This paper proposes a reliability evaluation model for a multi-dimensional network system,which has potential to be applied to the internet of things or other practical networks.A multi-dimensional network system with...This paper proposes a reliability evaluation model for a multi-dimensional network system,which has potential to be applied to the internet of things or other practical networks.A multi-dimensional network system with one source element and multiple sink elements is considered first.Each element can con-nect with other elements within a stochastic connection ranges.The system is regarded as successful as long as the source ele-ment remains connected with all sink elements.An importance measure is proposed to evaluate the performance of non-source elements.Furthermore,to calculate the system reliability and the element importance measure,a multi-valued decision diagram based approach is structured and its complexity is analyzed.Finally,a numerical example about the signal transfer station system is illustrated to analyze the system reliability and the ele-ment importance measure.展开更多
A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source di...A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source disturbances are addressed according to their specific characteristics as follows:(A)an MTN data-driven model,which is used for uncertainty description,is designed accompanied with the mechanism model to represent the unmanned systems;(B)an adaptive MTN filter is used to remove the influence of the internal disturbance;(C)an MTN disturbance observer is constructed to estimate and compensate for the influence of the external disturbance;(D)the Extended Kalman Filter(EKF)algorithm is utilized as the learning mechanism for MTNs.Second,to address the time-delay effect,a recursiveτstep-ahead MTN predictive model is designed utilizing recursive technology,aiming to mitigate the impact of time-delay,and the EKF algorithm is employed as its learning mechanism.Then,the MTN predictive control law is designed based on the quadratic performance index.By implementing the proposed composite controller to unmanned systems,simultaneous feedforward compensation and feedback suppression to the multi-source disturbances are conducted.Finally,the convergence of the MTN and the stability of the closed-loop system are established utilizing the Lyapunov theorem.Two exemplary applications of unmanned systems involving unmanned vehicle and rigid spacecraft are presented to validate the effectiveness of the proposed approach.展开更多
The ancient tacit knowledge behind the logic system permeated the culture and promoted numerous impactful inventions throughout the history. Traditional Chinese medicine with its effectiveness should also have stemmed...The ancient tacit knowledge behind the logic system permeated the culture and promoted numerous impactful inventions throughout the history. Traditional Chinese medicine with its effectiveness should also have stemmed out from such logic system. This article aims to rearticulate the underlying lucid multi-dimensional logic system, which faded in obscurity only because of time-out loss of the mid-right concept. Retracing this past tacit but important concept could uncover a multi-dimensional system over a point relating to all matters while capturing the central core of the matter. The seemingly unmanageable multidimensional logic was strengthened by verification processes which affirmed its further extensions, and made up the language of the people, the concepts of yin-yang(阴阳), and the development of extensions of Ba Gua(八卦) derivatives, which furthered the interpretation of the space-time properties and Chinese medicine.展开更多
Stress accumulation is a key factor leading to sodium storage performance deterioration for NiSe_(2)-based anodes.Therefore,inhibiting the concentrated local stress during the sodiataion/desodiation process is crucial...Stress accumulation is a key factor leading to sodium storage performance deterioration for NiSe_(2)-based anodes.Therefore,inhibiting the concentrated local stress during the sodiataion/desodiation process is crucial for acquiring stable NiSe2-based materials for sodium-ion batteries(SIBs),Herein,a stress dissipation strategy driven by architecture engineering is proposed,which can achieve ultrafast and ultralong sodium storage properties.Different from the conventional sphere-like or rod-like architecture,the three-dimensional(3D)flower-like NiSe_(2)@C composite is delicately designed and assembled with onedimensional nanorods and carbon framework.More importantly,the fundamental mechanism of improved structure stability is unveiled by simulations and experimental results simultaneously.It demonstrates that this designed multidimensional flower-like architecture with dispersed nanorods can balance the structural mismatch,avoid concentrated local strain,and relax the internal stress,mainly induced by the unavoidable volume variation during the repeated conversion processes.Moreover,it can provide more Na^(+)-storage sites and multi-directional migration pathways,leading to a fast Na^(+)-migration channel with boosted reaction kinetic.As expected,it delivers superior rate performance(441 mA h g^(-1)at 5.0 A g^(-1))and long cycling stability(563 mA h g^(-1)at 1.0 A g^(-1)over 1000 cycles)for SIBs.This work provides useful insights for designing high-performance conversion-based anode materials for SIBs.展开更多
This paper explores whole-process engineering consulting,including its application models in public buildings and elderly-friendly projects,such as service integration and whole lifecycle management.It also addresses ...This paper explores whole-process engineering consulting,including its application models in public buildings and elderly-friendly projects,such as service integration and whole lifecycle management.It also addresses the construction of multi-dimensional collaborative theoretical models,public space streamline organization,and other aspects,emphasizing the importance of multi-dimensional collaboration.Additionally,it highlights the role of talent cultivation and digital transformation in enhancing project efficiency.展开更多
This study focuses on the main problems encountered by rural community education and explores the main problems in key aspects such as resource integration and allocation,multi-party collaboration and sustainable deve...This study focuses on the main problems encountered by rural community education and explores the main problems in key aspects such as resource integration and allocation,multi-party collaboration and sustainable development through empirical analysis according to the theoretical framework of integrated education.The study finds that from the three dimensions of integration subject,integrated curriculum and integration mode,an integrated education system should be created on the basis of community,the social support system should be improved,the implementation of the rural revitalization strategy should be promoted,and the goal of talent training should be realized.展开更多
