A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source di...A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source disturbances are addressed according to their specific characteristics as follows:(A)an MTN data-driven model,which is used for uncertainty description,is designed accompanied with the mechanism model to represent the unmanned systems;(B)an adaptive MTN filter is used to remove the influence of the internal disturbance;(C)an MTN disturbance observer is constructed to estimate and compensate for the influence of the external disturbance;(D)the Extended Kalman Filter(EKF)algorithm is utilized as the learning mechanism for MTNs.Second,to address the time-delay effect,a recursiveτstep-ahead MTN predictive model is designed utilizing recursive technology,aiming to mitigate the impact of time-delay,and the EKF algorithm is employed as its learning mechanism.Then,the MTN predictive control law is designed based on the quadratic performance index.By implementing the proposed composite controller to unmanned systems,simultaneous feedforward compensation and feedback suppression to the multi-source disturbances are conducted.Finally,the convergence of the MTN and the stability of the closed-loop system are established utilizing the Lyapunov theorem.Two exemplary applications of unmanned systems involving unmanned vehicle and rigid spacecraft are presented to validate the effectiveness of the proposed approach.展开更多
Currently,the cloud computing systems use simple key-value data processing,which cannot support similarity search efectively due to lack of efcient index structures,and with the increase of dimensionality,the existing...Currently,the cloud computing systems use simple key-value data processing,which cannot support similarity search efectively due to lack of efcient index structures,and with the increase of dimensionality,the existing tree-like index structures could lead to the problem of"the curse of dimensionality".In this paper,a novel VF-CAN indexing scheme is proposed.VF-CAN integrates content addressable network(CAN)based routing protocol and the improved vector approximation fle(VA-fle) index.There are two index levels in this scheme:global index and local index.The local index VAK-fle is built for the data in each storage node.VAK-fle is thek-means clustering result of VA-fle approximation vectors according to their degree of proximity.Each cluster forms a separate local index fle and each fle stores the approximate vectors that are contained in the cluster.The vector of each cluster center is stored in the cluster center information fle of corresponding storage node.In the global index,storage nodes are organized into an overlay network CAN,and in order to reduce the cost of calculation,only clustering information of local index is issued to the entire overlay network through the CAN interface.The experimental results show that VF-CAN reduces the index storage space and improves query performance efectively.展开更多
The ancient tacit knowledge behind the logic system permeated the culture and promoted numerous impactful inventions throughout the history. Traditional Chinese medicine with its effectiveness should also have stemmed...The ancient tacit knowledge behind the logic system permeated the culture and promoted numerous impactful inventions throughout the history. Traditional Chinese medicine with its effectiveness should also have stemmed out from such logic system. This article aims to rearticulate the underlying lucid multi-dimensional logic system, which faded in obscurity only because of time-out loss of the mid-right concept. Retracing this past tacit but important concept could uncover a multi-dimensional system over a point relating to all matters while capturing the central core of the matter. The seemingly unmanageable multidimensional logic was strengthened by verification processes which affirmed its further extensions, and made up the language of the people, the concepts of yin-yang(阴阳), and the development of extensions of Ba Gua(八卦) derivatives, which furthered the interpretation of the space-time properties and Chinese medicine.展开更多
Stress accumulation is a key factor leading to sodium storage performance deterioration for NiSe_(2)-based anodes.Therefore,inhibiting the concentrated local stress during the sodiataion/desodiation process is crucial...Stress accumulation is a key factor leading to sodium storage performance deterioration for NiSe_(2)-based anodes.Therefore,inhibiting the concentrated local stress during the sodiataion/desodiation process is crucial for acquiring stable NiSe2-based materials for sodium-ion batteries(SIBs),Herein,a stress dissipation strategy driven by architecture engineering is proposed,which can achieve ultrafast and ultralong sodium storage properties.Different from the conventional sphere-like or rod-like architecture,the three-dimensional(3D)flower-like NiSe_(2)@C composite is delicately designed and assembled with onedimensional nanorods and carbon framework.More importantly,the fundamental mechanism of improved structure stability is unveiled by simulations and experimental results simultaneously.It demonstrates that this designed multidimensional flower-like architecture with dispersed nanorods can balance the structural mismatch,avoid concentrated local strain,and relax the internal stress,mainly induced by the unavoidable volume variation during the repeated conversion processes.Moreover,it can provide more Na^(+)-storage sites and multi-directional migration pathways,leading to a fast Na^(+)-migration channel with boosted reaction kinetic.As expected,it delivers superior rate performance(441 mA h g^(-1)at 5.0 A g^(-1))and long cycling stability(563 mA h g^(-1)at 1.0 A g^(-1)over 1000 cycles)for SIBs.This work provides useful insights for designing high-performance conversion-based anode materials for SIBs.展开更多
This paper explores whole-process engineering consulting,including its application models in public buildings and elderly-friendly projects,such as service integration and whole lifecycle management.It also addresses ...This paper explores whole-process engineering consulting,including its application models in public buildings and elderly-friendly projects,such as service integration and whole lifecycle management.It also addresses the construction of multi-dimensional collaborative theoretical models,public space streamline organization,and other aspects,emphasizing the importance of multi-dimensional collaboration.Additionally,it highlights the role of talent cultivation and digital transformation in enhancing project efficiency.展开更多
The multi-dimensional interactive teaching model significantly enhances the effectiveness of college English instruction by emphasizing dynamic engagement between teachers and students,as well as among students themse...The multi-dimensional interactive teaching model significantly enhances the effectiveness of college English instruction by emphasizing dynamic engagement between teachers and students,as well as among students themselves.This paper explores practical strategies for implementing this model,focusing on four key aspects:deepening teachers’understanding of the model through continuous learning,innovating interactive methods such as questioning techniques and practical activities,leveraging modern technology to integrate resources and track learning progress,and establishing a communication platform that centers on student participation.By adopting these approaches,the model fosters a student-centered classroom environment,improves comprehensive English application skills,and optimizes overall teaching quality.展开更多
