The wet multi-disc clutches are extensively used in various transmission systems,withone of the most prevalent failure modes being the buckling deformation of friction components.Animproved Hilbert-Huang transform met...The wet multi-disc clutches are extensively used in various transmission systems,withone of the most prevalent failure modes being the buckling deformation of friction components.Animproved Hilbert-Huang transform method(IHHT)is proposed to address the limitations of tradi-tional time-domain vibration analyses,such as low accuracy and mode mixing.This paper first clas-sifies the buckling degree of the friction components.Next,wavelet packet transform(WPT)isapplied to the vibration signals of different buckling plates to partition them into distinct fre-quency bands.Then,the instantaneous features are extracted by empirical mode decomposition(EMD)and Hilbert transform(HT)to discarding extraneous intrinsic mode function(IMF)com-ponents.Comparative analyses of Hilbert spectral entropy and time-domain features confirm theenhanced precision of IHHT under specific classifiers,which is better than traditional methods.展开更多
Armored vehicles,to accomplish missions in complex harsh conditions with high mobility,require the transmission system to achieve high energy density and high reliability.The wet multi-disc clutch becomes the perishab...Armored vehicles,to accomplish missions in complex harsh conditions with high mobility,require the transmission system to achieve high energy density and high reliability.The wet multi-disc clutch becomes the perishable component under heavy load,large speed difference,and frequent engagement.Due to the difficulty of maintenance in battlefield,clutch carrying post-buckling separate plate is common,and the clutch working process is obstructed.Therefore,considering the post-buckling plate,the multi-physics thermodynamic model of a wet multi-disc clutch is established to describe the entire engagement and separation process.The influence of the buckling degree on the stress-strain,uniformity of gaps,torque,and temperature characteristics is investigated by the numerical method and testified by bench tests.The results show that with the increasing buckling degree,the clutch engagement and separation times decrease gradually.For the separation process,the non-uniformity of gaps is increased,and gaps are eventually occupied,leading to the continuous rough contact among friction pairs.Therefore,the drag torque is increased.Squeezed by the post-buckling plate,the cooling rates of separate plates are decreased.During repeated engagement-separation,temperatures of plates may reach balance points.Since continuous sliding and temperature concentration,the wear form and degree changes,especially at outer radius.Extra drag torque,heat,and wear threats the friction components which increases the risk of failures of the transmission system and affects the mobility of armored vehicles.展开更多
文摘The wet multi-disc clutches are extensively used in various transmission systems,withone of the most prevalent failure modes being the buckling deformation of friction components.Animproved Hilbert-Huang transform method(IHHT)is proposed to address the limitations of tradi-tional time-domain vibration analyses,such as low accuracy and mode mixing.This paper first clas-sifies the buckling degree of the friction components.Next,wavelet packet transform(WPT)isapplied to the vibration signals of different buckling plates to partition them into distinct fre-quency bands.Then,the instantaneous features are extracted by empirical mode decomposition(EMD)and Hilbert transform(HT)to discarding extraneous intrinsic mode function(IMF)com-ponents.Comparative analyses of Hilbert spectral entropy and time-domain features confirm theenhanced precision of IHHT under specific classifiers,which is better than traditional methods.
基金supported by the National Natural Science Foundations of China(Grant Nos.52205047,52175037)Frontier Cross Project of Beijing Institute of Technology(Grant No.2024CX11006)。
文摘Armored vehicles,to accomplish missions in complex harsh conditions with high mobility,require the transmission system to achieve high energy density and high reliability.The wet multi-disc clutch becomes the perishable component under heavy load,large speed difference,and frequent engagement.Due to the difficulty of maintenance in battlefield,clutch carrying post-buckling separate plate is common,and the clutch working process is obstructed.Therefore,considering the post-buckling plate,the multi-physics thermodynamic model of a wet multi-disc clutch is established to describe the entire engagement and separation process.The influence of the buckling degree on the stress-strain,uniformity of gaps,torque,and temperature characteristics is investigated by the numerical method and testified by bench tests.The results show that with the increasing buckling degree,the clutch engagement and separation times decrease gradually.For the separation process,the non-uniformity of gaps is increased,and gaps are eventually occupied,leading to the continuous rough contact among friction pairs.Therefore,the drag torque is increased.Squeezed by the post-buckling plate,the cooling rates of separate plates are decreased.During repeated engagement-separation,temperatures of plates may reach balance points.Since continuous sliding and temperature concentration,the wear form and degree changes,especially at outer radius.Extra drag torque,heat,and wear threats the friction components which increases the risk of failures of the transmission system and affects the mobility of armored vehicles.