The multi-dimensional interactive teaching model significantly enhances the effectiveness of college English instruction by emphasizing dynamic engagement between teachers and students,as well as among students themse...The multi-dimensional interactive teaching model significantly enhances the effectiveness of college English instruction by emphasizing dynamic engagement between teachers and students,as well as among students themselves.This paper explores practical strategies for implementing this model,focusing on four key aspects:deepening teachers’understanding of the model through continuous learning,innovating interactive methods such as questioning techniques and practical activities,leveraging modern technology to integrate resources and track learning progress,and establishing a communication platform that centers on student participation.By adopting these approaches,the model fosters a student-centered classroom environment,improves comprehensive English application skills,and optimizes overall teaching quality.展开更多
During the critical transformation period of landscape architecture major after the adjustment of disciplinary structure and the changes in market demand,private colleges and universities,as important places for culti...During the critical transformation period of landscape architecture major after the adjustment of disciplinary structure and the changes in market demand,private colleges and universities,as important places for cultivating local talents,have pain points such as uneven quality of teachers and students and weak innovation and practice.The practice system with“multi-dimensional Integration”integrates four dimensions:interdisciplinary integration,spatial and temporal intersection,historical inheritance,and behavioral activity,deepens the disciplinary connotation,and integrates the three elements of nature,humanity,and technology,aiming to provide a new path for private colleges and universities to cultivate application-oriented and compound talents with innovative capabilities.In terms of optimizing talent cultivation and adapting to industry changes,this system provides thinking and reference for landscape architecture major,helping the major reshape its core competitiveness and promoting educational innovation and industry development.展开更多
Constructing multi-dimensional hydrogen bond(H-bond)regulated single-molecule systems with multiemission remains a challenge.Herein,we report the design of a new excited-state intramolecular proton transfer(ESIPT)feat...Constructing multi-dimensional hydrogen bond(H-bond)regulated single-molecule systems with multiemission remains a challenge.Herein,we report the design of a new excited-state intramolecular proton transfer(ESIPT)featured chromophore(HBT-DPI)that shows flexible emission tunability via the multidimensional regulation of intra-and intermolecular H-bonds.The feature of switchable intramolecular Hbonds is induced via incorporating several hydrogen bond acceptors and donors into one single HBT-DPI molecule,allowing the“turn on/off”of ESIPT process by forming isomers with distinct intramolecular Hbonds configurations.In response to different external H-bonding environments,the obtained four types of crystal/cocrystals vary in the contents of isomers and the molecular packing modes,which are mainly guided by the intermolecular H-bonds,exhibiting non-emissive features or emissions ranging from green to orange.Utilizing the feature of intermolecular H-bond guided molecular packing,we demonstrate the utility of this fluorescent material for visualizing hydrophobic/hydrophilic areas on large-scale heterogeneous surfaces of modified poly(1,1-difluoroethylene)(PVDF)membranes and quantitatively estimating the surface hydrophobicity,providing a new approach for hydrophobicity/hydrophilicity monitoring and measurement.Overall,this study represents a new design strategy for constructing multi-dimensional hydrogen bond regulated ESIPT-based fluorescent materials that enable multiple emissions and unique applications.展开更多
When evaluating the seismic safety and reliability of complex engineering structures,it is a critical problem to reasonably consider the randomness and multi-dimensional nature of ground motions.To this end,a proposed...When evaluating the seismic safety and reliability of complex engineering structures,it is a critical problem to reasonably consider the randomness and multi-dimensional nature of ground motions.To this end,a proposed modeling strategy of multi-dimensional stochastic earthquakes is addressed in this study.This improved seismic model has several merits that enable it to better provide seismic analyses of structures.Specifically,at first,the ground motion model is compatible with the design response spectrum.Secondly,the evolutionary power spectrum involved in the model and the design response spectrum are constructed accordingly with sufficient consideration of the correlation between different seismic components.Thirdly,the random function-based dimension-reduction representation is applied,by which seismic modeling is established,with three elementary random variables.Numerical simulations of multi-dimensional stochastic ground motions in a specific design scenario indicate the effectiveness of the proposed modeling strategy.Moreover,the multi-dimensional seismic response and the global reliability of a high-rise frame-core tube structure is discussed in detail to further illustrate the engineering applicability of the proposed method.The analytical investigations demonstrate that the suggested stochastic model of multi-dimensional ground motion is available for accurate seismic response analysis and dynamic reliability assessment of complex engineering structures for performance-based seismic resistance design.展开更多
The advent of the digital era has provided unprecedented opportunities for businesses to collect and analyze customer behavior data. Precision marketing, as a key means to improve marketing efficiency, highly depends ...The advent of the digital era has provided unprecedented opportunities for businesses to collect and analyze customer behavior data. Precision marketing, as a key means to improve marketing efficiency, highly depends on a deep understanding of customer behavior. This study proposes a theoretical framework for multi-dimensional customer behavior analysis, aiming to comprehensively capture customer behavioral characteristics in the digital environment. This framework integrates concepts of multi-source data including transaction history, browsing trajectories, social media interactions, and location information, constructing a theoretically more comprehensive customer profile. The research discusses the potential applications of this theoretical framework in precision marketing scenarios such as personalized recommendations, cross-selling, and customer churn prevention. Through analysis, the study points out that multi-dimensional analysis may significantly improve the targeting and theoretical conversion rates of marketing activities. However, the research also explores theoretical challenges that may be faced in the application process, such as data privacy and information overload, and proposes corresponding conceptual coping strategies. This study provides a new theoretical perspective on how businesses can optimize marketing decisions using big data thinking while respecting customer privacy, laying a foundation for future empirical research.展开更多