During the critical transformation period of landscape architecture major after the adjustment of disciplinary structure and the changes in market demand,private colleges and universities,as important places for culti...During the critical transformation period of landscape architecture major after the adjustment of disciplinary structure and the changes in market demand,private colleges and universities,as important places for cultivating local talents,have pain points such as uneven quality of teachers and students and weak innovation and practice.The practice system with“multi-dimensional Integration”integrates four dimensions:interdisciplinary integration,spatial and temporal intersection,historical inheritance,and behavioral activity,deepens the disciplinary connotation,and integrates the three elements of nature,humanity,and technology,aiming to provide a new path for private colleges and universities to cultivate application-oriented and compound talents with innovative capabilities.In terms of optimizing talent cultivation and adapting to industry changes,this system provides thinking and reference for landscape architecture major,helping the major reshape its core competitiveness and promoting educational innovation and industry development.展开更多
This paper proposes a reliability evaluation model for a multi-dimensional network system,which has potential to be applied to the internet of things or other practical networks.A multi-dimensional network system with...This paper proposes a reliability evaluation model for a multi-dimensional network system,which has potential to be applied to the internet of things or other practical networks.A multi-dimensional network system with one source element and multiple sink elements is considered first.Each element can con-nect with other elements within a stochastic connection ranges.The system is regarded as successful as long as the source ele-ment remains connected with all sink elements.An importance measure is proposed to evaluate the performance of non-source elements.Furthermore,to calculate the system reliability and the element importance measure,a multi-valued decision diagram based approach is structured and its complexity is analyzed.Finally,a numerical example about the signal transfer station system is illustrated to analyze the system reliability and the ele-ment importance measure.展开更多
Constructing multi-dimensional hydrogen bond(H-bond)regulated single-molecule systems with multiemission remains a challenge.Herein,we report the design of a new excited-state intramolecular proton transfer(ESIPT)feat...Constructing multi-dimensional hydrogen bond(H-bond)regulated single-molecule systems with multiemission remains a challenge.Herein,we report the design of a new excited-state intramolecular proton transfer(ESIPT)featured chromophore(HBT-DPI)that shows flexible emission tunability via the multidimensional regulation of intra-and intermolecular H-bonds.The feature of switchable intramolecular Hbonds is induced via incorporating several hydrogen bond acceptors and donors into one single HBT-DPI molecule,allowing the“turn on/off”of ESIPT process by forming isomers with distinct intramolecular Hbonds configurations.In response to different external H-bonding environments,the obtained four types of crystal/cocrystals vary in the contents of isomers and the molecular packing modes,which are mainly guided by the intermolecular H-bonds,exhibiting non-emissive features or emissions ranging from green to orange.Utilizing the feature of intermolecular H-bond guided molecular packing,we demonstrate the utility of this fluorescent material for visualizing hydrophobic/hydrophilic areas on large-scale heterogeneous surfaces of modified poly(1,1-difluoroethylene)(PVDF)membranes and quantitatively estimating the surface hydrophobicity,providing a new approach for hydrophobicity/hydrophilicity monitoring and measurement.Overall,this study represents a new design strategy for constructing multi-dimensional hydrogen bond regulated ESIPT-based fluorescent materials that enable multiple emissions and unique applications.展开更多
To break the limitations of the multi-dimensional(M-D)vibration isolation(VI)platforms with the Stewart-Gough design,such as strongly coupling motions,excessive friction in connections,heavy weight,and limited workspa...To break the limitations of the multi-dimensional(M-D)vibration isolation(VI)platforms with the Stewart-Gough design,such as strongly coupling motions,excessive friction in connections,heavy weight,and limited workspace,this study processes a novel platform integrated by a stiffness-adjustable origami spring sub-structure and a parallel mechanism.The origami-based stiffness-adjustable spring realizes low-frequency VI,and the parallel mechanism symmetry design realizes motions decoupling.In the origami-based sub-leg,the parallel-stack-assembly(PSA)design mechanism with two Miura origami configurations is proposed to generate a symmetrical negative stiffness property.Paired with a linear positive stiffness spring,the origami-based sub-leg has wide-amplitude-high-static-low-dynamic stiffness(WA-HSLDS)characteristics in one direction.Then,with construction of the parallel mechanism connected with origami-based sub-legs,an M-D VI platform is achieved,whose motions in the vertical direction and yaw direction are decoupled with the motions in the other directions.Based on the dynamic model and incremental harmonic balance(IHB)with the arc-length continuation method,appropriate structural parameters in the parallel mechanism part are figured out,and the accurate transmissibility in different directions is defined,which gives the parametric influencing investigations for realization of low-frequency VI performances.Finally,experiments are conducted to validate the accuracy and feasibility of the theoretical methods,and to demonstrate the performance of M-D low-frequency isolation with load-carrying capacity of the proposed VI platform.The integration of the origami into the parallel mechanism results in a compact,efficient,and flexible platform with nonlinear adjustability,offering new possibilities for lightweight M-D VI,and developing the practical applications in high-precision platforms in ocean and aerospace environments.展开更多
This article examines the design and implementation of a digital twin spatiotemporal indexing engine.It outlines the core theoretical foundations,including spatiotemporal mapping mechanisms,and discusses key enabling ...This article examines the design and implementation of a digital twin spatiotemporal indexing engine.It outlines the core theoretical foundations,including spatiotemporal mapping mechanisms,and discusses key enabling technologies such as hybrid spatiotemporal indexing structures,edge-cloud collaborative storage architectures,and protocol conversion middleware.The study further evaluates system performance through an experimental platform,comparing a layered storage architecture with traditional storage models.The results demonstrate clear advantages in terms of efficiency,scalability,and responsiveness.Finally,the paper explores practical application scenarios and outlines future development directions for next-generation spatiotemporal indexing engines in digital twin systems.展开更多
