期刊文献+
共找到11,472篇文章
< 1 2 250 >
每页显示 20 50 100
Using AdaBoost Meta-Learning Algorithm for Medical News Multi-Document Summarization 被引量:1
1
作者 Mahdi Gholami Mehr 《Intelligent Information Management》 2013年第6期182-190,共9页
Automatic text summarization involves reducing a text document or a larger corpus of multiple documents to a short set of sentences or paragraphs that convey the main meaning of the text. In this paper, we discuss abo... Automatic text summarization involves reducing a text document or a larger corpus of multiple documents to a short set of sentences or paragraphs that convey the main meaning of the text. In this paper, we discuss about multi-document summarization that differs from the single one in which the issues of compression, speed, redundancy and passage selection are critical in the formation of useful summaries. Since the number and variety of online medical news make them difficult for experts in the medical field to read all of the medical news, an automatic multi-document summarization can be useful for easy study of information on the web. Hence we propose a new approach based on machine learning meta-learner algorithm called AdaBoost that is used for summarization. We treat a document as a set of sentences, and the learning algorithm must learn to classify as positive or negative examples of sentences based on the score of the sentences. For this learning task, we apply AdaBoost meta-learning algorithm where a C4.5 decision tree has been chosen as the base learner. In our experiment, we use 450 pieces of news that are downloaded from different medical websites. Then we compare our results with some existing approaches. 展开更多
关键词 multi-document SUMMARIZATION Machine Learning Decision Trees ADABOOST C4.5 MEDICAL Document SUMMARIZATION
在线阅读 下载PDF
Density peaks clustering based integrate framework for multi-document summarization 被引量:2
2
作者 BaoyanWang Jian Zhang +1 位作者 Yi Liu Yuexian Zou 《CAAI Transactions on Intelligence Technology》 2017年第1期26-30,共5页
We present a novel unsupervised integrated score framework to generate generic extractive multi- document summaries by ranking sentences based on dynamic programming (DP) strategy. Considering that cluster-based met... We present a novel unsupervised integrated score framework to generate generic extractive multi- document summaries by ranking sentences based on dynamic programming (DP) strategy. Considering that cluster-based methods proposed by other researchers tend to ignore informativeness of words when they generate summaries, our proposed framework takes relevance, diversity, informativeness and length constraint of sentences into consideration comprehensively. We apply Density Peaks Clustering (DPC) to get relevance scores and diversity scores of sentences simultaneously. Our framework produces the best performance on DUC2004, 0.396 of ROUGE-1 score, 0.094 of ROUGE-2 score and 0.143 of ROUGE-SU4 which outperforms a series of popular baselines, such as DUC Best, FGB [7], and BSTM [10]. 展开更多