Autonomous Underwater Vehicles(AUVs)are pivotal for deep-sea exploration and resource exploitation,yet their reliability in extreme underwater environments remains a critical barrier to widespread deployment.Through s...Autonomous Underwater Vehicles(AUVs)are pivotal for deep-sea exploration and resource exploitation,yet their reliability in extreme underwater environments remains a critical barrier to widespread deployment.Through systematic analysis of 150 peer-reviewed studies employing mixed-methods research,this review yields three principal advancements to the reliability analysis of AUVs.First,based on the hierarchical functional division of AUVs into six subsystems(propulsion system,navigation system,communication system,power system,environmental detection system,and emergency system),this study systematically identifies the primary failure modes and potential failure causes of each subsystem,providing theoretical support for fault diagnosis and reliability optimization.Subsequently,a comprehensive review of AUV reliability analysis methods is conducted from three perspectives:analytical methods,simulated methods,and surrogate model methods.The applicability and limitations of each method are critically analyzed to offer insights into their suitability for engineering applications.Finally,the study highlights key challenges and research hotpots in AUV reliability analysis,including reliability analysis under limited data,AI-driven reliability analysis,and human reliability analysis.Furthermore,the potential of multi-sensor data fusion,edge computing,and advanced materials in enhancing AUV environmental adaptability and reliability is explored.展开更多
BACKGROUND During the gradual decline of physical and social functioning associated with end-stage renal disease,patients might experience a premonition of impending death,resulting in a series of pre-mourning grief r...BACKGROUND During the gradual decline of physical and social functioning associated with end-stage renal disease,patients might experience a premonition of impending death,resulting in a series of pre-mourning grief responses called preparatory grief.The preparatory grief in advanced cancer patients(PGAC)scale is the most widely used preparatory grief scale for patients on hemodialysis in China.AIM To verify the reliability and validity of the PGAC scale in patients on hemodialysis.METHODS In total,327 patients undergoing regular hemodialysis in the blood purification center of three grade-A tertiary hospitals in Guangdong and Guizhou provinces were selected by convenience sampling.The assessment was administered using the general information questionnaire and the Chinese version of PGAC.SPSS 25.0 and Amos 24.0 were used for item analysis,confirmatory factor analysis(CFA),convergent validity,and internal consistency reliability estimation.RESULTS In the modified Chinese version of PGAC,7 dimensions covering 27 total items were retained.CFA revealed a good fit of the factor model(chi-square degree of freedom=2.056,standardized root mean square residual=0.0479,root mean square error of approximation=0.0570,GFI=0.872,AGFI=0.841,IFI=0.931,CFI=0.930,TLI=0.919).The factor loadings of the items ranged 0.503-0.884.The composite reliability ranged 0.664-0.914,and the average variance extracted ranged 0.366-0.747.Cronbach’sαof the scale was 0.945,and Cronbach’sαfor various dimensions ranged 0.662-0.914.CONCLUSION The modified PGAC has good reliability and validity,and it can effectively measure preparatory grief in patients on hemodialysis.展开更多
Antarctic telescopes,especially those located at Dome A,face significant reliability challenges owing to the extremely harsh working environment,among which the reliability of the control system is critical in ensurin...Antarctic telescopes,especially those located at Dome A,face significant reliability challenges owing to the extremely harsh working environment,among which the reliability of the control system is critical in ensuring stable operation.This paper describes various factors affecting the reliability of Antarctic telescopes,as well as the challenges of reliability improvement.Combined with the development of Antarctic telescopes and the experience of Antarctic scientific expeditions,we introduce,in detail,the optimization strategy for reliability enhancement,including the hardware layer,software layer,modular design to facilitate maintenance,and reliability management.The current status of the Antarctic Survey Telescope(AST3)is also briefly introduced,along with future development plans.We aim to provide ideas for the reliability design of Antarctic telescopes and provide technical support for the development of future Antarctic telescopes.展开更多
The published article titled“Comparison of Structural Probabilistic and Non-Probabilistic Reliability Computational Methods under Big Data Condition”[1]has been retracted from Structural Durability&Health Monito...The published article titled“Comparison of Structural Probabilistic and Non-Probabilistic Reliability Computational Methods under Big Data Condition”[1]has been retracted from Structural Durability&Health Monitoring(SDHM),Vol.16,No.2,2022,pp.129–143.展开更多
The dynamic avalanche effect is a critical factor influencing the performance and reliability of the field-stop insulated gate bipolar transistors(FS-IGBT).Unclamped inductive switching(UIS)is the primary method for t...The dynamic avalanche effect is a critical factor influencing the performance and reliability of the field-stop insulated gate bipolar transistors(FS-IGBT).Unclamped inductive switching(UIS)is the primary method for testing the dynamic avalanche capability of FS-IGBTs.Numerous studies have demonstrated that factors such as device structure,avalanche-generating current filaments,and electrical parameters influence the dynamic avalanche effect of the FS-IGBT.However,few studies have focused on enhancing the avalanche reliability of the FS-IGBT by adjusting circuit parameters during operation.In this paper,the dynamic avalanche effect of the FS-IGBT under UIS conditions is comprehensively investigated through a series of comparative experiments with varying circuit parameters,including bus voltage V_(DC),gate voltage V_(G),gate resistance R_(g),load inductance L,and temperature TC.Furthermore,a method to enhance the dynamic avalanche reliability of the FS-IGBT under UIS by optimizing circuit parameters is proposed.In practical applications,reducing gate voltage,increasing load inductance,and lowering temperature can effectively improve the dynamic avalanche capability of the FS-IGBT.展开更多