reshwater essential for civilization faces risk from untreated effluents discharged by industries,agriculture,urban areas,and other sources.Increasing demand and abstraction of freshwater deteriorate the pollution sce...reshwater essential for civilization faces risk from untreated effluents discharged by industries,agriculture,urban areas,and other sources.Increasing demand and abstraction of freshwater deteriorate the pollution scenario more.Hence,water quality analysis(WQA)is an important task for researchers and policymakers to maintain sustainability and public health.This study aims to gather and discuss the methods used for WQA by the researchers,focusing on their advantages and limitations.Simultaneously,this study compares different WQA methods,discussing their trends and future directions.Publications from the past decade on WQA are reviewed,and insights are explored to aggregate them in particular categories.Three major approaches,namely—water quality indexing,water quality modeling(WQM)and artificial intelligence-based WQM,are recognized.Different methodologies adopted to execute these three approaches are presented in this study,which leads to formulate a comparative discussion.Using statistical operations and soft computing techniques have been done by researchers to combat the subjectivity error in indexing.To achieve better results,WQMs are being modified to incorporate the physical processes influencing water quality more robustly.The utilization of artificial intelligence was primarily restricted to conventional networks,but in the last 5 years,implications of deep learning have increased rapidly and exhibited good results with the hybridization of feature extracting and time series modeling.Overall,this study is a valuable resource for researchers dedicated to WQA.展开更多
This paper analyzes the global competitive landscape of smartphone technological innovation capacity using the latent semantic indexing(LSI)and the vector space model(VSM).It integrates the theory of technological eco...This paper analyzes the global competitive landscape of smartphone technological innovation capacity using the latent semantic indexing(LSI)and the vector space model(VSM).It integrates the theory of technological ecological niches and evaluates four key dimensions:patent quality,energy efficiency engineering,technological modules,and intelligent computing power.The findings reveal that USA has established strong technological barriers through standard-essential patents(SEPs)in wireless communication and integrated circuits.In contrast,Chinese mainland firms rely heavily on fundamental technologies.Qualcomm Inc.in USA and Taiwan Semiconductor Manufacturing Company(TSMC)in Chineses Taiwan have built a comprehensive patent porfolio in energy efficiency engineering.While Chinese mainland faces challenges in advancing dynamic frequency modulation algorithms and high-end manufacturing processes.Huawei Inc.in Chinese mainland leads in 5G module technology but struggles with ecosystem collaboration.Semiconductor manufacturing and radio frequency(RF)components still rely on external suppliers.This highlights the urgent need for innovation in new materials and open'source architectures.To enhance intelligent computing power,Chinese mainland firms must address coordination challenges.They should adopt scenario-driven technological strategies and build a comprehensive ecosystem that includes hardware,operating systems,and developer networks.展开更多
Asian Agricultural Research(ISSN1943-9903),founded in 2009,is a monthly comprehensive agricultural academic journal published and approved by the Library of Congress of the United States of America.
The Gabes aquifer system,located in southeastern Tunisia,is a crucial resource for supporting local socio-economic activities.Due to its dual porosity structure,is particularly vulnerable to pollution.This study aims ...The Gabes aquifer system,located in southeastern Tunisia,is a crucial resource for supporting local socio-economic activities.Due to its dual porosity structure,is particularly vulnerable to pollution.This study aims to develop a hybrid model that combines the Fracture Aquifer Index(FAI)with the conventional GOD(Groundwater occurrence,Overall lithology,Depth to water table)method,to assess groundwater vulnerability in fractured aquifer.To develop the hybrid model,the classical GOD method was integrated with FAI to produce a single composite index.Each parameter within both GOD and FAI was scored,and a final index was calculated to delineate vulnerable areas.The results show that the study area can be classified into four vulnerability levels:Very low,low,moderate,and high,indicating that approximately 8%of the area exhibits very low vulnerability,29%has low vulnerability,25%falls into the moderate category,and 38%is considered highly vulnerable.The FAI-GOD model further incorporates fracture network characteristics.This refinement reduces the classification to three vulnerability classes:Low,medium,and high.The outcomes demonstrate that 46%of the area is highly vulnerable due to a dense concentration of fractures,while 17%represents an intermediate zone characterized by either shallow or deeper fractures.In contrast,37%corresponds to areas with lightly fractured rock,where the impact on vulnerability is minimal.Multivariate statistical analysis was employed using Principal Components Analysis(PCA)and Hierarchical Cluster Analysis(HCA)on 24 samples across six variables.The first three components account for over 76%of the total variance,reinforcing the significance of fracture dynamics in classifying vulnerability levels.The FAI-GOD model removes the very-low-vulnerability class and expands the spatial extent of low-and high-vulnerability zones,reflecting the dominant influence of fracture networks on aquifer sensitivity.While both indices use a five-class system,FAI-GOD redistributes vulnerability by eliminating very-low-vulnerability areas and amplifying low/high categories,highlighting the critical role of fractures.A strong correlation(R2=0.94)between the GOD and FAI-GOD indices,demonstrated through second-order polynomial regression,confirms the robustness of the FAI-GOD model in accurately predicting vulnerability to pollution.This model provides a useful framework for assessing the vulnerability of complex aquifers and serves as a decision-making tool for groundwater managers in similar areas.展开更多
This commentary critically appraises the study by Li et al which pioneered the exploration of the triglyceride-glucose(TyG)index as a prognostic marker in hepatitis B virus-related advanced hepatocellular carcinoma pa...This commentary critically appraises the study by Li et al which pioneered the exploration of the triglyceride-glucose(TyG)index as a prognostic marker in hepatitis B virus-related advanced hepatocellular carcinoma patients undergoing combined camrelizumab and lenvatinib therapy.While we acknowledge the study’s clinical relevance in proposing an easily accessible metabolic biomarker,we delve into the mechanistic plausibility linking insulin resistance to immunotherapy response and angiogenic inhibition.We further critically examine the methodological limitations,including the retrospective design,the populationspecific TyG cut-off value,and unaddressed metabolic confounders.We highlight the imperative for future research to validate its utility across diverse etiologies and treatment settings,and to unravel the underlying immunometabolic pathways.展开更多
