传播 多峰分解策略 单变元降维 最大熵法
原文传递
基于客户关系管理的电网静态电压稳定性分析方法
15
作者 陈双 徐迪 丁泽俊 《信息技术》 2025年第5期174-179,共6页
以往电网静态电压稳定性分析方法未考虑电压节点的稳定性,导致分析效果不佳。为此,文中设计了一种基于客户关系管理的方法。通过分析电网运行状态,得到特征向量。利用方差和协方差对特征向量进行重构处理,降低维度。利用客户关系管理应... 以往电网静态电压稳定性分析方法未考虑电压节点的稳定性,导致分析效果不佳。为此,文中设计了一种基于客户关系管理的方法。通过分析电网运行状态,得到特征向量。利用方差和协方差对特征向量进行重构处理,降低维度。利用客户关系管理应用结构构建描述电压节点稳定性的矩阵。通过计算节点间的损耗,建立电压稳定性模型。确定电压的稳定安全裕度和各节点的电压稳定值,进行节点的电压稳定性分析。实验测试中,基于客户关系管理的方法仅有0.154的误差,分析效果更好。 展开更多
关键词 客户关系管理 静态电压稳定性 降维处理 分析方法
在线阅读 下载PDF
基于改进粒子群算法的核电管路自动化布置优化方法研究
16
作者 赵自奕 《自动化技术与应用》 2025年第8期165-168,188,共5页
为了优化核电管路布置优化效果,基于改进粒子群算法研究核电管路自动化布置优化方法。首先对核电管路离散节点数据进行降维处理,并结合仿真软件,对管路空间布局环境进行建模。其次对管路进行分段处理,并对管路的三维空间长度进行计算。... 为了优化核电管路布置优化效果,基于改进粒子群算法研究核电管路自动化布置优化方法。首先对核电管路离散节点数据进行降维处理,并结合仿真软件,对管路空间布局环境进行建模。其次对管路进行分段处理,并对管路的三维空间长度进行计算。最后以最短规划路径作为求解目标,构建出目标函数并对其进行求解,从而输出最优布置方案。对提出的方法进行布置优化效果的检验,测试结果表明,在采用基于改进粒子群算法的核电管路自动化布置优化方法构建出的核电管路布置方案中,管路规划长度较短,具备较为理想的布置优化效果。 展开更多
关键词 粒子群算法 核电管路 布置优化 降维处理 自动优化方法
在线阅读 下载PDF
A frequency domain reliability analysis method for electromagnetic problems based on univariate dimension reduction method 被引量:1
17
作者 PING MengHao HAN Xu +4 位作者 JIANG Chao ZHONG JianFeng XIAO XiaoYa HUANG ZhiLiang WANG ZhongHua 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2019年第5期787-798,共12页
In this paper, a class of electromagnetic field frequency domain reliability problem is first defined. The frequency domain reliability refers to the probability that an electromagnetic performance indicator can meet ... In this paper, a class of electromagnetic field frequency domain reliability problem is first defined. The frequency domain reliability refers to the probability that an electromagnetic performance indicator can meet the intended requirements within a specific frequency band, considering the uncertainty of structural parameters and frequency-variant electromagnetic parameters.And then a frequency domain reliability analysis method based on univariate dimension reduction method is proposed, which provides an effective calculation tool for electromagnetic frequency domain reliability. In electromagnetic problems, performance indicators usually vary with frequency. The method firstly discretizes the frequency-variant performance indicator function into a series of frequency points' functions, and then transforms the frequency domain reliability problem into a series system reliability problem of discrete frequency points' functions. Secondly, the univariate dimension reduction method is introduced to solve the probability distribution functions and correlation coefficients of discrete frequency points' functions in the system. Finally, according to the above calculation results, the series system reliability can be solved to obtain the frequency domain reliability, and the cumulative distribution function of the performance indicator can also be obtained. In this study,Monte Carlo simulation is adopted to demonstrate the validity of the frequency domain reliability analysis method. Three examples are investigated to demonstrate the accuracy and efficiency of the proposed method. 展开更多
关键词 ELECTROMAGNETIC field frequency domain RELIABILITY system RELIABILITY RANDOM process DISCRETIZATION univariate dimension reduction method
原文传递
Dynamic Behaviors Analysis of Reduced Rotor Models with Looseness Based on the TPOD Method 被引量:1
18
作者 Kuan Lu Yushu Chen 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2018年第4期15-30,共16页
The transient proper orthogonal decomposition(TPOD) method is used to study dynamic behaviors of the reduced rotor-bearing models,and the fault-free model is compared with the models with looseness fault.A 22 degree o... The transient proper orthogonal decomposition(TPOD) method is used to study dynamic behaviors of the reduced rotor-bearing models,and the fault-free model is compared with the models with looseness fault.A 22 degree of freedoms(DOFs) rotor model supported by bearings is established.Both one end and two ends pedestal looseness of the liquid-film bearings are studied by analyzing the time history and the frequency-spectrum curves.The effects of the initial displacement and velocity values to frequency components of the original systems and the dimension reduction efficiency are discussed.Moreover,the effects of variation of initial conditions on the efficiency of the TPOD method are studied.Reduced models can provide guidance significance from the perspectives of the theory and numerical simplification to discuss the characteristics of pedestal looseness fault. 展开更多
关键词 dimension reduction TPOD method ROTOR-BEARING Pedestal looseness HIGH-dimensionAL initial values
在线阅读 下载PDF
Feature subset selection method for AdaBoost training
19
作者 赵三元 沈庭芝 +2 位作者 孙晨升 刘朋樟 岳雷 《Journal of Beijing Institute of Technology》 EI CAS 2011年第3期399-402,共4页
The feature-selection problem in training AdaBoost classifiers is addressed in this paper. A working feature subset is generated by adopting a novel feature subset selection method based on the partial least square (... The feature-selection problem in training AdaBoost classifiers is addressed in this paper. A working feature subset is generated by adopting a novel feature subset selection method based on the partial least square (PLS) regression, and then trained and selected from this feature subset in Boosting. The experiments show that the proposed PLS-based feature-selection method outperforms the current feature ranking method and the random sampling method. 展开更多
关键词 dimensionality reduction Boosting method feature subset
在线阅读 下载PDF
On Eigen-Matrix Translation Method for Classification of Biological Data
20
作者 JIANG Hao QIU Yushan +1 位作者 CHENG Xiaoqing CHING Waiki 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第5期1212-1230,共19页
Driven by the challenge of integrating large amount of experimental data, classification technique emerges as one of the major and popular tools in computational biology and bioinformatics research. Machine learning m... Driven by the challenge of integrating large amount of experimental data, classification technique emerges as one of the major and popular tools in computational biology and bioinformatics research. Machine learning methods, especially kernel methods with Support Vector Machines (SVMs) are very popular and effective tools. In the perspective of kernel matrix, a technique namely Eigen- matrix translation has been introduced for protein data classification. The Eigen-matrix translation strategy has a lot of nice properties which deserve more exploration. This paper investigates the major role of Eigen-matrix translation in classification. The authors propose that its importance lies in the dimension reduction of predictor attributes within the data set. This is very important when the dimension of features is huge. The authors show by numerical experiments on real biological data sets that the proposed framework is crucial and effective in improving classification accuracy. This can therefore serve as a novel perspective for future research in dimension reduction problems. 展开更多
关键词 CLASSIFICATION dimension reduction eigen-matrix translation glycan data kernel method(KM) support vector machine (SVM)
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部