Reliability analysis of soil slopes under rainfall is an important task for landslide risk assessment.Previous studies rarely contribute to the probabilistic analysis of slope stability under rainfall with reinforceme...Reliability analysis of soil slopes under rainfall is an important task for landslide risk assessment.Previous studies rarely contribute to the probabilistic analysis of slope stability under rainfall with reinforcement.A new method is suggested for reliability analysis of soil slopes stabilized with piles under rainfall.First,an efficient numerical model is exploited for slope stability analysis,where two types of slope failure modes,i.e.,plastic flow and local failure are considered.To address the blocking effect of piles during seepage analysis,the equivalent hydraulic conductivity of the pile area is estimated according to the effective medium theory.The stabilizing force of piles is investigated by an analytical approach.For saving computational effort,the response surface is established based on a multi-class classification model to predict two types of slope failure modes.Finally,uncertainties in soil parameters and rainfall events are both modelled,and the failure probability of soil slopes within a given time period is assessed through Monte Carlo simulation.An illustrative example is used to demonstrate the performance of the suggested method.It is found that the slope is mainly controlled by local failure.As the pile spacing increases,the likelihood of plastic flow significantly increases.As the piles are located near the slope crest,plastic flow is effectively prevented and the slope is better stabilized against rainfall.If rainfall uncertainties are not considered,the slope failure probability is significantly overestimated.Overall,this study can provide a useful guidance for the design of pile-stabilized slopes against rainfall infiltration.展开更多
Continuously increasing inflation is a major challenge in presenting reliable and relevant financial reports,especially in developing countries like Indonesia.This study aims to analyze the role of inflation accountin...Continuously increasing inflation is a major challenge in presenting reliable and relevant financial reports,especially in developing countries like Indonesia.This study aims to analyze the role of inflation accounting in increasing the reliability of financial reports during times of high inflation.With a qualitative-descriptive approach,this research examines two main methods in inflation accounting,namely General Price Level Accounting(GPLA)and Current Cost Accounting(CCA),and their impact on the value of assets,liabilities,income,and costs.The analysis results show that historical cost-based financial reports do not reflect actual economic conditions during inflation,so they can be misleading in decision making.The application of inflation accounting,through adjustments to purchasing power and current prices,has been proven to be able to increase the relevance and reliability of financial information.However,limitations in implementation in Indonesia are due to the lack of regulations and practical understanding regarding this method.Therefore,the application of inflation accounting is important in supporting the quality of financial reports and more accurate decision making amidst economic instability.展开更多
In this paper,an improved error-rate sliding window decoder is proposed for spatially coupled low-density parity-check(SC-LDPC)codes.For the conventional sliding window decoder,the message retention mechanism causes u...In this paper,an improved error-rate sliding window decoder is proposed for spatially coupled low-density parity-check(SC-LDPC)codes.For the conventional sliding window decoder,the message retention mechanism causes unreliable messages along the edges of belief propagation(BP)decoding in the current window to be kept for subsequent window decoding.To improve the reliability of the retained messages during the window transition,a reliable termination method is embedded,where the retained messages undergo more reliable parity checks.Additionally,decoding failure is unavoidable and even causes error propagation when the number of errors exceeds the error-correcting capability of the window.To mitigate this problem,a channel value reuse mechanism is designed,where the received channel values are utilized to reinitialize the window.Furthermore,considering the complexity and performance of decoding,a feasible sliding optimized window decoding(SOWD)scheme is introduced.Finally,simulation results confirm the superior performance of the proposed SOWD scheme in both the waterfall and error floor regions.This work has great potential in the applications of wireless optical communication and fiber optic communication.展开更多
BACKGROUND The Victorian institute of sports assessment for patellar tendons questionnaire(VISA-P),a valid tool for patellar tendinopathy,has been used for patellofemoral pain(PFP).AIM To validate VISA-P in PFP.METHOD...BACKGROUND The Victorian institute of sports assessment for patellar tendons questionnaire(VISA-P),a valid tool for patellar tendinopathy,has been used for patellofemoral pain(PFP).AIM To validate VISA-P in PFP.METHODS Study of validity,responsiveness and feasibility following COSMIN.Inclusion criteria:Subjects with PFP,aged 18 to 55.Agreement among 10 experts on the relevance and clarity of each item using Aiken's V coefficient determined content validity.An exploratory factorial analysis established structural validity.The correlation of VISA-P with knee injury and osteoarthritis outcome score for PFP and Osteoarthritis(KOOS-PF)and Kujala patellofemoral score(KPS;specific for PFP)analyzed the construct validity.Internal consistency was calculated with Cronbach'sαand test-retest reliability with the intraclass correlation coefficient(ICC).Feasibility considered the subjects'self-completion time.RESULTS The sample consisted of 103 knees from 73 subjects(47 female/26 male;aged 34.9±13 SD).The items were relevant and clear,with the exception of item-8,which didn't reach an acceptable level of agreement on clarity.Exploratory factorial analysis found a 2-factor solution,which explained 63.48%of the variance.VISAP achieved a strong and significant correlation with KOOS-PF(Spearman rho=0.826;P<0.001)and KPS(Spearman rho=0.771;P<0.001).The questionnaire showed adequate reliability(Cronbach'sα:0.752;ICC:0.934;P<0.0001;95%CI:0.902-0.955).The mean self-completion time was 232±0.52 SD seconds.CONCLUSION VISA-P proved to be valid and reliable to functionally assess PFP and/or chondromalacia patella.VISA-P is a feasible tool in the clinical and research environment,quick and easy to complete.展开更多
基金supported by the National Natural Science Foundation of China(72101025,72271049),the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities,FRF-IDRY-24-024)the Hebei Natural Science Foundation(F2023501011)+1 种基金the Fundamental Research Funds for the Central Universities(FRF-TP-20-073A1)the R&D Program of Beijing Municipal Education Commission(KM202411232015).