BACKGROUND Timely and accurate evaluation of mental disorders in adolescents using appropriate mental health literacy assessment tools is essential for improving their mental health literacy levels.AIM To develop an e...BACKGROUND Timely and accurate evaluation of mental disorders in adolescents using appropriate mental health literacy assessment tools is essential for improving their mental health literacy levels.AIM To develop an evaluation index system for the mental health literacy of adolescent patients with mental disorders,providing a scientific,comprehensive,and reliable tool for the monitoring and intervention of mental health literacy of such patients.METHODS From December 2022 to June 2023,the evaluation index system for mental health literacy of adolescents with mental disorders was developed through literature reviews,semi-structured interviews,expert letter consultations,and the analytic hierarchy process.Based on this index system,a self-assessment questionnaire was compiled and administered to 305 adolescents with mental disorders to test the reliability and validity of the index system.RESULTS The final evaluation index system for mental health literacy of adolescents with mental disorders included 4 first-level indicators,10 second-level indicators,and 52 third-level indicators.The overall Cronbach’sαcoefficient of the index system was 0.957,with a partial reliability of 0.826 and a content validity index of 0.975.The cumulative variance contribution rate of 10 common factors was 66.491%.The correlation coefficients between each dimension and the total questionnaire ranged from 0.672 to 0.724,while the correlation coefficients in each dimension ranged from 0.389 to 0.705.CONCLUSION The evaluation index system for mental health literacy of adolescents with mental disorders,developed in this study,demonstrated notable reliability and validity,making it a valuable tool for evaluating mental health literacy in this population.展开更多
Digitization has created an abundance of new information sources by altering how pictures are captured.Accessing large image databases from a web portal requires an opted indexing structure instead of reducing the con...Digitization has created an abundance of new information sources by altering how pictures are captured.Accessing large image databases from a web portal requires an opted indexing structure instead of reducing the contents of different kinds of databases for quick processing.This approach paves a path toward the increase of efficient image retrieval techniques and numerous research in image indexing involving large image datasets.Image retrieval usually encounters difficulties like a)merging the diverse representations of images and their Indexing,b)the low-level visual characters and semantic characters associated with an image are indirectly proportional,and c)noisy and less accurate extraction of image information(semantic and predicted attributes).This work clearly focuses and takes the base of reverse engineering and de-normalizing concept by evaluating how data can be stored effectively.Thus,retrieval becomes straightforward and rapid.This research also deals with deep root indexing with a multidimensional approach about how images can be indexed and provides improved results in terms of good performance in query processing and the reduction of maintenance and storage cost.We focus on the schema design on a non-clustered index solution,especially cover queries.This schema provides a filter predication to make an index with a particular content of rows and an index table called filtered indexing.Finally,we include non-key columns in addition to the key columns.Experiments on two image data sets‘with and without’filtered indexing show low query cost.We compare efficiency as regards accuracy in mean average precision to measure the accuracy of retrieval with the developed coherent semantic indexing.The results show that retrieval by using deep root indexing is simple and fast.展开更多
Based on the theory of information entropy, time series and spatial variation of land use changes of Bijie City in 2009-2013 were analyzed from different dimensions such as land use degree and land use diversity. The ...Based on the theory of information entropy, time series and spatial variation of land use changes of Bijie City in 2009-2013 were analyzed from different dimensions such as land use degree and land use diversity. The result showed that in 2009-2013, the forest vegetation was well protected, and the construction land was under reasonable expansion under the influence of economic development, the land use degree of which developed gradually to width and depth, and the trend of information entropy showed a graduate increase, indicating that land use scale became more reasonable and the area of different land type became more balanced in Bijie in the period. The study results showed that land resources in Bijie City were used rationally under the strategy from central government local government,and Bijie was in the benign development of economic development—resource distribution—scale change. Moreover, Bijie chould further improve land use pattern such as redevelop stock construction land, optimize the industrial land use pattern and mountain agricultural land development in the future.展开更多
基金co-supported by the National Key R&D Program of China(No.2023YFB4704400)the Zhejiang Provincial Natural Science Foundation of China(No.LQ24F030012)the National Natural Science Foundation of China General Project(No.62373033)。
文摘A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source disturbances are addressed according to their specific characteristics as follows:(A)an MTN data-driven model,which is used for uncertainty description,is designed accompanied with the mechanism model to represent the unmanned systems;(B)an adaptive MTN filter is used to remove the influence of the internal disturbance;(C)an MTN disturbance observer is constructed to estimate and compensate for the influence of the external disturbance;(D)the Extended Kalman Filter(EKF)algorithm is utilized as the learning mechanism for MTNs.Second,to address the time-delay effect,a recursiveτstep-ahead MTN predictive model is designed utilizing recursive technology,aiming to mitigate the impact of time-delay,and the EKF algorithm is employed as its learning mechanism.Then,the MTN predictive control law is designed based on the quadratic performance index.By implementing the proposed composite controller to unmanned systems,simultaneous feedforward compensation and feedback suppression to the multi-source disturbances are conducted.Finally,the convergence of the MTN and the stability of the closed-loop system are established utilizing the Lyapunov theorem.Two exemplary applications of unmanned systems involving unmanned vehicle and rigid spacecraft are presented to validate the effectiveness of the proposed approach.