关键词 multi-document summarization Integrated score framework Density peaks clustering Sentences rank
在线阅读 下载PDF
Constructing a taxonomy to support multi-document summarization of dissertation abstracts
3
作者 KHOO Christopher S.G. GOH Dion H. 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第11期1258-1267,共10页
This paper reports part of a study to develop a method for automatic multi-document summarization. The current focus is on dissertation abstracts in the field of sociology. The summarization method uses macro-level an... This paper reports part of a study to develop a method for automatic multi-document summarization. The current focus is on dissertation abstracts in the field of sociology. The summarization method uses macro-level and micro-level discourse structure to identify important information that can be extracted from dissertation abstracts, and then uses a variable-based framework to integrate and organize extracted information across dissertation abstracts. This framework focuses more on research concepts and their research relationships found in sociology dissertation abstracts and has a hierarchical structure. A taxonomy is constructed to support the summarization process in two ways: (1) helping to identify important concepts and relations expressed in the text, and (2) providing a structure for linking similar concepts in different abstracts. This paper describes the variable-based framework and the summarization process, and then reports the construction of the taxonomy for supporting the summarization process. An example is provided to show how to use the constructed taxonomy to identify important concepts and integrate the concepts extracted from different abstracts. 展开更多
关键词 Text summarization Automatic multi-document summarization Variable-based framework Digital library
在线阅读 下载PDF
Automatic Multi-Document Summarization Based on Keyword Density and Sentence-Word Graphs
4
作者 YE Feiyue XU Xinchen 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第4期584-592,共9页
As a fundamental and effective tool for document understanding and organization, multi-document summarization enables better information services by creating concise and informative reports for large collections of do... As a fundamental and effective tool for document understanding and organization, multi-document summarization enables better information services by creating concise and informative reports for large collections of documents. In this paper, we propose a sentence-word two layer graph algorithm combining with keyword density to generate the multi-document summarization, known as Graph & Keywordp. The traditional graph methods of multi-document summarization only consider the influence of sentence and word in all documents rather