文摘This paper proposes a reliability evaluation model for a multi-dimensional network system,which has potential to be applied to the internet of things or other practical networks.A multi-dimensional network system with one source element and multiple sink elements is considered first.Each element can con-nect with other elements within a stochastic connection ranges.The system is regarded as successful as long as the source ele-ment remains connected with all sink elements.An importance measure is proposed to evaluate the performance of non-source elements.Furthermore,to calculate the system reliability and the element importance measure,a multi-valued decision diagram based approach is structured and its complexity is analyzed.Finally,a numerical example about the signal transfer station system is illustrated to analyze the system reliability and the ele-ment importance measure.
基金co-supported by the National Key R&D Program of China(No.2023YFB4704400)the Zhejiang Provincial Natural Science Foundation of China(No.LQ24F030012)the National Natural Science Foundation of China General Project(No.62373033)。
文摘A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source disturbances are addressed according to their specific characteristics as follows:(A)an MTN data-driven model,which is used for uncertainty description,is designed accompanied with the mechanism model to represent the unmanned systems;(B)an adaptive MTN filter is used to remove the influence of the internal disturbance;(C)an MTN disturbance observer is constructed to estimate and compensate for the influence of the external disturbance;(D)the Extended Kalman Filter(EKF)algorithm is utilized as the learning mechanism for MTNs.Second,to address the time-delay effect,a recursiveτstep-ahead MTN predictive model is designed utilizing recursive technology,aiming to mitigate the impact of time-delay,and the EKF algorithm is employed as its learning mechanism.Then,the MTN predictive control law is designed based on the quadratic performance index.By implementing the proposed composite controller to unmanned systems,simultaneous feedforward compensation and feedback suppression to the multi-source disturbances are conducted.Finally,the convergence of the MTN and the stability of the closed-loop system are established utilizing the Lyapunov theorem.Two exemplary applications of unmanned systems involving unmanned vehicle and rigid spacecraft are presented to validate the effectiveness of the proposed approach.
文摘The ancient tacit knowledge behind the logic system permeated the culture and promoted numerous impactful inventions throughout the history. Traditional Chinese medicine with its effectiveness should also have stemmed out from such logic system. This article aims to rearticulate the underlying lucid multi-dimensional logic system, which faded in obscurity only because of time-out loss of the mid-right concept. Retracing this past tacit but important concept could uncover a multi-dimensional system over a point relating to all matters while capturing the central core of the matter. The seemingly unmanageable multidimensional logic was strengthened by verification processes which affirmed its further extensions, and made up the language of the people, the concepts of yin-yang(阴阳), and the development of extensions of Ba Gua(八卦) derivatives, which furthered the interpretation of the space-time properties and Chinese medicine.
基金the financial support from the Guangxi Natural Science Foundation(grant no.2021GXNSFDA075012,2023GXNSFGA026002)National Natural Science Foundation of China(52104298,22075073,52362027,52462029)Fundamental Research Funds for the Central Universities(531107051077).
文摘Stress accumulation is a key factor leading to sodium storage performance deterioration for NiSe_(2)-based anodes.Therefore,inhibiting the concentrated local stress during the sodiataion/desodiation process is crucial for acquiring stable NiSe2-based materials for sodium-ion batteries(SIBs),Herein,a stress dissipation strategy driven by architecture engineering is proposed,which can achieve ultrafast and ultralong sodium storage properties.Different from the conventional sphere-like or rod-like architecture,the three-dimensional(3D)flower-like NiSe_(2)@C composite is delicately designed and assembled with onedimensional nanorods and carbon framework.More importantly,the fundamental mechanism of improved structure stability is unveiled by simulations and experimental results simultaneously.It demonstrates that this designed multidimensional flower-like architecture with dispersed nanorods can balance the structural mismatch,avoid concentrated local strain,and relax the internal stress,mainly induced by the unavoidable volume variation during the repeated conversion processes.Moreover,it can provide more Na^(+)-storage sites and multi-directional migration pathways,leading to a fast Na^(+)-migration channel with boosted reaction kinetic.As expected,it delivers superior rate performance(441 mA h g^(-1)at 5.0 A g^(-1))and long cycling stability(563 mA h g^(-1)at 1.0 A g^(-1)over 1000 cycles)for SIBs.This work provides useful insights for designing high-performance conversion-based anode materials for SIBs.
文摘This paper explores whole-process engineering consulting,including its application models in public buildings and elderly-friendly projects,such as service integration and whole lifecycle management.It also addresses the construction of multi-dimensional collaborative theoretical models,public space streamline organization,and other aspects,emphasizing the importance of multi-dimensional collaboration.Additionally,it highlights the role of talent cultivation and digital transformation in enhancing project efficiency.
文摘This study focuses on the main problems encountered by rural community education and explores the main problems in key aspects such as resource integration and allocation,multi-party collaboration and sustainable development through empirical analysis according to the theoretical framework of integrated education.The study finds that from the three dimensions of integration subject,integrated curriculum and integration mode,an integrated education system should be created on the basis of community,the social support system should be improved,the implementation of the rural revitalization strategy should be promoted,and the goal of talent training should be realized.