基金supported by National Natural Science Foundation of China(No.61071093)Research and Innovation Projects for Graduates of Jiangsu Province(Nos.CXZZ12 0483 and CXLX12 0481)+1 种基金Science and Technology Support Program of Jiangsu Province(No.BE2012849)Priority Academic Program Development of Jiangsu Higher Education Institutions(No.yx002001)
文摘Currently,the cloud computing systems use simple key-value data processing,which cannot support similarity search efectively due to lack of efcient index structures,and with the increase of dimensionality,the existing tree-like index structures could lead to the problem of"the curse of dimensionality".In this paper,a novel VF-CAN indexing scheme is proposed.VF-CAN integrates content addressable network(CAN)based routing protocol and the improved vector approximation fle(VA-fle) index.There are two index levels in this scheme:global index and local index.The local index VAK-fle is built for the data in each storage node.VAK-fle is thek-means clustering result of VA-fle approximation vectors according to their degree of proximity.Each cluster forms a separate local index fle and each fle stores the approximate vectors that are contained in the cluster.The vector of each cluster center is stored in the cluster center information fle of corresponding storage node.In the global index,storage nodes are organized into an overlay network CAN,and in order to reduce the cost of calculation,only clustering information of local index is issued to the entire overlay network through the CAN interface.The experimental results show that VF-CAN reduces the index storage space and improves query performance efectively.
文摘The ancient tacit knowledge behind the logic system permeated the culture and promoted numerous impactful inventions throughout the history. Traditional Chinese medicine with its effectiveness should also have stemmed out from such logic system. This article aims to rearticulate the underlying lucid multi-dimensional logic system, which faded in obscurity only because of time-out loss of the mid-right concept. Retracing this past tacit but important concept could uncover a multi-dimensional system over a point relating to all matters while capturing the central core of the matter. The seemingly unmanageable multidimensional logic was strengthened by verification processes which affirmed its further extensions, and made up the language of the people, the concepts of yin-yang(阴阳), and the development of extensions of Ba Gua(八卦) derivatives, which furthered the interpretation of the space-time properties and Chinese medicine.
基金the financial support from the Guangxi Natural Science Foundation(grant no.2021GXNSFDA075012,2023GXNSFGA026002)National Natural Science Foundation of China(52104298,22075073,52362027,52462029)Fundamental Research Funds for the Central Universities(531107051077).
文摘Stress accumulation is a key factor leading to sodium storage performance deterioration for NiSe_(2)-based anodes.Therefore,inhibiting the concentrated local stress during the sodiataion/desodiation process is crucial for acquiring stable NiSe2-based materials for sodium-ion batteries(SIBs),Herein,a stress dissipation strategy driven by architecture engineering is proposed,which can achieve ultrafast and ultralong sodium storage properties.Different from the conventional sphere-like or rod-like architecture,the three-dimensional(3D)flower-like NiSe_(2)@C composite is delicately designed and assembled with onedimensional nanorods and carbon framework.More importantly,the fundamental mechanism of improved structure stability is unveiled by simulations and experimental results simultaneously.It demonstrates that this designed multidimensional flower-like architecture with dispersed nanorods can balance the structural mismatch,avoid concentrated local strain,and relax the internal stress,mainly induced by the unavoidable volume variation during the repeated conversion processes.Moreover,it can provide more Na^(+)-storage sites and multi-directional migration pathways,leading to a fast Na^(+)-migration channel with boosted reaction kinetic.As expected,it delivers superior rate performance(441 mA h g^(-1)at 5.0 A g^(-1))and long cycling stability(563 mA h g^(-1)at 1.0 A g^(-1)over 1000 cycles)for SIBs.This work provides useful insights for designing high-performance conversion-based anode materials for SIBs.
文摘This paper explores whole-process engineering consulting,including its application models in public buildings and elderly-friendly projects,such as service integration and whole lifecycle management.It also addresses the construction of multi-dimensional collaborative theoretical models,public space streamline organization,and other aspects,emphasizing the importance of multi-dimensional collaboration.Additionally,it highlights the role of talent cultivation and digital transformation in enhancing project efficiency.