than individual documents. Therefore, we construct multiple word graph and extract right keywords in each document to modify the sentence graph and to improve the significance and richness of the summary. Meanwhile, because of the differences in the words importance in documents, we propose to use keyword density for the summaries to provide rich content while using a small number of words. The experiment results show that the Graph & Keywordp method outperforms the state of the art systems when tested on the Duc2004 data set. Key words: multi-document, graph algorithm, keyword density, Graph & Keywordp, Due2004 展开更多
关键词 multi-document graph algorithm keyword density Graph & Keywordρ Duc2004
原文传递
Unsupervised Graph-Based Tibetan Multi-Document Summarization
5
作者 Xiaodong Yan Yiqin Wang +3 位作者 Wei Song Xiaobing Zhao A.Run Yang Yanxing 《Computers, Materials & Continua》 SCIE EI 2022年第10期1769-1781,共13页
Text summarization creates subset that represents the most important or relevant information in the original content,which effectively reduce information redundancy.Recently neural network method has achieved good res... Text summarization creates subset that represents the most important or relevant information in the original content,which effectively reduce information redundancy.Recently neural network method has achieved good results in the task of text summarization both in Chinese and English,but the research of text summarization in low-resource languages is still in the exploratory stage,especially in Tibetan.What’s more,there is no large-scale annotated corpus for text summarization.The lack of dataset severely limits the development of low-resource text summarization.In this case,unsupervised learning approaches are more appealing in low-resource languages as they do not require labeled data.In this paper,we propose an unsupervised graph-based Tibetan multi-document summarization method,which divides a large number of Tibetan news documents into topics and extracts the summarization of each topic.Summarization obtained by using traditional graph-based methods have high redundancy and the division of documents topics are not detailed enough.In terms of topic division,we adopt two level clustering methods converting original document into document-level and sentence-level graph,next we take both linguistic and deep representation into account and integrate external corpus into graph to obtain the sentence semantic clustering.Improve the shortcomings of the traditional K-Means clustering method and perform more detailed clustering of documents.Then model sentence clusters into graphs,finally remeasure sentence nodes based on the topic semantic information and the impact of topic features on sentences,higher topic relevance summary is extracted.In order to promote the development of Tibetan text summarization,and to meet the needs of relevant researchers for high-quality Tibetan text summarization datasets,this paper manually constructs a Tibetan summarization dataset and carries out relevant experiments.The experiment results show that our method can effectively improve the quality of summarization and our method is competitive to previous unsupervised methods. 展开更多