文摘The multi-dimensional interactive teaching model significantly enhances the effectiveness of college English instruction by emphasizing dynamic engagement between teachers and students,as well as among students themselves.This paper explores practical strategies for implementing this model,focusing on four key aspects:deepening teachers’understanding of the model through continuous learning,innovating interactive methods such as questioning techniques and practical activities,leveraging modern technology to integrate resources and track learning progress,and establishing a communication platform that centers on student participation.By adopting these approaches,the model fosters a student-centered classroom environment,improves comprehensive English application skills,and optimizes overall teaching quality.
基金Sponsored by the Quality Engineering Project of Education Department of Anhui Province(2022jyxm671)Research Team Project of Anhui Xinhua University(kytd202202)+1 种基金Key Project of Scientific Research(Natural Science)of Higher Education Institutions in Anhui Province(2022AH051861)Teaching Reform Research and Practice Quality Engineering Project of Anhui Xinhua University(2024jy035).
文摘During the critical transformation period of landscape architecture major after the adjustment of disciplinary structure and the changes in market demand,private colleges and universities,as important places for cultivating local talents,have pain points such as uneven quality of teachers and students and weak innovation and practice.The practice system with“multi-dimensional Integration”integrates four dimensions:interdisciplinary integration,spatial and temporal intersection,historical inheritance,and behavioral activity,deepens the disciplinary connotation,and integrates the three elements of nature,humanity,and technology,aiming to provide a new path for private colleges and universities to cultivate application-oriented and compound talents with innovative capabilities.In terms of optimizing talent cultivation and adapting to industry changes,this system provides thinking and reference for landscape architecture major,helping the major reshape its core competitiveness and promoting educational innovation and industry development.
基金supported by the National Key R&D Program of China(No.2021YFC2103600)the National Natural Science Foundation of China(Nos.21878156,21978131,22275085,and 22278224)+2 种基金the Natural Science Foundation of Jiangsu Province(Nos.BK20200089 and BK20200691)the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the State Key Laboratory of Materials-Oriented Chemical Engineering(No.KL21-08).
文摘Constructing multi-dimensional hydrogen bond(H-bond)regulated single-molecule systems with multiemission remains a challenge.Herein,we report the design of a new excited-state intramolecular proton transfer(ESIPT)featured chromophore(HBT-DPI)that shows flexible emission tunability via the multidimensional regulation of intra-and intermolecular H-bonds.The feature of switchable intramolecular Hbonds is induced via incorporating several hydrogen bond acceptors and donors into one single HBT-DPI molecule,allowing the“turn on/off”of ESIPT process by forming isomers with distinct intramolecular Hbonds configurations.In response to different external H-bonding environments,the obtained four types of crystal/cocrystals vary in the contents of isomers and the molecular packing modes,which are mainly guided by the intermolecular H-bonds,exhibiting non-emissive features or emissions ranging from green to orange.Utilizing the feature of intermolecular H-bond guided molecular packing,we demonstrate the utility of this fluorescent material for visualizing hydrophobic/hydrophilic areas on large-scale heterogeneous surfaces of modified poly(1,1-difluoroethylene)(PVDF)membranes and quantitatively estimating the surface hydrophobicity,providing a new approach for hydrophobicity/hydrophilicity monitoring and measurement.Overall,this study represents a new design strategy for constructing multi-dimensional hydrogen bond regulated ESIPT-based fluorescent materials that enable multiple emissions and unique applications.
基金National Natural Science Foundation of China under Grant Nos.51978543,52108444,and 51778343Plan of Outstanding Young and Middle-aged Scientific and Technological Innovation Team in the Universities of Hubei Province with Project No.T2020010Natural Science Foundation of Hebei Province under Grant No.E2021512001。
文摘When evaluating the seismic safety and reliability of complex engineering structures,it is a critical problem to reasonably consider the randomness and multi-dimensional nature of ground motions.To this end,a proposed modeling strategy of multi-dimensional stochastic earthquakes is addressed in this study.This improved seismic model has several merits that enable it to better provide seismic analyses of structures.Specifically,at first,the ground motion model is compatible with the design response spectrum.Secondly,the evolutionary power spectrum involved in the model and the design response spectrum are constructed accordingly with sufficient consideration of the correlation between different seismic components.Thirdly,the random function-based dimension-reduction representation is applied,by which seismic modeling is established,with three elementary random variables.Numerical simulations of multi-dimensional stochastic ground motions in a specific design scenario indicate the effectiveness of the proposed modeling strategy.Moreover,the multi-dimensional seismic response and the global reliability of a high-rise frame-core tube structure is discussed in detail to further illustrate the engineering applicability of the proposed method.The analytical investigations demonstrate that the suggested stochastic model of multi-dimensional ground motion is available for accurate seismic response analysis and dynamic reliability assessment of complex engineering structures for performance-based seismic resistance design.
文摘The advent of the digital era has provided unprecedented opportunities for businesses to collect and analyze customer behavior data. Precision marketing, as a key means to improve marketing efficiency, highly depends on a deep understanding of customer behavior. This study proposes a theoretical framework for multi-dimensional customer behavior analysis, aiming to comprehensively capture customer behavioral characteristics in the digital environment. This framework integrates concepts of multi-source data including transaction history, browsing trajectories, social media interactions, and location information, constructing a theoretically more comprehensive customer profile. The research discusses the potential applications of this theoretical framework in precision marketing scenarios such as personalized recommendations, cross-selling, and customer churn prevention. Through analysis, the study points out that multi-dimensional analysis may significantly improve the targeting and theoretical conversion rates of marketing activities. However, the research also explores theoretical challenges that may be faced in the application process, such as data privacy and information overload, and proposes corresponding conceptual coping strategies. This study provides a new theoretical perspective on how businesses can optimize marketing decisions using big data thinking while respecting customer privacy, laying a foundation for future empirical research.