文摘The multi-dimensional interactive teaching model significantly enhances the effectiveness of college English instruction by emphasizing dynamic engagement between teachers and students,as well as among students themselves.This paper explores practical strategies for implementing this model,focusing on four key aspects:deepening teachers’understanding of the model through continuous learning,innovating interactive methods such as questioning techniques and practical activities,leveraging modern technology to integrate resources and track learning progress,and establishing a communication platform that centers on student participation.By adopting these approaches,the model fosters a student-centered classroom environment,improves comprehensive English application skills,and optimizes overall teaching quality.
基金Sponsored by the Quality Engineering Project of Education Department of Anhui Province(2022jyxm671)Research Team Project of Anhui Xinhua University(kytd202202)+1 种基金Key Project of Scientific Research(Natural Science)of Higher Education Institutions in Anhui Province(2022AH051861)Teaching Reform Research and Practice Quality Engineering Project of Anhui Xinhua University(2024jy035).
文摘During the critical transformation period of landscape architecture major after the adjustment of disciplinary structure and the changes in market demand,private colleges and universities,as important places for cultivating local talents,have pain points such as uneven quality of teachers and students and weak innovation and practice.The practice system with“multi-dimensional Integration”integrates four dimensions:interdisciplinary integration,spatial and temporal intersection,historical inheritance,and behavioral activity,deepens the disciplinary connotation,and integrates the three elements of nature,humanity,and technology,aiming to provide a new path for private colleges and universities to cultivate application-oriented and compound talents with innovative capabilities.In terms of optimizing talent cultivation and adapting to industry changes,this system provides thinking and reference for landscape architecture major,helping the major reshape its core competitiveness and promoting educational innovation and industry development.
基金supported by the National Natural Science Foundation of China(72101025,72271049),the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities,FRF-IDRY-24-024)the Hebei Natural Science Foundation(F2023501011)+1 种基金the Fundamental Research Funds for the Central Universities(FRF-TP-20-073A1)the R&D Program of Beijing Municipal Education Commission(KM202411232015).
文摘This paper proposes a reliability evaluation model for a multi-dimensional network system,which has potential to be applied to the internet of things or other practical networks.A multi-dimensional network system with one source element and multiple sink elements is considered first.Each element can con-nect with other elements within a stochastic connection ranges.The system is regarded as successful as long as the source ele-ment remains connected with all sink elements.An importance measure is proposed to evaluate the performance of non-source elements.Furthermore,to calculate the system reliability and the element importance measure,a multi-valued decision diagram based approach is structured and its complexity is analyzed.Finally,a numerical example about the signal transfer station system is illustrated to analyze the system reliability and the ele-ment importance measure.
基金supported by the National Key R&D Program of China(No.2021YFC2103600)the National Natural Science Foundation of China(Nos.21878156,21978131,22275085,and 22278224)+2 种基金the Natural Science Foundation of Jiangsu Province(Nos.BK20200089 and BK20200691)the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the State Key Laboratory of Materials-Oriented Chemical Engineering(No.KL21-08).
文摘Constructing multi-dimensional hydrogen bond(H-bond)regulated single-molecule systems with multiemission remains a challenge.Herein,we report the design of a new excited-state intramolecular proton transfer(ESIPT)featured chromophore(HBT-DPI)that shows flexible emission tunability via the multidimensional regulation of intra-and intermolecular H-bonds.The feature of switchable intramolecular Hbonds is induced via incorporating several hydrogen bond acceptors and donors into one single HBT-DPI molecule,allowing the“turn on/off”of ESIPT process by forming isomers with distinct intramolecular Hbonds configurations.In response to different external H-bonding environments,the obtained four types of crystal/cocrystals vary in the contents of isomers and the molecular packing modes,which are mainly guided by the intermolecular H-bonds,exhibiting non-emissive features or emissions ranging from green to orange.Utilizing the feature of intermolecular H-bond guided molecular packing,we demonstrate the utility of this fluorescent material for visualizing hydrophobic/hydrophilic areas on large-scale heterogeneous surfaces of modified poly(1,1-difluoroethylene)(PVDF)membranes and quantitatively estimating the surface hydrophobicity,providing a new approach for hydrophobicity/hydrophilicity monitoring and measurement.Overall,this study represents a new design strategy for constructing multi-dimensional hydrogen bond regulated ESIPT-based fluorescent materials that enable multiple emissions and unique applications.
基金Project supported by the National Natural Science Foundation of China(Nos.U2441202,12372043,and 12372022)the Fundamental Research Funds for Central Universities。
文摘To break the limitations of the multi-dimensional(M-D)vibration isolation(VI)platforms with the Stewart-Gough design,such as strongly coupling motions,excessive friction in connections,heavy weight,and limited workspace,this study processes a novel platform integrated by a stiffness-adjustable origami spring sub-structure and a parallel mechanism.The origami-based stiffness-adjustable spring realizes low-frequency VI,and the parallel mechanism symmetry design realizes motions decoupling.In the origami-based sub-leg,the parallel-stack-assembly(PSA)design mechanism with two Miura origami configurations is proposed to generate a symmetrical negative stiffness property.Paired with a linear positive stiffness spring,the origami-based sub-leg has wide-amplitude-high-static-low-dynamic stiffness(WA-HSLDS)characteristics in one direction.Then,with construction of the parallel mechanism connected with origami-based sub-legs,an M-D VI platform is achieved,whose motions in the vertical direction and yaw direction are decoupled with the motions in the other directions.Based on the dynamic model and incremental harmonic balance(IHB)with the arc-length continuation method,appropriate structural parameters in the parallel mechanism part are figured out,and the accurate transmissibility in different directions is defined,which gives the parametric influencing investigations for realization of low-frequency VI performances.Finally,experiments are conducted to validate the accuracy and feasibility of the theoretical methods,and to demonstrate the performance of M-D low-frequency isolation with load-carrying capacity of the proposed VI platform.The integration of the origami into the parallel mechanism results in a compact,efficient,and flexible platform with nonlinear adjustability,offering new possibilities for lightweight M-D VI,and developing the practical applications in high-precision platforms in ocean and aerospace environments.