关键词 multi-document summarization text clustering topic feature fusion graphic model
在线阅读 下载PDF
TWO-STAGE SENTENCE SELECTION APPROACH FOR MULTI-DOCUMENT SUMMARIZATION
6
作者 Zhang Shu Zhao Tiejun Zheng Dequan Zhao Hua 《Journal of Electronics(China)》 2008年第4期562-567,共6页
Compared with the traditional method of adding sentences to get summary in multi-document summarization,a two-stage sentence selection approach based on deleting sentences in acandidate sentence set to generate summar... Compared with the traditional method of adding sentences to get summary in multi-document summarization,a two-stage sentence selection approach based on deleting sentences in acandidate sentence set to generate summary is proposed,which has two stages,the acquisition of acandidate sentence set and the optimum selection of sentence.At the first stage,the candidate sentenceset is obtained by redundancy-based sentence selection approach.At the second stage,optimum se-lection of sentences is proposed to delete sentences in the candidate sentence set according to itscontribution to the whole set until getting the appointed summary length.With a test corpus,theROUGE value of summaries gotten by the proposed approach proves its validity,compared with thetraditional method of sentence selection.The influence of the token chosen in the two-stage sentenceselection approach on the quality of the generated summaries is analyzed. 展开更多
关键词 TWO-STAGE Sentence selection approach multi-document summarization
在线阅读 下载PDF
Research on multi-document summarization based on latent semantic indexing
7
作者 秦兵 刘挺 +1 位作者 张宇 李生 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第1期91-94,共4页
A multi-document summarization method based on Latent Semantic Indexing (LSI) is proposed. The method combines several reports on the same issue into a matrix of terms and sentences, and uses a Singular Value Decompos... A multi-document summarization method based on Latent Semantic Indexing (LSI) is proposed. The method combines several reports on the same issue into a matrix of terms and sentences, and uses a Singular Value Decomposition (SVD) to reduce the dimension of the matrix and extract features, and then the sentence similarity is computed. The sentences are clustered according to similarity of sentences. The centroid sentences are selected from each class. Finally, the selected sentences are ordered to generate the summarization. The evaluation and results are presented, which prove that the proposed methods are efficient. 展开更多
关键词 multi-document summarization LSI (latent semantic indexing) CLUSTERING