基金The National Key R&D Program Projects(Grant No.2022YFC2803601)the Natural Science Foundation of Shandong Province(Grant No.ZR2021YQ29)+1 种基金the Natural Science Foundation of Heilongjiang Province(Grant No.YQ2024E036)the Taishan Scholars Project(Grant No.tsqn202312317).
文摘Autonomous Underwater Vehicles(AUVs)are pivotal for deep-sea exploration and resource exploitation,yet their reliability in extreme underwater environments remains a critical barrier to widespread deployment.Through systematic analysis of 150 peer-reviewed studies employing mixed-methods research,this review yields three principal advancements to the reliability analysis of AUVs.First,based on the hierarchical functional division of AUVs into six subsystems(propulsion system,navigation system,communication system,power system,environmental detection system,and emergency system),this study systematically identifies the primary failure modes and potential failure causes of each subsystem,providing theoretical support for fault diagnosis and reliability optimization.Subsequently,a comprehensive review of AUV reliability analysis methods is conducted from three perspectives:analytical methods,simulated methods,and surrogate model methods.The applicability and limitations of each method are critically analyzed to offer insights into their suitability for engineering applications.Finally,the study highlights key challenges and research hotpots in AUV reliability analysis,including reliability analysis under limited data,AI-driven reliability analysis,and human reliability analysis.Furthermore,the potential of multi-sensor data fusion,edge computing,and advanced materials in enhancing AUV environmental adaptability and reliability is explored.
文摘BACKGROUND During the gradual decline of physical and social functioning associated with end-stage renal disease,patients might experience a premonition of impending death,resulting in a series of pre-mourning grief responses called preparatory grief.The preparatory grief in advanced cancer patients(PGAC)scale is the most widely used preparatory grief scale for patients on hemodialysis in China.AIM To verify the reliability and validity of the PGAC scale in patients on hemodialysis.METHODS In total,327 patients undergoing regular hemodialysis in the blood purification center of three grade-A tertiary hospitals in Guangdong and Guizhou provinces were selected by convenience sampling.The assessment was administered using the general information questionnaire and the Chinese version of PGAC.SPSS 25.0 and Amos 24.0 were used for item analysis,confirmatory factor analysis(CFA),convergent validity,and internal consistency reliability estimation.RESULTS In the modified Chinese version of PGAC,7 dimensions covering 27 total items were retained.CFA revealed a good fit of the factor model(chi-square degree of freedom=2.056,standardized root mean square residual=0.0479,root mean square error of approximation=0.0570,GFI=0.872,AGFI=0.841,IFI=0.931,CFI=0.930,TLI=0.919).The factor loadings of the items ranged 0.503-0.884.The composite reliability ranged 0.664-0.914,and the average variance extracted ranged 0.366-0.747.Cronbach’sαof the scale was 0.945,and Cronbach’sαfor various dimensions ranged 0.662-0.914.CONCLUSION The modified PGAC has good reliability and validity,and it can effectively measure preparatory grief in patients on hemodialysis.
基金supported by the National Natural Science Foundation of China (12303089, 11973065)the Jiangsu Funding Program for Excellent Postdoctoral Talent (2022ZB449)the Polar Research Institute of China (PRIC) for their support and help with the Antarctic telescope project
文摘Antarctic telescopes,especially those located at Dome A,face significant reliability challenges owing to the extremely harsh working environment,among which the reliability of the control system is critical in ensuring stable operation.This paper describes various factors affecting the reliability of Antarctic telescopes,as well as the challenges of reliability improvement.Combined with the development of Antarctic telescopes and the experience of Antarctic scientific expeditions,we introduce,in detail,the optimization strategy for reliability enhancement,including the hardware layer,software layer,modular design to facilitate maintenance,and reliability management.The current status of the Antarctic Survey Telescope(AST3)is also briefly introduced,along with future development plans.We aim to provide ideas for the reliability design of Antarctic telescopes and provide technical support for the development of future Antarctic telescopes.
文摘The published article titled“Comparison of Structural Probabilistic and Non-Probabilistic Reliability Computational Methods under Big Data Condition”[1]has been retracted from Structural Durability&Health Monitoring(SDHM),Vol.16,No.2,2022,pp.129–143.
基金supported in part by the National Natural Science Foundation of China under Grant 62071073in part by the Fundamental Research Funds for Central Universities under Grant 2023CDJXY-041in part by the Foundation from Guangxi Key Laboratory of Optoelectronic Information Processing under Grant GD20201.