文摘This article examines the design and implementation of a digital twin spatiotemporal indexing engine.It outlines the core theoretical foundations,including spatiotemporal mapping mechanisms,and discusses key enabling technologies such as hybrid spatiotemporal indexing structures,edge-cloud collaborative storage architectures,and protocol conversion middleware.The study further evaluates system performance through an experimental platform,comparing a layered storage architecture with traditional storage models.The results demonstrate clear advantages in terms of efficiency,scalability,and responsiveness.Finally,the paper explores practical application scenarios and outlines future development directions for next-generation spatiotemporal indexing engines in digital twin systems.
基金State University Research Excellence(SURE),SERB,GOI,Grant/Award Number:SUR/2022/001557。
文摘reshwater essential for civilization faces risk from untreated effluents discharged by industries,agriculture,urban areas,and other sources.Increasing demand and abstraction of freshwater deteriorate the pollution scenario more.Hence,water quality analysis(WQA)is an important task for researchers and policymakers to maintain sustainability and public health.This study aims to gather and discuss the methods used for WQA by the researchers,focusing on their advantages and limitations.Simultaneously,this study compares different WQA methods,discussing their trends and future directions.Publications from the past decade on WQA are reviewed,and insights are explored to aggregate them in particular categories.Three major approaches,namely—water quality indexing,water quality modeling(WQM)and artificial intelligence-based WQM,are recognized.Different methodologies adopted to execute these three approaches are presented in this study,which leads to formulate a comparative discussion.Using statistical operations and soft computing techniques have been done by researchers to combat the subjectivity error in indexing.To achieve better results,WQMs are being modified to incorporate the physical processes influencing water quality more robustly.The utilization of artificial intelligence was primarily restricted to conventional networks,but in the last 5 years,implications of deep learning have increased rapidly and exhibited good results with the hybridization of feature extracting and time series modeling.Overall,this study is a valuable resource for researchers dedicated to WQA.
基金supported in part by the National Social Science Foundation of China(No.20BGL203).
文摘This paper analyzes the global competitive landscape of smartphone technological innovation capacity using the latent semantic indexing(LSI)and the vector space model(VSM).It integrates the theory of technological ecological niches and evaluates four key dimensions:patent quality,energy efficiency engineering,technological modules,and intelligent computing power.The findings reveal that USA has established strong technological barriers through standard-essential patents(SEPs)in wireless communication and integrated circuits.In contrast,Chinese mainland firms rely heavily on fundamental technologies.Qualcomm Inc.in USA and Taiwan Semiconductor Manufacturing Company(TSMC)in Chineses Taiwan have built a comprehensive patent porfolio in energy efficiency engineering.While Chinese mainland faces challenges in advancing dynamic frequency modulation algorithms and high-end manufacturing processes.Huawei Inc.in Chinese mainland leads in 5G module technology but struggles with ecosystem collaboration.Semiconductor manufacturing and radio frequency(RF)components still rely on external suppliers.This highlights the urgent need for innovation in new materials and open'source architectures.To enhance intelligent computing power,Chinese mainland firms must address coordination challenges.They should adopt scenario-driven technological strategies and build a comprehensive ecosystem that includes hardware,operating systems,and developer networks.
文摘Asian Agricultural Research(ISSN1943-9903),founded in 2009,is a monthly comprehensive agricultural academic journal published and approved by the Library of Congress of the United States of America.
文摘The Gabes aquifer system,located in southeastern Tunisia,is a crucial resource for supporting local socio-economic activities.Due to its dual porosity structure,is particularly vulnerable to pollution.This study aims to develop a hybrid model that combines the Fracture Aquifer Index(FAI)with the conventional GOD(Groundwater occurrence,Overall lithology,Depth to water table)method,to assess groundwater vulnerability in fractured aquifer.To develop the hybrid model,the classical GOD method was integrated with FAI to produce a single composite index.Each parameter within both GOD and FAI was scored,and a final index was calculated to delineate vulnerable areas.The results show that the study area can be classified into four vulnerability levels:Very low,low,moderate,and high,indicating that approximately 8%of the area exhibits very low vulnerability,29%has low vulnerability,25%falls into the moderate category,and 38%is considered highly vulnerable.The FAI-GOD model further incorporates fracture network characteristics.This refinement reduces the classification to three vulnerability classes:Low,medium,and high.The outcomes demonstrate that 46%of the area is highly vulnerable due to a dense concentration of fractures,while 17%represents an intermediate zone characterized by either shallow or deeper fractures.In contrast,37%corresponds to areas with lightly fractured rock,where the impact on vulnerability is minimal.Multivariate statistical analysis was employed using Principal Components Analysis(PCA)and Hierarchical Cluster Analysis(HCA)on 24 samples across six variables.The first three components account for over 76%of the total variance,reinforcing the significance of fracture dynamics in classifying vulnerability levels.The FAI-GOD model removes the very-low-vulnerability class and expands the spatial extent of low-and high-vulnerability zones,reflecting the dominant influence of fracture networks on aquifer sensitivity.While both indices use a five-class system,FAI-GOD redistributes vulnerability by eliminating very-low-vulnerability areas and amplifying low/high categories,highlighting the critical role of fractures.A strong correlation(R2=0.94)between the GOD and FAI-GOD indices,demonstrated through second-order polynomial regression,confirms the robustness of the FAI-GOD model in accurately predicting vulnerability to pollution.This model provides a useful framework for assessing the vulnerability of complex aquifers and serves as a decision-making tool for groundwater managers in similar areas.