在线阅读 下载PDF
Multi-Document Summarization Model Based on Integer Linear Programming
8
作者 Rasim Alguliev Ramiz Aliguliyev Makrufa Hajirahimova 《Intelligent Control and Automation》 2010年第2期105-111,共7页
This paper proposes an extractive generic text summarization model that generates summaries by selecting sentences according to their scores. Sentence scores are calculated using their extensive coverage of the main c... This paper proposes an extractive generic text summarization model that generates summaries by selecting sentences according to their scores. Sentence scores are calculated using their extensive coverage of the main content of the text, and summaries are created by extracting the highest scored sentences from the original document. The model formalized as a multiobjective integer programming problem. An advantage of this model is that it can cover the main content of source (s) and provide less redundancy in the generated sum- maries. To extract sentences which form a summary with an extensive coverage of the main content of the text and less redundancy, have been used the similarity of sentences to the original document and the similarity between sentences. Performance evaluation is conducted by comparing summarization outputs with manual summaries of DUC2004 dataset. Experiments showed that the proposed approach outperforms the related methods. 展开更多
关键词 multi-document SUMMARIZATION Content COVERAGE LESS REDUNDANCY INTEGER Linear Programming
在线阅读 下载PDF
Chinese multi-document personal name disambiguation 被引量:8
9
作者 Wang Houfeng(王厚峰) Mei Zheng 《High Technology Letters》 EI CAS 2005年第3期280-283,共4页
This paper presents a new approach to determining whether an interested personal name across doeuments refers to the same entity. Firstly,three vectors for each text are formed: the personal name Boolean vectors deno... This paper presents a new approach to determining whether an interested personal name across doeuments refers to the same entity. Firstly,three vectors for each text are formed: the personal name Boolean vectors denoting whether a personal name occurs the text the biographical word Boolean vector representing title, occupation and so forth, and the feature vector with real values. Then, by combining a heuristic strategy based on Boolean vectors with an agglomeratie clustering algorithm based on feature vectors, it seeks to resolve multi-document personal name coreference. Experimental results show that this approach achieves a good performance by testing on "Wang Gang" corpus. 展开更多
关键词 personal name disambiguation Chinese multi-document heuristic strategy. agglomerative clustering
在线阅读 下载PDF
Multi-Head Encoder Shared Model Integrating Intent and Emotion for Dialogue Summarization
10
作者 Xinlai Xing Junliang Chen +2 位作者 Xiaochuan Zhang Shuran Zhou Runqing Zhang 《Computers, Materials & Continua》 2025年第2期2275-2292,共18页