文摘The dynamic avalanche effect is a critical factor influencing the performance and reliability of the field-stop insulated gate bipolar transistors(FS-IGBT).Unclamped inductive switching(UIS)is the primary method for testing the dynamic avalanche capability of FS-IGBTs.Numerous studies have demonstrated that factors such as device structure,avalanche-generating current filaments,and electrical parameters influence the dynamic avalanche effect of the FS-IGBT.However,few studies have focused on enhancing the avalanche reliability of the FS-IGBT by adjusting circuit parameters during operation.In this paper,the dynamic avalanche effect of the FS-IGBT under UIS conditions is comprehensively investigated through a series of comparative experiments with varying circuit parameters,including bus voltage V_(DC),gate voltage V_(G),gate resistance R_(g),load inductance L,and temperature TC.Furthermore,a method to enhance the dynamic avalanche reliability of the FS-IGBT under UIS by optimizing circuit parameters is proposed.In practical applications,reducing gate voltage,increasing load inductance,and lowering temperature can effectively improve the dynamic avalanche capability of the FS-IGBT.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFB2600504)the National Natural Science Foundation of China(Grant No.42072302)the Postdoctoral Fellowship Program of CPSF(Grant No.GZB20240533).
文摘Reliability analysis of soil slopes under rainfall is an important task for landslide risk assessment.Previous studies rarely contribute to the probabilistic analysis of slope stability under rainfall with reinforcement.A new method is suggested for reliability analysis of soil slopes stabilized with piles under rainfall.First,an efficient numerical model is exploited for slope stability analysis,where two types of slope failure modes,i.e.,plastic flow and local failure are considered.To address the blocking effect of piles during seepage analysis,the equivalent hydraulic conductivity of the pile area is estimated according to the effective medium theory.The stabilizing force of piles is investigated by an analytical approach.For saving computational effort,the response surface is established based on a multi-class classification model to predict two types of slope failure modes.Finally,uncertainties in soil parameters and rainfall events are both modelled,and the failure probability of soil slopes within a given time period is assessed through Monte Carlo simulation.An illustrative example is used to demonstrate the performance of the suggested method.It is found that the slope is mainly controlled by local failure.As the pile spacing increases,the likelihood of plastic flow significantly increases.As the piles are located near the slope crest,plastic flow is effectively prevented and the slope is better stabilized against rainfall.If rainfall uncertainties are not considered,the slope failure probability is significantly overestimated.Overall,this study can provide a useful guidance for the design of pile-stabilized slopes against rainfall infiltration.
文摘Continuously increasing inflation is a major challenge in presenting reliable and relevant financial reports,especially in developing countries like Indonesia.This study aims to analyze the role of inflation accounting in increasing the reliability of financial reports during times of high inflation.With a qualitative-descriptive approach,this research examines two main methods in inflation accounting,namely General Price Level Accounting(GPLA)and Current Cost Accounting(CCA),and their impact on the value of assets,liabilities,income,and costs.The analysis results show that historical cost-based financial reports do not reflect actual economic conditions during inflation,so they can be misleading in decision making.The application of inflation accounting,through adjustments to purchasing power and current prices,has been proven to be able to increase the relevance and reliability of financial information.However,limitations in implementation in Indonesia are due to the lack of regulations and practical understanding regarding this method.Therefore,the application of inflation accounting is important in supporting the quality of financial reports and more accurate decision making amidst economic instability.
基金supported by the National Natural Science Foundation of China (No.62275193)。
文摘In this paper,an improved error-rate sliding window decoder is proposed for spatially coupled low-density parity-check(SC-LDPC)codes.For the conventional sliding window decoder,the message retention mechanism causes unreliable messages along the edges of belief propagation(BP)decoding in the current window to be kept for subsequent window decoding.To improve the reliability of the retained messages during the window transition,a reliable termination method is embedded,where the retained messages undergo more reliable parity checks.Additionally,decoding failure is unavoidable and even causes error propagation when the number of errors exceeds the error-correcting capability of the window.To mitigate this problem,a channel value reuse mechanism is designed,where the received channel values are utilized to reinitialize the window.Furthermore,considering the complexity and performance of decoding,a feasible sliding optimized window decoding(SOWD)scheme is introduced.Finally,simulation results confirm the superior performance of the proposed SOWD scheme in both the waterfall and error floor regions.This work has great potential in the applications of wireless optical communication and fiber optic communication.
文摘BACKGROUND The Victorian institute of sports assessment for patellar tendons questionnaire(VISA-P),a valid tool for patellar tendinopathy,has been used for patellofemoral pain(PFP).AIM To validate VISA-P in PFP.METHODS Study of validity,responsiveness and feasibility following COSMIN.Inclusion criteria:Subjects with PFP,aged 18 to 55.Agreement among 10 experts on the relevance and clarity of each item using Aiken's V coefficient determined content validity.An exploratory factorial analysis established structural validity.The correlation of VISA-P with knee injury and osteoarthritis outcome score for PFP and Osteoarthritis(KOOS-PF)and Kujala patellofemoral score(KPS;specific for PFP)analyzed the construct validity.Internal consistency was calculated with Cronbach'sαand test-retest reliability with the intraclass correlation coefficient(ICC).Feasibility considered the subjects'self-completion time.RESULTS The sample consisted of 103 knees from 73 subjects(47 female/26 male;aged 34.9±13 SD).The items were relevant and clear,with the exception of item-8,which didn't reach an acceptable level of agreement on clarity.Exploratory factorial analysis found a 2-factor solution,which explained 63.48%of the variance.VISAP achieved a strong and significant correlation with KOOS-PF(Spearman rho=0.826;P<0.001)and KPS(Spearman rho=0.771;P<0.001).The questionnaire showed adequate reliability(Cronbach'sα:0.752;ICC:0.934;P<0.0001;95%CI:0.902-0.955).The mean self-completion time was 232±0.52 SD seconds.CONCLUSION VISA-P proved to be valid and reliable to functionally assess PFP and/or chondromalacia patella.VISA-P is a feasible tool in the clinical and research environment,quick and easy to complete.