文摘This commentary critically appraises the study by Li et al which pioneered the exploration of the triglyceride-glucose(TyG)index as a prognostic marker in hepatitis B virus-related advanced hepatocellular carcinoma patients undergoing combined camrelizumab and lenvatinib therapy.While we acknowledge the study’s clinical relevance in proposing an easily accessible metabolic biomarker,we delve into the mechanistic plausibility linking insulin resistance to immunotherapy response and angiogenic inhibition.We further critically examine the methodological limitations,including the retrospective design,the populationspecific TyG cut-off value,and unaddressed metabolic confounders.We highlight the imperative for future research to validate its utility across diverse etiologies and treatment settings,and to unravel the underlying immunometabolic pathways.
基金Supported by Inter Disciplinary Direction Cultivation Project of Hunan University of Chinese Medicine,No.2025JC01032025 Hunan Province Science and Technology Innovation Plan Project,No.2025RC9012+2 种基金2022"Unveiling and Leading"Project of Discipline Construction at Hunan University of Chinese Medicine,No.22JBZ044Changsha Municipal Natural Science Foundation,No.kq2402174Hunan Provincial Science Popularization Fund Project,No.2025ZK4223.
文摘BACKGROUND Timely and accurate evaluation of mental disorders in adolescents using appropriate mental health literacy assessment tools is essential for improving their mental health literacy levels.AIM To develop an evaluation index system for the mental health literacy of adolescent patients with mental disorders,providing a scientific,comprehensive,and reliable tool for the monitoring and intervention of mental health literacy of such patients.METHODS From December 2022 to June 2023,the evaluation index system for mental health literacy of adolescents with mental disorders was developed through literature reviews,semi-structured interviews,expert letter consultations,and the analytic hierarchy process.Based on this index system,a self-assessment questionnaire was compiled and administered to 305 adolescents with mental disorders to test the reliability and validity of the index system.RESULTS The final evaluation index system for mental health literacy of adolescents with mental disorders included 4 first-level indicators,10 second-level indicators,and 52 third-level indicators.The overall Cronbach’sαcoefficient of the index system was 0.957,with a partial reliability of 0.826 and a content validity index of 0.975.The cumulative variance contribution rate of 10 common factors was 66.491%.The correlation coefficients between each dimension and the total questionnaire ranged from 0.672 to 0.724,while the correlation coefficients in each dimension ranged from 0.389 to 0.705.CONCLUSION The evaluation index system for mental health literacy of adolescents with mental disorders,developed in this study,demonstrated notable reliability and validity,making it a valuable tool for evaluating mental health literacy in this population.
文摘Digitization has created an abundance of new information sources by altering how pictures are captured.Accessing large image databases from a web portal requires an opted indexing structure instead of reducing the contents of different kinds of databases for quick processing.This approach paves a path toward the increase of efficient image retrieval techniques and numerous research in image indexing involving large image datasets.Image retrieval usually encounters difficulties like a)merging the diverse representations of images and their Indexing,b)the low-level visual characters and semantic characters associated with an image are indirectly proportional,and c)noisy and less accurate extraction of image information(semantic and predicted attributes).This work clearly focuses and takes the base of reverse engineering and de-normalizing concept by evaluating how data can be stored effectively.Thus,retrieval becomes straightforward and rapid.This research also deals with deep root indexing with a multidimensional approach about how images can be indexed and provides improved results in terms of good performance in query processing and the reduction of maintenance and storage cost.We focus on the schema design on a non-clustered index solution,especially cover queries.This schema provides a filter predication to make an index with a particular content of rows and an index table called filtered indexing.Finally,we include non-key columns in addition to the key columns.Experiments on two image data sets‘with and without’filtered indexing show low query cost.We compare efficiency as regards accuracy in mean average precision to measure the accuracy of retrieval with the developed coherent semantic indexing.The results show that retrieval by using deep root indexing is simple and fast.
基金Supported by the Mutual Fund Project for Soft Science Research of Guizhou Science and Technology Department and Guizhou University of Finance and Economics(Qiankehe LH[2013]7249)~~
文摘Based on the theory of information entropy, time series and spatial variation of land use changes of Bijie City in 2009-2013 were analyzed from different dimensions such as land use degree and land use diversity. The result showed that in 2009-2013, the forest vegetation was well protected, and the construction land was under reasonable expansion under the influence of economic development, the land use degree of which developed gradually to width and depth, and the trend of information entropy showed a graduate increase, indicating that land use scale became more reasonable and the area of different land type became more balanced in Bijie in the period. The study results showed that land resources in Bijie City were used rationally under the strategy from central government local government,and Bijie was in the benign development of economic development—resource distribution—scale change. Moreover, Bijie chould further improve land use pattern such as redevelop stock construction land, optimize the industrial land use pattern and mountain agricultural land development in the future.