In task-oriented dialogue systems, intent, emotion, and actions are crucial elements of user activity. Analyzing the relationships among these elements to control and manage task-oriented dialogue systems is a challen... In task-oriented dialogue systems, intent, emotion, and actions are crucial elements of user activity. Analyzing the relationships among these elements to control and manage task-oriented dialogue systems is a challenging task. However, previous work has primarily focused on the independent recognition of user intent and emotion, making it difficult to simultaneously track both aspects in the dialogue tracking module and to effectively utilize user emotions in subsequent dialogue strategies. We propose a Multi-Head Encoder Shared Model (MESM) that dynamically integrates features from emotion and intent encoders through a feature fusioner. Addressing the scarcity of datasets containing both emotion and intent labels, we designed a multi-dataset learning approach enabling the model to generate dialogue summaries encompassing both user intent and emotion. Experiments conducted on the MultiWoZ and MELD datasets demonstrate that our model effectively captures user intent and emotion, achieving extremely competitive results in dialogue state tracking tasks. 展开更多
关键词 Dialogue summaries dialogue state tracking emotion recognition task-oriented dialogue system pre-trained language model
在线阅读 下载PDF
DYRK2:基于东亚和欧洲人群揭示类风湿关节炎合并骨质疏松症的治疗新靶点
11
作者 吴治林 何秦 +4 位作者 王枰稀 石现 袁松 张骏 王浩 《中国组织工程研究》 北大核心 2026年第6期1569-1579,共11页
背景:研究表明,类风湿关节炎与骨质疏松症呈正相关趋势,但因果关系和相关机制仍未得到证实。随着计算机科学和生命科学的交叉融合,基于全基因组关联研究数据和转录组测序数据进行孟德尔随机化和生信分析,可以评估两疾病间的因果关系、... 背景:研究表明,类风湿关节炎与骨质疏松症呈正相关趋势,但因果关系和相关机制仍未得到证实。随着计算机科学和生命科学的交叉融合,基于全基因组关联研究数据和转录组测序数据进行孟德尔随机化和生信分析,可以评估两疾病间的因果关系、探索相关机制以及挖掘治疗靶点,这将利于类风湿关节炎合并骨质疏松症的精准治疗。目的:采用双样本孟德尔随机化分析类风湿关节炎和骨质疏松症间的因果关系,同时基于汇总数据的孟德尔随机化分析和生信分析挖掘潜在共病靶点和靶向药物,旨在为类风湿关节炎合并骨质疏松症的机制探索和精准治疗提供理论依据。方法:①从基于亚洲人群和欧洲人群的GWAS Catalog、IEU Open GWAS、FinnGen以及eQTLGen数据库下载类风湿关节炎、骨质疏松症和顺式表达数量性状位点的全基因组关联研究数据,用于双样本孟德尔随机化和基于汇总数据的孟德尔随机化分析。②从GEO数据库下载类风湿关节炎的转录组测序数据(GSE93272和GSE15573),用于生物信息学分析。③以逆方差加权法作为主要分析方法,进行类风湿关节炎和骨质疏松症之间的正向和反向双样本孟德尔随机化分析,并用MR Egger法、简单模式法、加权中位数法和加权模式法对结果加以佐证。④基于汇总数据的孟德尔随机化分析鉴定与类风湿关节炎和骨质疏松症相关的基因,并基于交叉分析挖掘出类风湿关节炎和骨质疏松症共病靶点。同时,基于生信分析和细胞实验验证共病靶点的生物学功能。⑤此外,基于DYRK2构建类风湿关节炎风险预测诺莫图,通过受试者特征曲线、矫正曲线和决策曲线验证预测性能。最后,基于Enrichr数据库挖掘靶点潜在药物并进行分子对接。结果与结论:①正向孟德尔随机化分析结果显示,除外GCST90044540和GCST90086118无统计学意义,其他所有结果均表明类风湿关节炎和骨质疏松症间存在显著因果关系,并且呈正相关。②反向孟德尔随机化分析结果提示,骨质疏松症和类风湿关节炎间未见显著因果关系。③基于汇总数据的孟德尔随机化分析共鉴定出412和344个与类风湿关节炎和骨质疏松症正相关的基因,421和347个负相关基因。基于交叉分析得到26个共病基因。其中,DYRK2是潜在治疗靶点,后续生信分析和细胞实验证实DYRK2在类风湿关节炎和骨质疏松症的进展过程中发挥重要作用。④此外,构建的诺莫图具有出色的预测性能。最后,挖掘出4个DYRK2的潜在靶向药物(Undecanoic Acid、Metyrapone、JNJ-38877605和ACA),分子对接也证明具有可靠的靶向能力。⑤总之,基于亚洲人群和欧洲人群的全基因组关联研究数据证明了类风湿关节炎和骨质疏松症在遗传学层面存在着因果关系,DYRK2是潜在治疗靶点,有4种小分子是潜在靶向药物。 展开更多
关键词 类风湿关节炎 骨质疏松症 孟德尔随机化 基于汇总数据的孟德尔随机化 共病基因 DYRK2
暂未订购
英文概要(summary)的写作 被引量:12
12
作者 赵金东 《衡水师专学报》 2002年第2期24-25,共2页
读懂原材料是写好概要的关键。拟就合适题目及简要提纲也是不可或缺的。据此成文再详加润色。根据内容需要适当引用例子、数据及引语等 。
关键词 英文概要 英语写作 写作能力 写作实践
在线阅读 下载PDF
探究高职英语泛读课中撰写Summary对培养学生阅读意识的作用 被引量:1
13
作者 刘海云 《英语教师》 2015年第21期55-56,共2页
在分析英语泛读课的教学目标及高职英语学生的英语阅读现状的基础上,培养学生正确的泛读意识是高职英语泛读教师的首要工作。通过实践分析学生撰写阅读材料概要(Summary)对阅读意识培养的重要性以及阐述学生掌握撰写文章概要的具体做法。
关键词 高职英语泛读课 泛读意识 撰写summary训练
在线阅读 下载PDF
超重或肥胖2型糖尿病病人非药物体重管理的最佳证据总结
14
作者 吕婷 王晓云 +5 位作者 李旭霞 张苗苗 寇婷媛 李丽霞 郑彭燕 刘三娇 《护理研究》 北大核心 2026年第1期108-114,共7页
目的:检索并总结超重或肥胖2型糖尿病病人非药物体重管理的最佳证据。方法:检索BMJ Best Practice、UpToDate、JBI循证卫生保健研究中心网站、英国国家临床优化研究所(NICE)官网、国际指南协作网(GIN)、美国医疗保健研究与质量局网站(AH... 目的:检索并总结超重或肥胖2型糖尿病病人非药物体重管理的最佳证据。方法:检索BMJ Best Practice、UpToDate、JBI循证卫生保健研究中心网站、英国国家临床优化研究所(NICE)官网、国际指南协作网(GIN)、美国医疗保健研究与质量局网站(AHRQ)、世界卫生组织(WHO)指南网、加拿大安大略注册护士协会(RANO)、国际糖尿病联合会网站(IDF)、美国糖尿病协会(ADA)官网、医脉通、Cochrane Library、EMbase、CINAHL、Scopus、PubMed、中华医学会期刊全文数据库、万方数据知识服务平台、中国知网、中国生物医学文献数据库、维普数据库等网站,检索时间为建库至2025年2月5日。2名研究者通过文献质量评价,提炼并总结形成超重或肥胖2型糖尿病病人非药物体重管理的最佳证据。结果:共纳入20篇文献,包括1篇临床实践、1篇临床决策、5篇指南、5篇专家共识、8篇系统评价;最终从体重管理获益、体重管理目标、评估与监测及生活方式干预4个方面汇总了23条最佳证据。结论:总结形成的超重或肥胖2型糖尿病病人非药物体重管理的最佳证据具有科学性和实用性,可为医务人员管理超重或肥胖2型糖尿病病人体重提供参考。 展开更多
关键词 2型糖尿病 超重 肥胖 非药物 体重管理 证据总结 循证护理
暂未订购
成人脓毒症病人集束化措施管理的最佳证据总结
15
作者 谢瑞怡 夏新 +1 位作者 范红霞 汪媛媛 《循证护理》 2026年第1期50-56,共7页
目的:检索、评价和总结成人脓毒症病人集束化措施管理的相关证据,为临床护理提供参考。方法:计算机系统检索国内外指南网、数据库、学会等有关脓毒症病人集束化措施管理的临床指南、最佳实践、专家共识、系统评价、证据总结,检索时间为... 目的:检索、评价和总结成人脓毒症病人集束化措施管理的相关证据,为临床护理提供参考。方法:计算机系统检索国内外指南网、数据库、学会等有关脓毒症病人集束化措施管理的临床指南、最佳实践、专家共识、系统评价、证据总结,检索时间为建库至2024年12月20日,由2名经过系统培训的研究人员按照JBI循证卫生保健中心的相应评价标准进行文献质量评价,对符合质量标准的文献进行证据提取。结果:共纳入13篇文献,其中指南5篇,专家共识5篇,系统评价3篇。最终形成早期筛查与识别、采集标本、使用广谱抗生素、液体复苏、使用血管活性药物、支持治疗、病情观察7个方面,共37条最佳证据。结论:总结的成人脓毒症病人集束化措施管理的最佳证据可为临床医护人员实施成人脓毒症病人集束化措施的整体流程提供借鉴和参考依据。 展开更多
关键词 脓毒症 集束化措施 证据总结 循证护理
暂未订购
海洋科学期刊论文中简明语言概要与摘要的词汇复杂度对比研究
16
作者 刘颖颖 吕名婕 王智红 《中国海洋大学学报(社会科学版)》 2026年第1期137-150,共14页
简明语言概要是一种新兴的重要学术体裁。近年来,多个领域的权威国际学术期刊要求作者提交简明语言概要。部分期刊在发表的论文中,将概要与摘要紧邻呈现,构成论文题目之后的第一部分内容。概要和摘要都是对同一学术研究的简要介绍,在内... 简明语言概要是一种新兴的重要学术体裁。近年来,多个领域的权威国际学术期刊要求作者提交简明语言概要。部分期刊在发表的论文中,将概要与摘要紧邻呈现,构成论文题目之后的第一部分内容。概要和摘要都是对同一学术研究的简要介绍,在内容上具有高度可比性。然而,两者的目标读者群体不同,摘要面向专家和学者,而概要面向非专业大众读者。不同于对摘要的写作要求,国际期刊的投稿指南要求概要中应避免使用专业术语。然而,在更广泛的词汇复杂度层面上,摘要和概要之间是否存在差异,以及存在何种显著差异,尚待实证探究。本研究以海洋科学国际学术期刊论文为例,对比分析200篇论文的摘要与概要在多种词汇复杂度指标上的差异。研究发现,两者在词汇密度、词汇复杂性、词汇多样性等维度的21个指标上均存在显著差异,可为海洋科学领域概要的写作教学和学习提供依据和参考,并有助于相关领域的专家学者、学术写作教师和学生理解概要这一新兴体裁的语言特征。 展开更多
关键词 词汇复杂度 海洋科学 概要 学术论文摘要
在线阅读 下载PDF
肿瘤病人肠外营养血糖管理最佳证据总结
17
作者 陈琳 邵雅双 +3 位作者 汤露 苏倩 吴白女 叶富英 《循证护理》 2026年第1期36-42,共7页
目的:检索、评价和汇总肿瘤病人肠外营养血糖管理的最佳证据,为临床护理实践提供参考依据。方法:按照“6S”模型检索相关文献,包括指南、专家共识、临床决策、系统评价及Meta分析等,检索时限为建库至2024年12月31日。由2名研究者对纳入... 目的:检索、评价和汇总肿瘤病人肠外营养血糖管理的最佳证据,为临床护理实践提供参考依据。方法:按照“6S”模型检索相关文献,包括指南、专家共识、临床决策、系统评价及Meta分析等,检索时限为建库至2024年12月31日。由2名研究者对纳入的文献进行质量评价,并对证据进行提取、整合。结果:共纳入10篇文献,其中1篇临床决策、5篇指南、1篇专家共识、2篇证据总结、1篇系统评价,最终从建立团队、危险因素识别、血糖控制目标、肠外营养液配制、肠外营养液输注、胰岛素用量和添加方式、血糖监测、低血糖预防和处理8个方面总结26条证据。结论:总结的肿瘤病人肠外营养血糖管理的最佳证据较为科学、全面,建议医护人员在应用证据时充分考虑临床实际情况,结合病人病情和护患比,优化肿瘤病人肠外营养血糖管理措施。 展开更多
关键词 肿瘤 肠外营养 血糖管理 证据总结 循证护理
暂未订购
基于最佳证据总结的预案性护理对急诊高热惊厥患儿急救效果的影响
18
作者 吕婷 张宏宇 潘春里 《齐鲁护理杂志》 2026年第1期122-124,共3页
目的:探讨基于最佳证据总结的预案性护理对急诊高热惊厥患儿急救效果的影响。方法:选取2022年2月—7月急诊儿科收治的115例高热惊厥患儿作为研究对象,按照入院时间前后分为对照组(2022年2月—4月入院)57例和预案组(2022年5月—7月入院)5... 目的:探讨基于最佳证据总结的预案性护理对急诊高热惊厥患儿急救效果的影响。方法:选取2022年2月—7月急诊儿科收治的115例高热惊厥患儿作为研究对象,按照入院时间前后分为对照组(2022年2月—4月入院)57例和预案组(2022年5月—7月入院)58例,对照组接受常规优质护理,预案组接受基于最佳证据总结的预案性护理;比较两组患儿的恢复情况(惊厥发作停止时间、退热时间、住院时间),生命体征[体温(T)、心率(HR)、呼吸(RR)],并发症(食欲缺乏、水电解质紊乱、窒息)发生率,家属心理状态[采用焦虑自评量表(SAS)和抑郁自评量表(SDS)]。结果:预案组患儿惊厥发作停止时间、退热时间、住院时间较对照组更短(P<0.01),生命体征(T、HR、RR)优于对照组(P<0.05,P<0.01),并发症发生率低于对照组(P<0.05);预案组家属干预后SAS、SDS评分低于对照组(P<0.05)。结论:基于最佳证据总结的预案性护理能够缩短高热惊厥患儿恢复时间,促进患儿生命体征恢复,降低并发症发生率,缓解家属的负性情绪,对高热惊厥患儿具有较好的急救效果。 展开更多
关键词 高热惊厥 患儿 最佳证据总结 预案性护理 生命体征
暂未订购
Epstein-Barr病毒与强直性脊柱炎互作:基于UK Biobank与FinnGen数据库的分析
19
作者 刘恩旭 孙钰 +3 位作者 段嘉豪 杨雷 蒋浩波 杨少锋 《中国组织工程研究》 北大核心 2026年第17期4542-4547,共6页
背景:Epstein-Barr病毒(EBV)作为一种人类疱疹病毒,在人群中广泛存在。既往观察性研究提示EBV感染与强直性脊柱炎相关,但传统方法因混杂因素和反向因果偏倚无法明确因果关联。阐明EBV与强直性脊柱炎的因果关联,不仅有助于揭示强直性脊... 背景:Epstein-Barr病毒(EBV)作为一种人类疱疹病毒,在人群中广泛存在。既往观察性研究提示EBV感染与强直性脊柱炎相关,但传统方法因混杂因素和反向因果偏倚无法明确因果关联。阐明EBV与强直性脊柱炎的因果关联,不仅有助于揭示强直性脊柱炎的免疫致病机制,也为靶向EBV的预防策略提供理论依据。目的:通过双向孟德尔随机化分析,探讨EBV感染与强直性脊柱炎之间的双向因果关系。方法:基于欧洲人群的全基因组关联研究汇总数据,采用双向双样本孟德尔随机化分析,结合广义汇总数据孟德尔随机化与传统方法(逆方差加权、MR-Egger、加权中位数),探讨EBV感染与强直性脊柱炎的双向因果关系。EBV抗体(EA-D、EBNA-1、VCA p18、ZEBRA)数据来源于UK Biobank数据库,强直性脊柱炎数据来自FinnGen数据库。工具变量筛选遵循全基因组显著性(P<5×10^(-6))、排除连锁不平衡及混杂相关单核苷酸多态性(吸烟、类风湿关节炎、银屑病)。统计检验采用Bonferroni校正(显著性阈值P=6.3×10^(-3)),并通过异质性(Cochran’s Q)、多效性(MR-Egger截距、MR-PRESSO)及稳健性(留一法)分析验证结果的可靠性。广义汇总数据孟德尔随机化方法进一步通过HEIDI-outlier检验(P<0.01)剔除多效性单核苷酸多态性,确保因果推断的准确性。结果与结论:①双向孟德尔随机化分析显示,EBV感染显著增加强直性脊柱炎发病风险:EBNA-1抗体水平升高与强直性脊柱炎风险呈正相关(OR=1.41,95%CI:1.14-1.76,P=0.002),而ZEBRA抗体效应更强(OR=1.56,95%CI:1.31-1.85,P=5.4×10^(-7)),提示EBV潜伏期(EBNA-1)与裂解期(ZEBRA)感染均可能通过交叉免疫反应驱动强直性脊柱炎发生;②反向因果分析显示,强直性脊柱炎与EBV裂解期标志物EA-D抗体呈负相关(OR=0.96,95%CI:0.94-0.98,P=3.25×10^(-4)),表明强直性脊柱炎患者免疫状态可能抑制EBV再激活;③所有结果通过异质性、多效性及稳健性检验,无潜在偏倚;④此研究基于国际数据库和欧洲人群数据,首次证实EBV感染是强直性脊柱炎的独立因果风险因素。尽管人群遗传背景存在差异,但欧洲人群的发现为解析强直性脊柱炎的共性免疫机制提供了关键线索。因此,未来需结合中国本土队列验证结果,探索EBV与中国人群强直性脊柱炎的分子互作特征。此外,广义汇总数据孟德尔随机化方法的应用为利用公共全基因组关联研究数据开展因果推断提供了范例,可推动中国研究者高效挖掘疾病风险因素,助力精准医学发展。 展开更多
关键词 强直性脊柱炎 EPSTEIN-BARR病毒 抗体 因果关系 广义汇总数据孟德尔随机化 异质性依赖工具检验 工程化组织构建
暂未订购
成年ICU病人医用粘胶相关性皮肤损伤预防及管理的最佳证据总结
20
作者 仲秀玲 秦潇潇 +3 位作者 宋淳 宋才举 李常霞 李丽 《循证护理》 2026年第1期29-35,共7页
目的:检索、评价和整合成年重症监护病房(ICU)病人医用粘胶相关性皮肤损伤(MARSI)预防及管理的最佳证据。方法:按照“6S”证据模型,系统检索国内外数据库、相关指南网站及专业学会网站中关于成年ICU病人MARSI预防及管理的指南、专家共... 目的:检索、评价和整合成年重症监护病房(ICU)病人医用粘胶相关性皮肤损伤(MARSI)预防及管理的最佳证据。方法:按照“6S”证据模型,系统检索国内外数据库、相关指南网站及专业学会网站中关于成年ICU病人MARSI预防及管理的指南、专家共识、证据总结、系统评价,检索时限为建库至2024年12月31日。结果:共纳入16篇文献,包括3篇指南、3篇证据总结、7篇专家共识、3篇系统评价。总结ICU病人皮肤评估、皮肤护理、用物选择、操作技术、维护处理、更换敷料时机和教育培训7个方面,共23条证据。结论:总结的成年ICU病人MARSI预防及管理的最佳证据,具有一定的科学性与实用性,建议医护人员结合科室和病人实际情况,合理选择最佳证据,减少MARSI的发生,提升护理质量。 展开更多
关键词 重症监护病房 危重病人 医用粘胶相关性皮肤损伤 证据总结 循证护理
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部